Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
Py is a dataset for object detection tasks - it contains Py annotations for 3,289 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
CS Py is a dataset for object detection tasks - it contains Objects annotations for 770 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
Chicken, Hen, Chickenhence, Python, Py is a dataset for object detection tasks - it contains Chicken Only Hen annotations for 227 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
usage :
TRAIN_PATH = "../input/house-prices-advanced-regression-techniques/train.csv" TARGET = "SalePrice" RARE_COLUMN = 'Id' SEED = 2022 showShapValues(TRAIN_PATH,TARGET,RARE_COLUMN,SEED)
Facebook
TwitterThis dataset was created by Nasree Hayeesama-ae
Facebook
TwitterWebpage: https://ogb.stanford.edu/docs/nodeprop/#ogbn-products
import os.path as osp
import pandas as pd
import datatable as dt
import torch
import torch_geometric as pyg
from ogb.nodeproppred import PygNodePropPredDataset
class PygOgbnProducts(PygNodePropPredDataset):
def _init_(self, meta_csv = None):
root, name, transform = '/kaggle/input', 'ogbn-products', None
if meta_csv is None:
meta_csv = osp.join(root, name, 'ogbn-master.csv')
master = pd.read_csv(meta_csv, index_col = 0)
meta_dict = master[name]
meta_dict['dir_path'] = osp.join(root, name)
super()._init_(name = name, root = root, transform = transform, meta_dict = meta_dict)
def get_idx_split(self, split_type = None):
if split_type is None:
split_type = self.meta_info['split']
path = osp.join(self.root, 'split', split_type)
if osp.isfile(os.path.join(path, 'split_dict.pt')):
return torch.load(os.path.join(path, 'split_dict.pt'))
if self.is_hetero:
train_idx_dict, valid_idx_dict, test_idx_dict = read_nodesplitidx_split_hetero(path)
for nodetype in train_idx_dict.keys():
train_idx_dict[nodetype] = torch.from_numpy(train_idx_dict[nodetype]).to(torch.long)
valid_idx_dict[nodetype] = torch.from_numpy(valid_idx_dict[nodetype]).to(torch.long)
test_idx_dict[nodetype] = torch.from_numpy(test_idx_dict[nodetype]).to(torch.long)
return {'train': train_idx_dict, 'valid': valid_idx_dict, 'test': test_idx_dict}
else:
train_idx = dt.fread(osp.join(path, 'train.csv'), header = None).to_numpy().T[0]
train_idx = torch.from_numpy(train_idx).to(torch.long)
valid_idx = dt.fread(osp.join(path, 'valid.csv'), header = None).to_numpy().T[0]
valid_idx = torch.from_numpy(valid_idx).to(torch.long)
test_idx = dt.fread(osp.join(path, 'test.csv'), header = None).to_numpy().T[0]
test_idx = torch.from_numpy(test_idx).to(torch.long)
return {'train': train_idx, 'valid': valid_idx, 'test': test_idx}
dataset = PygOgbnProducts()
split_idx = dataset.get_idx_split()
train_idx, valid_idx, test_idx = split_idx['train'], split_idx['valid'], split_idx['test']
graph = dataset[0] # PyG Graph object
Graph: The ogbn-products dataset is an undirected and unweighted graph, representing an Amazon product co-purchasing network [1]. Nodes represent products sold in Amazon, and edges between two products indicate that the products are purchased together. The authors follow [2] to process node features and target categories. Specifically, node features are generated by extracting bag-of-words features from the product descriptions followed by a Principal Component Analysis to reduce the dimension to 100.
Prediction task: The task is to predict the category of a product in a multi-class classification setup, where the 47 top-level categories are used for target labels.
Dataset splitting: The authors consider a more challenging and realistic dataset splitting that differs from the one used in [2] Instead of randomly assigning 90% of the nodes for training and 10% of the nodes for testing (without use of a validation set), use the sales ranking (popularity) to split nodes into training/validation/test sets. Specifically, the authors sort the products according to their sales ranking and use the top 8% for training, next top 2% for validation, and the rest for testing. This is a more challenging splitting procedure that closely matches the real-world application where labels are first assigned to important nodes in the network and ML models are subsequently used to make predictions on less important ones.
Note 1: A very small number of self-connecting edges are repeated (see here); you may remove them if necessary.
Note 2: For undirected graphs, the loaded graphs will have the doubled number of edges because the bidirectional edges will be added automatically.
| Package | #Nodes | #Edges | Split Type | Task Type | Metric |
|---|---|---|---|---|---|
ogb>=1.1.1 | 2,449,029 | 61,859,140 | Sales rank | Multi-class classification | Accuracy |
Website: https://ogb.stanford.edu
The Open Graph Benchmark (OGB) [3] is a collection of realistic, large-scale, and diverse benchmark datasets for machine learning on graphs. OGB datasets are automatically downloaded, processed, and split using the OGB Data Loader. The model performance can be evaluated using the OGB Evaluator in a unified manner.
[1] http://manikvarma.org/downloads/XC/XMLRepository.html [2] Wei-Lin Chiang, ...
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This dataset was created by Meisam Malek Mohammadi
Released under Apache 2.0
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
Py is a dataset for object detection tasks - it contains Py annotations for 3,289 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).