Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Compilation of python codes for data preprocessing and VegeNet building, as well as image datasets (zip files).
Image datasets:
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
What is Pandas?
Pandas is a Python library used for working with data sets.
It has functions for analyzing, cleaning, exploring, and manipulating data.
The name "Pandas" has a reference to both "Panel Data", and "Python Data Analysis" and was created by Wes McKinney in 2008.
Why Use Pandas?
Pandas allows us to analyze big data and make conclusions based on statistical theories.
Pandas can clean messy data sets, and make them readable and relevant.
Relevant data is very important in data science.
What Can Pandas Do?
Pandas gives you answers about the data. Like:
Is there a correlation between two or more columns?
What is average value?
Max value?
Min value?
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
Dataset Card for "instructional_code-search-net-python"
Dataset Summary
This is an instructional dataset for Python. The dataset contains two different kind of tasks:
Given a piece of code generate a description of what it does. Given a description generate a piece of code that fulfils the description.
Languages
The dataset is in English.
Data Splits
There are no splits.
Dataset Creation
May of 2023
Curation Rationale
This⦠See the full description on the dataset page: https://huggingface.co/datasets/Nan-Do/instructional_code-search-net-python.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Dataset Description
Overview: This dataset contains three distinct fake datasets generated using the Faker and Mimesis libraries. These libraries are commonly used for generating realistic-looking synthetic data for testing, prototyping, and data science projects. The datasets were created to simulate real-world scenarios while ensuring no sensitive or private information is included.
Data Generation Process: The data creation process is documented in the accompanying notebook, Creating_simple_Sintetic_data.ipynb. This notebook showcases the step-by-step procedure for generating synthetic datasets with customizable structures and fields using the Faker and Mimesis libraries.
File Contents:
Datasets: CSV files containing the three synthetic datasets. Notebook: Creating_simple_Sintetic_data.ipynb detailing the data generation process and the code used to create these datasets.
Facebook
TwitterThe files in this repository can be used to generate the complete set of figures in the paper "An algorithm to identify vapor-liquid-liquid equilibria from vapor-liquid equilibria". The zip file, when expanded, includes a conda environment to populate the dependencies, and a set of python scripts. Running make_figures.py will regenerate all the figures, demonstrating how to use the algorithm.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
Upload From Python is a dataset for object detection tasks - it contains Cars WyfR annotations for 3,002 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
Facebook
TwitterThis child item describes Python code used to estimate average yearly and monthly tourism per 1000 residents within public-supply water service areas. Increases in population due to tourism may impact amounts of water used by public-supply water systems. This data release contains model input datasets, Python code used to develop the tourism information, and output estimates of tourism. This dataset is part of a larger data release using machine learning to predict public supply water use for 12-digit hydrologic units from 2000-2020. Output from this code was used as an input feature in the public supply delivery and water use machine learning models. This page includes the following files: tourism_input_data.zip - a zip file containing input data sets used by the tourism Python code tourism_output.zip - a zip file with output produced by the tourism Python code README.txt - a README file describing the data files and code requirements tourism_study_code.zip - a zip file containing the Python code used to create the tourism feature variable
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In the EHRI-3 project, we are investigating tools and methods that historical researchers and scholars can use to better understand, visualise, and interpret the material held by our partner archives. This dataset accompanies a tutorial exploring a technique called topic modelling in the context of a Holocaust-related historical collection.
We were on the lookout for datasets that would be easily accessible and, for convenience, predominantly in English. One such dataset was the United States Holocaust Memorial Museumβs (USHMM) extensive collection of oral history testimonies, for which there are a considerable number of textual transcripts. The museumβs total collection consists of over 80,703 testimonies, 41,695 of which are available in English, with 2,894 of them listing a transcript.
Since there is not yet a ready-to-download dataset that includes these transcripts, we had to construct our own. Using a web scraping tool, we managed to create a list of the links pointing to the metadata (including transcripts) of the testimonies that were of interest to us. After obtaining the transcript and other metadata of each of these testimonies, we were able to create our dataset and curate it to remove any unwanted entries. For example, we made sure to remove entries with restrictions on access or use. We also removed entries with transcripts that consisted only of some automatically generated headers and entries which turned out to be in languages other than English. The remaining 1,873 transcripts form the corpus of this tutorial β a small, but still decently sized dataset.
The process that we followed to put together this dataset is detailed in the Jupyter Notebook accompanying this post, which can be found in this Github repository.
In this Zenodo upload, the user can find two files, each of them containing a pickled pandas DataFrame that was obtained at a different stage of the tutorial:
"unrestricted_df.pkl" contains 1,946 entries of Oral Testimony transcripts and has five fields (RG_number, text, display_date, conditions_access, conditions_use) "unrestricted_lemmatized_df.pkl" contains 1,873 entries of Oral Testimony transcripts and has six fields (RG_number, text, display_date, conditions_access, conditions_use, lemmas)
Instructions on their intended use can be found in the accompanying Jupyter Notebook.
Credits:
The transcripts that form the corpus in this tutorial were obtained through the United States Holocaust Memorial Museum (USHMM).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The self-documenting aspects and the ability to reproduce results have been touted as significant benefits of Jupyter Notebooks. At the same time, there has been growing criticism that the way notebooks are being used leads to unexpected behavior, encourage poor coding practices and that their results can be hard to reproduce. To understand good and bad practices used in the development of real notebooks, we analyzed 1.4 million notebooks from GitHub.
This repository contains two files:
The dump.tar.bz2 file contains a PostgreSQL dump of the database, with all the data we extracted from the notebooks.
The jupyter_reproducibility.tar.bz2 file contains all the scripts we used to query and download Jupyter Notebooks, extract data from them, and analyze the data. It is organized as follows:
In the remaining of this text, we give instructions for reproducing the analyses, by using the data provided in the dump and reproducing the collection, by collecting data from GitHub again.
Reproducing the Analysis
This section shows how to load the data in the database and run the analyses notebooks. In the analysis, we used the following environment:
Ubuntu 18.04.1 LTS
PostgreSQL 10.6
Conda 4.5.11
Python 3.7.2
PdfCrop 2012/11/02 v1.38
First, download dump.tar.bz2 and extract it:
tar -xjf dump.tar.bz2
It extracts the file db2019-03-13.dump. Create a database in PostgreSQL (we call it "jupyter"), and use psql to restore the dump:
psql jupyter < db2019-03-13.dump
It populates the database with the dump. Now, configure the connection string for sqlalchemy by setting the environment variable JUP_DB_CONNECTTION:
export JUP_DB_CONNECTION="postgresql://user:password@hostname/jupyter";
Download and extract jupyter_reproducibility.tar.bz2:
tar -xjf jupyter_reproducibility.tar.bz2
Create a conda environment with Python 3.7:
conda create -n analyses python=3.7
conda activate analyses
Go to the analyses folder and install all the dependencies of the requirements.txt
cd jupyter_reproducibility/analyses
pip install -r requirements.txt
For reproducing the analyses, run jupyter on this folder:
jupyter notebook
Execute the notebooks on this order:
Reproducing or Expanding the Collection
The collection demands more steps to reproduce and takes much longer to run (months). It also involves running arbitrary code on your machine. Proceed with caution.
Requirements
This time, we have extra requirements:
All the analysis requirements
lbzip2 2.5
gcc 7.3.0
Github account
Gmail account
Environment
First, set the following environment variables:
export JUP_MACHINE="db"; # machine identifier
export JUP_BASE_DIR="/mnt/jupyter/github"; # place to store the repositories
export JUP_LOGS_DIR="/home/jupyter/logs"; # log files
export JUP_COMPRESSION="lbzip2"; # compression program
export JUP_VERBOSE="5"; # verbose level
export JUP_DB_CONNECTION="postgresql://user:password@hostname/jupyter"; # sqlchemy connection
export JUP_GITHUB_USERNAME="github_username"; # your github username
export JUP_GITHUB_PASSWORD="github_password"; # your github password
export JUP_MAX_SIZE="8000.0"; # maximum size of the repositories directory (in GB)
export JUP_FIRST_DATE="2013-01-01"; # initial date to query github
export JUP_EMAIL_LOGIN="gmail@gmail.com"; # your gmail address
export JUP_EMAIL_TO="target@email.com"; # email that receives notifications
export JUP_OAUTH_FILE="~/oauth2_creds.json" # oauth2 auhentication file
export JUP_NOTEBOOK_INTERVAL=""; # notebook id interval for this machine. Leave it in blank
export JUP_REPOSITORY_INTERVAL=""; # repository id interval for this machine. Leave it in blank
export JUP_WITH_EXECUTION="1"; # run execute python notebooks
export JUP_WITH_DEPENDENCY="0"; # run notebooks with and without declared dependnecies
export JUP_EXECUTION_MODE="-1"; # run following the execution order
export JUP_EXECUTION_DIR="/home/jupyter/execution"; # temporary directory for running notebooks
export JUP_ANACONDA_PATH="~/anaconda3"; # conda installation path
export JUP_MOUNT_BASE="/home/jupyter/mount_ghstudy.sh"; # bash script to mount base dir
export JUP_UMOUNT_BASE="/home/jupyter/umount_ghstudy.sh"; # bash script to umount base dir
export JUP_NOTEBOOK_TIMEOUT="300"; # timeout the extraction
# Frequenci of log report
export JUP_ASTROID_FREQUENCY="5";
export JUP_IPYTHON_FREQUENCY="5";
export JUP_NOTEBOOKS_FREQUENCY="5";
export JUP_REQUIREMENT_FREQUENCY="5";
export JUP_CRAWLER_FREQUENCY="1";
export JUP_CLONE_FREQUENCY="1";
export JUP_COMPRESS_FREQUENCY="5";
export JUP_DB_IP="localhost"; # postgres database IP
Then, configure the file ~/oauth2_creds.json, according to yagmail documentation: https://media.readthedocs.org/pdf/yagmail/latest/yagmail.pdf
Configure the mount_ghstudy.sh and umount_ghstudy.sh scripts. The first one should mount the folder that stores the directories. The second one should umount it. You can leave the scripts in blank, but it is not advisable, as the reproducibility study runs arbitrary code on your machine and you may lose your data.
Scripts
Download and extract jupyter_reproducibility.tar.bz2:
tar -xjf jupyter_reproducibility.tar.bz2
Install 5 conda environments and 5 anaconda environments, for each python version. In each of them, upgrade pip, install pipenv, and install the archaeology package (Note that it is a local package that has not been published to pypi. Make sure to use the -e option):
Conda 2.7
conda create -n raw27 python=2.7 -y
conda activate raw27
pip install --upgrade pip
pip install pipenv
pip install -e jupyter_reproducibility/archaeology
Anaconda 2.7
conda create -n py27 python=2.7 anaconda -y
conda activate py27
pip install --upgrade pip
pip install pipenv
pip install -e jupyter_reproducibility/archaeology
Conda 3.4
It requires a manual jupyter and pathlib2 installation due to some incompatibilities found on the default installation.
conda create -n raw34 python=3.4 -y
conda activate raw34
conda install jupyter -c conda-forge -y
conda uninstall jupyter -y
pip install --upgrade pip
pip install jupyter
pip install pipenv
pip install -e jupyter_reproducibility/archaeology
pip install pathlib2
Anaconda 3.4
conda create -n py34 python=3.4 anaconda -y
conda activate py34
pip install --upgrade pip
pip install pipenv
pip install -e jupyter_reproducibility/archaeology
Conda 3.5
conda create -n raw35 python=3.5 -y
conda activate raw35
pip install --upgrade pip
pip install pipenv
pip install -e jupyter_reproducibility/archaeology
Anaconda 3.5
It requires the manual installation of other anaconda packages.
conda create -n py35 python=3.5 anaconda -y
conda install -y appdirs atomicwrites keyring secretstorage libuuid navigator-updater prometheus_client pyasn1 pyasn1-modules spyder-kernels tqdm jeepney automat constantly anaconda-navigator
conda activate py35
pip install --upgrade pip
pip install pipenv
pip install -e jupyter_reproducibility/archaeology
Conda 3.6
conda create -n raw36 python=3.6 -y
conda activate raw36
pip install --upgrade pip
pip install pipenv
pip install -e jupyter_reproducibility/archaeology
Anaconda 3.6
conda create -n py36 python=3.6 anaconda -y
conda activate py36
conda install -y anaconda-navigator jupyterlab_server navigator-updater
pip install --upgrade pip
pip install pipenv
pip install -e jupyter_reproducibility/archaeology
Conda 3.7
<code
Facebook
TwitterCL-Splats Dataset
This repository contains the data to reproduce our results from the CL-Splats paper. In addition, for future research we provide the Blender files used to create our synthetic scenes with a blender python script creating the camera trajectories.
Usage
The files under Blender-Levels and Real-World are compatible with the 3DGS data-loading. We will create a copy of this dataset that matches our data-loading script once available. Note that the COLMAP⦠See the full description on the dataset page: https://huggingface.co/datasets/ackermannj/cl-splats-dataset.
Facebook
Twitterhttps://www.gnu.org/licenses/old-licenses/gpl-2.0-standalone.htmlhttps://www.gnu.org/licenses/old-licenses/gpl-2.0-standalone.html
Replication pack, FSE2018 submission #164: ------------------------------------------
**Working title:** Ecosystem-Level Factors Affecting the Survival of Open-Source Projects: A Case Study of the PyPI Ecosystem **Note:** link to data artifacts is already included in the paper. Link to the code will be included in the Camera Ready version as well. Content description =================== - **ghd-0.1.0.zip** - the code archive. This code produces the dataset files described below - **settings.py** - settings template for the code archive. - **dataset_minimal_Jan_2018.zip** - the minimally sufficient version of the dataset. This dataset only includes stats aggregated by the ecosystem (PyPI) - **dataset_full_Jan_2018.tgz** - full version of the dataset, including project-level statistics. It is ~34Gb unpacked. This dataset still doesn't include PyPI packages themselves, which take around 2TB. - **build_model.r, helpers.r** - R files to process the survival data (`survival_data.csv` in **dataset_minimal_Jan_2018.zip**, `common.cache/survival_data.pypi_2008_2017-12_6.csv` in **dataset_full_Jan_2018.tgz**) - **Interview protocol.pdf** - approximate protocol used for semistructured interviews. - LICENSE - text of GPL v3, under which this dataset is published - INSTALL.md - replication guide (~2 pages)
Replication guide ================= Step 0 - prerequisites ---------------------- - Unix-compatible OS (Linux or OS X) - Python interpreter (2.7 was used; Python 3 compatibility is highly likely) - R 3.4 or higher (3.4.4 was used, 3.2 is known to be incompatible) Depending on detalization level (see Step 2 for more details): - up to 2Tb of disk space (see Step 2 detalization levels) - at least 16Gb of RAM (64 preferable) - few hours to few month of processing time Step 1 - software ---------------- - unpack **ghd-0.1.0.zip**, or clone from gitlab: git clone https://gitlab.com/user2589/ghd.git git checkout 0.1.0 `cd` into the extracted folder. All commands below assume it as a current directory. - copy `settings.py` into the extracted folder. Edit the file: * set `DATASET_PATH` to some newly created folder path * add at least one GitHub API token to `SCRAPER_GITHUB_API_TOKENS` - install docker. For Ubuntu Linux, the command is `sudo apt-get install docker-compose` - install libarchive and headers: `sudo apt-get install libarchive-dev` - (optional) to replicate on NPM, install yajl: `sudo apt-get install yajl-tools` Without this dependency, you might get an error on the next step, but it's safe to ignore. - install Python libraries: `pip install --user -r requirements.txt` . - disable all APIs except GitHub (Bitbucket and Gitlab support were not yet implemented when this study was in progress): edit `scraper/init.py`, comment out everything except GitHub support in `PROVIDERS`. Step 2 - obtaining the dataset ----------------------------- The ultimate goal of this step is to get output of the Python function `common.utils.survival_data()` and save it into a CSV file: # copy and paste into a Python console from common import utils survival_data = utils.survival_data('pypi', '2008', smoothing=6) survival_data.to_csv('survival_data.csv') Since full replication will take several months, here are some ways to speedup the process: ####Option 2.a, difficulty level: easiest Just use the precomputed data. Step 1 is not necessary under this scenario. - extract **dataset_minimal_Jan_2018.zip** - get `survival_data.csv`, go to the next step ####Option 2.b, difficulty level: easy Use precomputed longitudinal feature values to build the final table. The whole process will take 15..30 minutes. - create a folder `
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
Projet Python is a dataset for classification tasks - it contains Generative Adversarial Network annotations for 620 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
Translating Python Programming Puzzles (TP3) is a code translation benchmark created from the verification functions from the questions in the original Python Programming Puzzles dataset (Schuster et al., 2021) to create this dataset. These functions are hand-crafted by the authors and are used to check if an answer satisfies the constraints of the puzzle. These puzzles range in difficulty from basic character checking to competitive programming problems. Thus, each verification function is written by an expert python programmer and requires a significant understanding of programming to translate. In total, there are 370 python functions to translate.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about book subjects. It has 4 rows and is filtered where the books is ArcGIS blueprints : explore the robust features of Python to create real-world ArcGIS applications through exciting, hands-on projects. It features 2 columns including publication dates.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about book series. It has 1 row and is filtered where the books is Building machine learning systems with Python : master the art of machine learning with Python and build effective machine learning sytems with this intensive hands-on guide. It features 10 columns including number of authors, number of books, earliest publication date, and latest publication date.
Facebook
TwitterAutomatically describing images using natural sentences is an essential task to visually impaired people's inclusion on the Internet. Although there are many datasets in the literature, most of them contain only English captions, whereas datasets with captions described in other languages are scarce.
PraCegoVer arose on the Internet, stimulating users from social media to publish images, tag #PraCegoVer and add a short description of their content. Inspired by this movement, we have proposed the #PraCegoVer, a multi-modal dataset with Portuguese captions based on posts from Instagram. It is the first large dataset for image captioning in Portuguese with freely annotated images.
Dataset Structure
containing the images. The file dataset.json comprehends a list of json objects with the attributes:
user: anonymized user that made the post;
filename: image file name;
raw_caption: raw caption;
caption: clean caption;
date: post date.
Each instance in dataset.json is associated with exactly one image in the images directory whose filename is pointed by the attribute filename. Also, we provide a sample with five instances, so the users can download the sample to get an overview of the dataset before downloading it completely.
Download Instructions
If you just want to have an overview of the dataset structure, you can download sample.tar.gz. But, if you want to use the dataset, or any of its subsets (63k and 173k), you must download all the files and run the following commands to uncompress and join the files:
cat images.tar.gz.part* > images.tar.gz tar -xzvf images.tar.gz
Alternatively, you can download the entire dataset from the terminal using the python script download_dataset.py available in PraCegoVer repository. In this case, first, you have to download the script and create an access token here. Then, you can run the following command to download and uncompress the image files:
python download_dataset.py --access_token=
Facebook
TwitterDescription: This dataset contains simulated employee records for a fictional company. The dataset was generated using the Python Faker library to create realistic but fake data. The dataset includes the following fields for each employee:
Employee ID: A unique identifier for each employee (integer). Name: A randomly generated full name (string). Job title: A randomly generated job title (string). Department: A randomly selected department from a predefined list (HR, Marketing, Sales, IT, or Finance) (string). Email: A randomly generated email address (string). Phone number: A randomly generated phone number (string). Date of hiring: A randomly generated hiring date within the last 10 years (date). Salary: A randomly generated salary value between 30,000 and 150,000 (decimal). Please note that this dataset is for demonstration and testing purposes only. The data is entirely fictional and should not be used for any decision-making or analysis.
Facebook
TwitterThis dataset contains the metadata of the datasets published in 77 Dataverse installations, information about each installation's metadata blocks, and the list of standard licenses that dataset depositors can apply to the datasets they publish in the 36 installations running more recent versions of the Dataverse software. The data is useful for reporting on the quality of dataset and file-level metadata within and across Dataverse installations. Curators and other researchers can use this dataset to explore how well Dataverse software and the repositories using the software help depositors describe data. How the metadata was downloaded The dataset metadata and metadata block JSON files were downloaded from each installation on October 2 and October 3, 2022 using a Python script kept in a GitHub repo at https://github.com/jggautier/dataverse-scripts/blob/main/other_scripts/get_dataset_metadata_of_all_installations.py. In order to get the metadata from installations that require an installation account API token to use certain Dataverse software APIs, I created a CSV file with two columns: one column named "hostname" listing each installation URL in which I was able to create an account and another named "apikey" listing my accounts' API tokens. The Python script expects and uses the API tokens in this CSV file to get metadata and other information from installations that require API tokens. How the files are organized βββ csv_files_with_metadata_from_most_known_dataverse_installations β βββ author(citation).csv β βββ basic.csv β βββ contributor(citation).csv β βββ ... β βββ topic_classification(citation).csv βββ dataverse_json_metadata_from_each_known_dataverse_installation β βββ Abacus_2022.10.02_17.11.19.zip β βββ dataset_pids_Abacus_2022.10.02_17.11.19.csv β βββ Dataverse_JSON_metadata_2022.10.02_17.11.19 β βββ hdl_11272.1_AB2_0AQZNT_v1.0.json β βββ ... β βββ metadatablocks_v5.6 β βββ astrophysics_v5.6.json β βββ biomedical_v5.6.json β βββ citation_v5.6.json β βββ ... β βββ socialscience_v5.6.json β βββ ACSS_Dataverse_2022.10.02_17.26.19.zip β βββ ADA_Dataverse_2022.10.02_17.26.57.zip β βββ Arca_Dados_2022.10.02_17.44.35.zip β βββ ... β βββ World_Agroforestry_-_Research_Data_Repository_2022.10.02_22.59.36.zip βββ dataset_pids_from_most_known_dataverse_installations.csv βββ licenses_used_by_dataverse_installations.csv βββ metadatablocks_from_most_known_dataverse_installations.csv This dataset contains two directories and three CSV files not in a directory. One directory, "csv_files_with_metadata_from_most_known_dataverse_installations", contains 18 CSV files that contain the values from common metadata fields of all 77 Dataverse installations. For example, author(citation)_2022.10.02-2022.10.03.csv contains the "Author" metadata for all published, non-deaccessioned, versions of all datasets in the 77 installations, where there's a row for each author name, affiliation, identifier type and identifier. The other directory, "dataverse_json_metadata_from_each_known_dataverse_installation", contains 77 zipped files, one for each of the 77 Dataverse installations whose dataset metadata I was able to download using Dataverse APIs. Each zip file contains a CSV file and two sub-directories: The CSV file contains the persistent IDs and URLs of each published dataset in the Dataverse installation as well as a column to indicate whether or not the Python script was able to download the Dataverse JSON metadata for each dataset. For Dataverse installations using Dataverse software versions whose Search APIs include each dataset's owning Dataverse collection name and alias, the CSV files also include which Dataverse collection (within the installation) that dataset was published in. One sub-directory contains a JSON file for each of the installation's published, non-deaccessioned dataset versions. The JSON files contain the metadata in the "Dataverse JSON" metadata schema. The other sub-directory contains information about the metadata models (the "metadata blocks" in JSON files) that the installation was using when the dataset metadata was downloaded. I saved them so that they can be used when extracting metadata from the Dataverse JSON files. The dataset_pids_from_most_known_dataverse_installations.csv file contains the dataset PIDs of all published datasets in the 77 Dataverse installations, with a column to indicate if the Python script was able to download the dataset's metadata. It's a union of all of the "dataset_pids_..." files in each of the 77 zip files. The licenses_used_by_dataverse_installations.csv file contains information about the licenses that a number of the installations let depositors choose when creating datasets. When I collected ... Visit https://dataone.org/datasets/sha256%3Ad27d528dae8cf01e3ea915f450426c38fd6320e8c11d3e901c43580f997a3146 for complete metadata about this dataset.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
Python Projesi is a dataset for object detection tasks - it contains Objects annotations for 506 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This repository contains the dataset for the study of computational reproducibility of Jupyter notebooks from biomedical publications. Our focus lies in evaluating the extent of reproducibility of Jupyter notebooks derived from GitHub repositories linked to publications present in the biomedical literature repository, PubMed Central. We analyzed the reproducibility of Jupyter notebooks from GitHub repositories associated with publications indexed in the biomedical literature repository PubMed Central. The dataset includes the metadata information of the journals, publications, the Github repositories mentioned in the publications and the notebooks present in the Github repositories.
Data Collection and Analysis
We use the code for reproducibility of Jupyter notebooks from the study done by Pimentel et al., 2019 and adapted the code from ReproduceMeGit. We provide code for collecting the publication metadata from PubMed Central using NCBI Entrez utilities via Biopython.
Our approach involves searching PMC using the esearch function for Jupyter notebooks using the query: ``(ipynb OR jupyter OR ipython) AND github''. We meticulously retrieve data in XML format, capturing essential details about journals and articles. By systematically scanning the entire article, encompassing the abstract, body, data availability statement, and supplementary materials, we extract GitHub links. Additionally, we mine repositories for key information such as dependency declarations found in files like requirements.txt, setup.py, and pipfile. Leveraging the GitHub API, we enrich our data by incorporating repository creation dates, update histories, pushes, and programming languages.
All the extracted information is stored in a SQLite database. After collecting and creating the database tables, we ran a pipeline to collect the Jupyter notebooks contained in the GitHub repositories based on the code from Pimentel et al., 2019.
Our reproducibility pipeline was started on 27 March 2023.
Repository Structure
Our repository is organized into two main folders:
Accessing Data and Resources:
System Requirements:
Running the pipeline:
Running the analysis:
References:
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Compilation of python codes for data preprocessing and VegeNet building, as well as image datasets (zip files).
Image datasets: