100+ datasets found
  1. Project Python- Data Cleaning - EDA- Visualization

    • kaggle.com
    zip
    Updated Dec 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hussein Al Chami (2023). Project Python- Data Cleaning - EDA- Visualization [Dataset]. https://www.kaggle.com/datasets/husseinalchami/project-python-data-cleaning-eda-visualization
    Explore at:
    zip(322085 bytes)Available download formats
    Dataset updated
    Dec 10, 2023
    Authors
    Hussein Al Chami
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Dataset

    This dataset was created by Hussein Al Chami

    Released under MIT

    Contents

  2. d

    Python Script for Cleaning Alum Dataset

    • search.dataone.org
    • hydroshare.org
    Updated Oct 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    saikumar payyavula; Jeff Sadler (2025). Python Script for Cleaning Alum Dataset [Dataset]. https://search.dataone.org/view/sha256%3A9df1a010044e2d50d741d5671b755351813450f4331dd7b0cc2f0a527750b30e
    Explore at:
    Dataset updated
    Oct 18, 2025
    Dataset provided by
    Hydroshare
    Authors
    saikumar payyavula; Jeff Sadler
    Description

    This resource contains a Python script used to clean and preprocess the alum dosage dataset from a small Oklahoma water treatment plant. The script handles missing values, removes outliers, merges historical water quality and weather data, and prepares the dataset for AI model training.

  3. Cleaning Practice with Errors & Missing Values

    • kaggle.com
    Updated Jun 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zuhair khan (2025). Cleaning Practice with Errors & Missing Values [Dataset]. https://www.kaggle.com/datasets/zuhairkhan13/cleaning-practice-with-errors-and-missing-values
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 5, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Zuhair khan
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    This dataset is designed specifically for beginners and intermediate learners to practice data cleaning techniques using Python and Pandas.

    It includes 500 rows of simulated employee data with intentional errors such as:

    Missing values in Age and Salary

    Typos in email addresses (@gamil.com)

    Inconsistent city name casing (e.g., lahore, Karachi)

    Extra spaces in department names (e.g., " HR ")

    ✅ Skills You Can Practice:

    Detecting and handling missing data

    String cleaning and formatting

    Removing duplicates

    Validating email formats

    Standardizing categorical data

    You can use this dataset to build your own data cleaning notebook, or use it in interviews, assessments, and tutorials.

  4. Data Cleaning Excel Tutorial

    • kaggle.com
    zip
    Updated Jul 22, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mohamed Khaled Idris (2023). Data Cleaning Excel Tutorial [Dataset]. https://www.kaggle.com/datasets/mohamedkhaledidris/data-cleaning-excel-tutorial
    Explore at:
    zip(13023 bytes)Available download formats
    Dataset updated
    Jul 22, 2023
    Authors
    Mohamed Khaled Idris
    Description

    Dataset

    This dataset was created by Mohamed Khaled Idris

    Contents

  5. Data Cleaning, Translation & Split of the Dataset for the Automatic...

    • zenodo.org
    • data.niaid.nih.gov
    bin, csv +1
    Updated Apr 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Juliane Köhler; Juliane Köhler (2025). Data Cleaning, Translation & Split of the Dataset for the Automatic Classification of Documents for the Classification System for the Berliner Handreichungen zur Bibliotheks- und Informationswissenschaft [Dataset]. http://doi.org/10.5281/zenodo.6957842
    Explore at:
    text/x-python, csv, binAvailable download formats
    Dataset updated
    Apr 24, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Juliane Köhler; Juliane Köhler
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description
    • Cleaned_Dataset.csv – The combined CSV files of all scraped documents from DABI, e-LiS, o-bib and Springer.
    • Data_Cleaning.ipynb – The Jupyter Notebook with python code for the analysis and cleaning of the original dataset.
    • ger_train.csv – The German training set as CSV file.
    • ger_validation.csv – The German validation set as CSV file.
    • en_test.csv – The English test set as CSV file.
    • en_train.csv – The English training set as CSV file.
    • en_validation.csv – The English validation set as CSV file.
    • splitting.py – The python code for splitting a dataset into train, test and validation set.
    • DataSetTrans_de.csv – The final German dataset as a CSV file.
    • DataSetTrans_en.csv – The final English dataset as a CSV file.
    • translation.py – The python code for translating the cleaned dataset.
  6. 💥 Data-cleaning-for-beginner-using-pandas💢💥

    • kaggle.com
    zip
    Updated Oct 16, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pavan Tanniru (2022). 💥 Data-cleaning-for-beginner-using-pandas💢💥 [Dataset]. https://www.kaggle.com/datasets/pavantanniru/-datacleaningforbeginnerusingpandas/code
    Explore at:
    zip(654 bytes)Available download formats
    Dataset updated
    Oct 16, 2022
    Authors
    Pavan Tanniru
    Description

    This dataset helps you to increase the data-cleaning process using the pure python pandas library.

    Indicators

    1. Age
    2. Salary
    3. Rating
    4. Location
    5. Established
    6. Easy Apply
  7. t

    Data from: Decoding Wayfinding: Analyzing Wayfinding Processes in the...

    • researchdata.tuwien.at
    html, pdf, zip
    Updated Mar 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Negar Alinaghi; Ioannis Giannopoulos; Ioannis Giannopoulos; Negar Alinaghi; Negar Alinaghi; Negar Alinaghi (2025). Decoding Wayfinding: Analyzing Wayfinding Processes in the Outdoor Environment [Dataset]. http://doi.org/10.48436/m2ha4-t1v92
    Explore at:
    html, zip, pdfAvailable download formats
    Dataset updated
    Mar 19, 2025
    Dataset provided by
    TU Wien
    Authors
    Negar Alinaghi; Ioannis Giannopoulos; Ioannis Giannopoulos; Negar Alinaghi; Negar Alinaghi; Negar Alinaghi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    How To Cite?

    Alinaghi, N., Giannopoulos, I., Kattenbeck, M., & Raubal, M. (2025). Decoding wayfinding: analyzing wayfinding processes in the outdoor environment. International Journal of Geographical Information Science, 1–31. https://doi.org/10.1080/13658816.2025.2473599

    Link to the paper: https://www.tandfonline.com/doi/full/10.1080/13658816.2025.2473599

    Folder Structure

    The folder named “submission” contains the following:

    1. “pythonProject”: This folder contains all the Python files and subfolders needed for analysis.
    2. ijgis.yml: This file lists all the Python libraries and dependencies required to run the code.

    Setting Up the Environment

    1. Use the ijgis.yml file to create a Python project and environment. Ensure you activate the environment before running the code.
    2. The pythonProject folder contains several .py files and subfolders, each with specific functionality as described below.

    Subfolders

    1. Data_4_IJGIS

    • This folder contains the data used for the results reported in the paper.
    • Note: The data analysis that we explain in this paper already begins with the synchronization and cleaning of the recorded raw data. The published data is already synchronized and cleaned. Both the cleaned files and the merged files with features extracted for them are given in this directory. If you want to perform the segmentation and feature extraction yourself, you should run the respective Python files yourself. If not, you can use the “merged_…csv” files as input for the training.

    2. results_[DateTime] (e.g., results_20240906_15_00_13)

    • This folder will be generated when you run the code and will store the output of each step.
    • The current folder contains results created during code debugging for the submission.
    • When you run the code, a new folder with fresh results will be generated.

    Python Files

    1. helper_functions.py

    • Contains reusable functions used throughout the analysis.
    • Each function includes a description of its purpose and the input parameters required.

    2. create_sanity_plots.py

    • Generates scatter plots like those in Figure 3 of the paper.
    • Although the code has been run for all 309 trials, it can be used to check the sample data provided.
    • Output: A .png file for each column of the raw gaze and IMU recordings, color-coded with logged events.
    • Usage: Run this file to create visualizations similar to Figure 3.

    3. overlapping_sliding_window_loop.py

    • Implements overlapping sliding window segmentation and generates plots like those in Figure 4.
    • Output:
      • Two new subfolders, “Gaze” and “IMU”, will be added to the Data_4_IJGIS folder.
      • Segmented files (default: 2–10 seconds with a 1-second step size) will be saved as .csv files.
      • A visualization of the segments, similar to Figure 4, will be automatically generated.

    4. gaze_features.py & imu_features.py (Note: there has been an update to the IDT function implementation in the gaze_features.py on 19.03.2025.)

    • These files compute features as explained in Tables 1 and 2 of the paper, respectively.
    • They process the segmented recordings generated by the overlapping_sliding_window_loop.py.
    • Usage: Just to know how the features are calculated, you can run this code after the segmentation with the sliding window and run these files to calculate the features from the segmented data.

    5. training_prediction.py

    • This file contains the main machine learning analysis of the paper. This file contains all the code for the training of the model, its evaluation, and its use for the inference of the “monitoring part”. It covers the following steps:
    a. Data Preparation (corresponding to Section 5.1.1 of the paper)
    • Prepares the data according to the research question (RQ) described in the paper. Since this data was collected with several RQs in mind, we remove parts of the data that are not related to the RQ of this paper.
    • A function named plot_labels_comparison(df, save_path, x_label_freq=10, figsize=(15, 5)) in line 116 visualizes the data preparation results. As this visualization is not used in the paper, the line is commented out, but if you want to see visually what has been changed compared to the original data, you can comment out this line.
    b. Training/Validation/Test Split
    • Splits the data for machine learning experiments (an explanation can be found in Section 5.1.1. Preparation of data for training and inference of the paper).
    • Make sure that you follow the instructions in the comments to the code exactly.
    • Output: The split data is saved as .csv files in the results folder.
    c. Machine and Deep Learning Experiments

    This part contains three main code blocks:

    iii. One for the XGboost code with correct hyperparameter tuning:
    Please read the instructions for each block carefully to ensure that the code works smoothly. Regardless of which block you use, you will get the classification results (in the form of scores) for unseen data. The way we empirically test the confidence threshold of

    • MLP Network (Commented Out): This code was used for classification with the MLP network, and the results shown in Table 3 are from this code. If you wish to use this model, please comment out the following blocks accordingly.
    • XGBoost without Hyperparameter Tuning: If you want to run the code but do not want to spend time on the full training with hyperparameter tuning (as was done for the paper), just uncomment this part. This will give you a simple, untuned model with which you can achieve at least some results.
    • XGBoost with Hyperparameter Tuning: If you want to train the model the way we trained it for the analysis reported in the paper, use this block (the plots in Figure 7 are from this block). We ran this block with different feature sets and different segmentation files and created a simple bar chart from the saved results, shown in Figure 6.

    Note: Please read the instructions for each block carefully to ensure that the code works smoothly. Regardless of which block you use, you will get the classification results (in the form of scores) for unseen data. The way we empirically calculated the confidence threshold of the model (explained in the paper in Section 5.2. Part II: Decoding surveillance by sequence analysis) is given in this block in lines 361 to 380.

    d. Inference (Monitoring Part)
    • Final inference is performed using the monitoring data. This step produces a .csv file containing inferred labels.
    • Figure 8 in the paper is generated using this part of the code.

    6. sequence_analysis.py

    • Performs analysis on the inferred data, producing Figures 9 and 10 from the paper.
    • This file reads the inferred data from the previous step and performs sequence analysis as described in Sections 5.2.1 and 5.2.2.

    Licenses

    The data is licensed under CC-BY, the code is licensed under MIT.

  8. Pandas Practice Dataset

    • kaggle.com
    zip
    Updated Jan 27, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mrityunjay Pathak (2023). Pandas Practice Dataset [Dataset]. https://www.kaggle.com/datasets/themrityunjaypathak/pandas-practice-dataset/discussion
    Explore at:
    zip(493 bytes)Available download formats
    Dataset updated
    Jan 27, 2023
    Authors
    Mrityunjay Pathak
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    What is Pandas?

    Pandas is a Python library used for working with data sets.

    It has functions for analyzing, cleaning, exploring, and manipulating data.

    The name "Pandas" has a reference to both "Panel Data", and "Python Data Analysis" and was created by Wes McKinney in 2008.

    Why Use Pandas?

    Pandas allows us to analyze big data and make conclusions based on statistical theories.

    Pandas can clean messy data sets, and make them readable and relevant.

    Relevant data is very important in data science.

    What Can Pandas Do?

    Pandas gives you answers about the data. Like:

    Is there a correlation between two or more columns?

    What is average value?

    Max value?

    Min value?

  9. Saccade data cleaning

    • figshare.com
    txt
    Updated Mar 26, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Annie Campbell (2022). Saccade data cleaning [Dataset]. http://doi.org/10.6084/m9.figshare.4810471.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Mar 26, 2022
    Dataset provided by
    Figsharehttp://figshare.com/
    figshare
    Authors
    Annie Campbell
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    python scripts and functions needed to view and clean saccade data

  10. Z

    NoCORA - Northern Cameroon Observed Rainfall Archive

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jul 10, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lavarenne, Jérémy; Nenwala, Victor Hugo; Foulna Tcheobe, Carmel (2024). NoCORA - Northern Cameroon Observed Rainfall Archive [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_10156437
    Explore at:
    Dataset updated
    Jul 10, 2024
    Dataset provided by
    Center for International Forestry Research
    Centre de Coopération Internationale en Recherche Agronomique pour le Développement
    Authors
    Lavarenne, Jérémy; Nenwala, Victor Hugo; Foulna Tcheobe, Carmel
    Area covered
    North Region, Cameroon
    Description

    Description: The NoCORA dataset represents a significant effort to compile and clean a comprehensive set of daily rainfall data for Northern Cameroon (North and Extreme North regions). This dataset, overing more than 1 million observations across 418 rainfall stations on a temporal range going from 1927 to 2022, is instrumental for researchers, meteorologists, and policymakers working in climate research, agricultural planning, and water resource management in the region. It integrates data from diverse sources, including Sodecoton rain funnels, the archive of Robert Morel (IRD), Centrale de Lagdo, the GHCN daily service, and the TAHMO network. The construction of NoCORA involved meticulous processes, including manual assembly of data, extensive data cleaning, and standardization of station names and coordinates, making it a hopefully robust and reliable resource for understanding climatic dynamics in Northern Cameroon. Data Sources: The dataset comprises eight primary rainfall data sources and a comprehensive coordinates dataset. The rainfall data sources include extensive historical and contemporary measurements, while the coordinates dataset was developed using reference data and an inference strategy for variant station names or missing coordinates. Dataset Preparation Methods: The preparation involved manual compilation, integration of machine-readable files, data cleaning with OpenRefine, and finalization using Python/Jupyter Notebook. This process should ensured the accuracy and consistency of the dataset. Discussion: NoCORA, with its extensive data compilation, presents an invaluable resource for climate-related studies in Northern Cameroon. However, users must navigate its complexities, including missing data interpretations, potential biases, and data inconsistencies. The dataset's comprehensive nature and historical span require careful handling and validation in research applications. Access to Dataset: The NoCORA dataset, while a comprehensive resource for climatological and meteorological research in Northern Cameroon, is subject to specific access conditions due to its compilation from various partner sources. The original data sources vary in their openness and accessibility, and not all partners have confirmed the open-access status of their data. As such, to ensure compliance with these varying conditions, access to the NoCORA dataset is granted on a request basis. Interested researchers and users are encouraged to contact us for permission to access the dataset. This process allows us to uphold the data sharing agreements with our partners while facilitating research and analysis within the scientific community. Authors Contributions:

    Data treatment: Victor Hugo Nenwala, Carmel Foulna Tcheobe, Jérémy Lavarenne. Documentation: Jérémy Lavarenne. Funding: This project was funded by the DESIRA INNOVACC project. Changelog:

    v1.0.2 : corrected interversion in column names in the coordinates dataset v1.0.1 : dataset specification file has been updated with complementary information regarding station locations v1.0.0 : initial submission

  11. Olist Data Cleaning with Python

    • kaggle.com
    zip
    Updated Jun 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hamdhaan Abdul Ghani (2025). Olist Data Cleaning with Python [Dataset]. https://www.kaggle.com/hamdhaanabdulghani/olist-data-cleaning-with-python
    Explore at:
    zip(26212 bytes)Available download formats
    Dataset updated
    Jun 20, 2025
    Authors
    Hamdhaan Abdul Ghani
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    The original dataset is provided by Olist and contains information about customer orders, products, sellers, and more. It includes 100K+ records across 9 different CSV files, each with a unique role in understanding the e-commerce ecosystem.

    For efficiency and memory optimization, the original CSV files were shortened before being loaded into Python. The cleaning steps demonstrated here still reflect realistic scenarios involving missing values, duplicate records, and formatting inconsistencies.

  12. m

    Reddit r/AskScience Flair Dataset

    • data.mendeley.com
    Updated May 23, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sumit Mishra (2022). Reddit r/AskScience Flair Dataset [Dataset]. http://doi.org/10.17632/k9r2d9z999.3
    Explore at:
    Dataset updated
    May 23, 2022
    Authors
    Sumit Mishra
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Reddit is a social news, content rating and discussion website. It's one of the most popular sites on the internet. Reddit has 52 million daily active users and approximately 430 million users who use it once a month. Reddit has different subreddits and here We'll use the r/AskScience Subreddit.

    The dataset is extracted from the subreddit /r/AskScience from Reddit. The data was collected between 01-01-2016 and 20-05-2022. It contains 612,668 Datapoints and 25 Columns. The database contains a number of information about the questions asked on the subreddit, the description of the submission, the flair of the question, NSFW or SFW status, the year of the submission, and more. The data is extracted using python and Pushshift's API. A little bit of cleaning is done using NumPy and pandas as well. (see the descriptions of individual columns below).

    The dataset contains the following columns and descriptions: author - Redditor Name author_fullname - Redditor Full name contest_mode - Contest mode [implement obscured scores and randomized sorting]. created_utc - Time the submission was created, represented in Unix Time. domain - Domain of submission. edited - If the post is edited or not. full_link - Link of the post on the subreddit. id - ID of the submission. is_self - Whether or not the submission is a self post (text-only). link_flair_css_class - CSS Class used to identify the flair. link_flair_text - Flair on the post or The link flair’s text content. locked - Whether or not the submission has been locked. num_comments - The number of comments on the submission. over_18 - Whether or not the submission has been marked as NSFW. permalink - A permalink for the submission. retrieved_on - time ingested. score - The number of upvotes for the submission. description - Description of the Submission. spoiler - Whether or not the submission has been marked as a spoiler. stickied - Whether or not the submission is stickied. thumbnail - Thumbnail of Submission. question - Question Asked in the Submission. url - The URL the submission links to, or the permalink if a self post. year - Year of the Submission. banned - Banned by the moderator or not.

    This dataset can be used for Flair Prediction, NSFW Classification, and different Text Mining/NLP tasks. Exploratory Data Analysis can also be done to get the insights and see the trend and patterns over the years.

  13. Data and tools for studying isograms

    • figshare.com
    Updated Jul 31, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Florian Breit (2017). Data and tools for studying isograms [Dataset]. http://doi.org/10.6084/m9.figshare.5245810.v1
    Explore at:
    application/x-sqlite3Available download formats
    Dataset updated
    Jul 31, 2017
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Florian Breit
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    A collection of datasets and python scripts for extraction and analysis of isograms (and some palindromes and tautonyms) from corpus-based word-lists, specifically Google Ngram and the British National Corpus (BNC).Below follows a brief description, first, of the included datasets and, second, of the included scripts.1. DatasetsThe data from English Google Ngrams and the BNC is available in two formats: as a plain text CSV file and as a SQLite3 database.1.1 CSV formatThe CSV files for each dataset actually come in two parts: one labelled ".csv" and one ".totals". The ".csv" contains the actual extracted data, and the ".totals" file contains some basic summary statistics about the ".csv" dataset with the same name.The CSV files contain one row per data point, with the colums separated by a single tab stop. There are no labels at the top of the files. Each line has the following columns, in this order (the labels below are what I use in the database, which has an identical structure, see section below):

    Label Data type Description

    isogramy int The order of isogramy, e.g. "2" is a second order isogram

    length int The length of the word in letters

    word text The actual word/isogram in ASCII

    source_pos text The Part of Speech tag from the original corpus

    count int Token count (total number of occurences)

    vol_count int Volume count (number of different sources which contain the word)

    count_per_million int Token count per million words

    vol_count_as_percent int Volume count as percentage of the total number of volumes

    is_palindrome bool Whether the word is a palindrome (1) or not (0)

    is_tautonym bool Whether the word is a tautonym (1) or not (0)

    The ".totals" files have a slightly different format, with one row per data point, where the first column is the label and the second column is the associated value. The ".totals" files contain the following data:

    Label

    Data type

    Description

    !total_1grams

    int

    The total number of words in the corpus

    !total_volumes

    int

    The total number of volumes (individual sources) in the corpus

    !total_isograms

    int

    The total number of isograms found in the corpus (before compacting)

    !total_palindromes

    int

    How many of the isograms found are palindromes

    !total_tautonyms

    int

    How many of the isograms found are tautonyms

    The CSV files are mainly useful for further automated data processing. For working with the data set directly (e.g. to do statistics or cross-check entries), I would recommend using the database format described below.1.2 SQLite database formatOn the other hand, the SQLite database combines the data from all four of the plain text files, and adds various useful combinations of the two datasets, namely:• Compacted versions of each dataset, where identical headwords are combined into a single entry.• A combined compacted dataset, combining and compacting the data from both Ngrams and the BNC.• An intersected dataset, which contains only those words which are found in both the Ngrams and the BNC dataset.The intersected dataset is by far the least noisy, but is missing some real isograms, too.The columns/layout of each of the tables in the database is identical to that described for the CSV/.totals files above.To get an idea of the various ways the database can be queried for various bits of data see the R script described below, which computes statistics based on the SQLite database.2. ScriptsThere are three scripts: one for tiding Ngram and BNC word lists and extracting isograms, one to create a neat SQLite database from the output, and one to compute some basic statistics from the data. The first script can be run using Python 3, the second script can be run using SQLite 3 from the command line, and the third script can be run in R/RStudio (R version 3).2.1 Source dataThe scripts were written to work with word lists from Google Ngram and the BNC, which can be obtained from http://storage.googleapis.com/books/ngrams/books/datasetsv2.html and [https://www.kilgarriff.co.uk/bnc-readme.html], (download all.al.gz).For Ngram the script expects the path to the directory containing the various files, for BNC the direct path to the *.gz file.2.2 Data preparationBefore processing proper, the word lists need to be tidied to exclude superfluous material and some of the most obvious noise. This will also bring them into a uniform format.Tidying and reformatting can be done by running one of the following commands:python isograms.py --ngrams --indir=INDIR --outfile=OUTFILEpython isograms.py --bnc --indir=INFILE --outfile=OUTFILEReplace INDIR/INFILE with the input directory or filename and OUTFILE with the filename for the tidied and reformatted output.2.3 Isogram ExtractionAfter preparing the data as above, isograms can be extracted from by running the following command on the reformatted and tidied files:python isograms.py --batch --infile=INFILE --outfile=OUTFILEHere INFILE should refer the the output from the previosu data cleaning process. Please note that the script will actually write two output files, one named OUTFILE with a word list of all the isograms and their associated frequency data, and one named "OUTFILE.totals" with very basic summary statistics.2.4 Creating a SQLite3 databaseThe output data from the above step can be easily collated into a SQLite3 database which allows for easy querying of the data directly for specific properties. The database can be created by following these steps:1. Make sure the files with the Ngrams and BNC data are named “ngrams-isograms.csv” and “bnc-isograms.csv” respectively. (The script assumes you have both of them, if you only want to load one, just create an empty file for the other one).2. Copy the “create-database.sql” script into the same directory as the two data files.3. On the command line, go to the directory where the files and the SQL script are. 4. Type: sqlite3 isograms.db 5. This will create a database called “isograms.db”.See the section 1 for a basic descript of the output data and how to work with the database.2.5 Statistical processingThe repository includes an R script (R version 3) named “statistics.r” that computes a number of statistics about the distribution of isograms by length, frequency, contextual diversity, etc. This can be used as a starting point for running your own stats. It uses RSQLite to access the SQLite database version of the data described above.

  14. E

    A Replication Dataset for Fundamental Frequency Estimation

    • live.european-language-grid.eu
    • data.niaid.nih.gov
    json
    Updated Oct 19, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). A Replication Dataset for Fundamental Frequency Estimation [Dataset]. https://live.european-language-grid.eu/catalogue/corpus/7808
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Oct 19, 2023
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Part of the dissertation Pitch of Voiced Speech in the Short-Time Fourier Transform: Algorithms, Ground Truths, and Evaluation Methods.© 2020, Bastian Bechtold. All rights reserved. Estimating the fundamental frequency of speech remains an active area of research, with varied applications in speech recognition, speaker identification, and speech compression. A vast number of algorithms for estimatimating this quantity have been proposed over the years, and a number of speech and noise corpora have been developed for evaluating their performance. The present dataset contains estimated fundamental frequency tracks of 25 algorithms, six speech corpora, two noise corpora, at nine signal-to-noise ratios between -20 and 20 dB SNR, as well as an additional evaluation of synthetic harmonic tone complexes in white noise.The dataset also contains pre-calculated performance measures both novel and traditional, in reference to each speech corpus’ ground truth, the algorithms’ own clean-speech estimate, and our own consensus truth. It can thus serve as the basis for a comparison study, or to replicate existing studies from a larger dataset, or as a reference for developing new fundamental frequency estimation algorithms. All source code and data is available to download, and entirely reproducible, albeit requiring about one year of processor-time.Included Code and Data

    ground truth data.zip is a JBOF dataset of fundamental frequency estimates and ground truths of all speech files in the following corpora:

    CMU-ARCTIC (consensus truth) [1]FDA (corpus truth and consensus truth) [2]KEELE (corpus truth and consensus truth) [3]MOCHA-TIMIT (consensus truth) [4]PTDB-TUG (corpus truth and consensus truth) [5]TIMIT (consensus truth) [6]

    noisy speech data.zip is a JBOF datasets of fundamental frequency estimates of speech files mixed with noise from the following corpora:NOISEX [7]QUT-NOISE [8]

    synthetic speech data.zip is a JBOF dataset of fundamental frequency estimates of synthetic harmonic tone complexes in white noise.noisy_speech.pkl and synthetic_speech.pkl are pickled Pandas dataframes of performance metrics derived from the above data for the following list of fundamental frequency estimation algorithms:AUTOC [9]AMDF [10]BANA [11]CEP [12]CREPE [13]DIO [14]DNN [15]KALDI [16]MAPSMBSC [17]NLS [18]PEFAC [19]PRAAT [20]RAPT [21]SACC [22]SAFE [23]SHR [24]SIFT [25]SRH [26]STRAIGHT [27]SWIPE [28]YAAPT [29]YIN [30]

    noisy speech evaluation.py and synthetic speech evaluation.py are Python programs to calculate the above Pandas dataframes from the above JBOF datasets. They calculate the following performance measures:Gross Pitch Error (GPE), the percentage of pitches where the estimated pitch deviates from the true pitch by more than 20%.Fine Pitch Error (FPE), the mean error of grossly correct estimates.High/Low Octave Pitch Error (OPE), the percentage pitches that are GPEs and happens to be at an integer multiple of the true pitch.Gross Remaining Error (GRE), the percentage of pitches that are GPEs but not OPEs.Fine Remaining Bias (FRB), the median error of GREs.True Positive Rate (TPR), the percentage of true positive voicing estimates.False Positive Rate (FPR), the percentage of false positive voicing estimates.False Negative Rate (FNR), the percentage of false negative voicing estimates.F₁, the harmonic mean of precision and recall of the voicing decision.

    Pipfile is a pipenv-compatible pipfile for installing all prerequisites necessary for running the above Python programs.

    The Python programs take about an hour to compute on a fast 2019 computer, and require at least 32 Gb of memory.References:

    John Kominek and Alan W Black. CMU ARCTIC database for speech synthesis, 2003.Paul C Bagshaw, Steven Hiller, and Mervyn A Jack. Enhanced Pitch Tracking and the Processing of F0 Contours for Computer Aided Intonation Teaching. In EUROSPEECH, 1993.F Plante, Georg F Meyer, and William A Ainsworth. A Pitch Extraction Reference Database. In Fourth European Conference on Speech Communication and Technology, pages 837–840, Madrid, Spain, 1995.Alan Wrench. MOCHA MultiCHannel Articulatory database: English, November 1999.Gregor Pirker, Michael Wohlmayr, Stefan Petrik, and Franz Pernkopf. A Pitch Tracking Corpus with Evaluation on Multipitch Tracking Scenario. page 4, 2011.John S. Garofolo, Lori F. Lamel, William M. Fisher, Jonathan G. Fiscus, David S. Pallett, Nancy L. Dahlgren, and Victor Zue. TIMIT Acoustic-Phonetic Continuous Speech Corpus, 1993.Andrew Varga and Herman J.M. Steeneken. Assessment for automatic speech recognition: II. NOISEX-92: A database and an experiment to study the effect of additive noise on speech recog- nition systems. Speech Communication, 12(3):247–251, July 1993.David B. Dean, Sridha Sridharan, Robert J. Vogt, and Michael W. Mason. The QUT-NOISE-TIMIT corpus for the evaluation of voice activity detection algorithms. Proceedings of Interspeech 2010, 2010.Man Mohan Sondhi. New methods of pitch extraction. Audio and Electroacoustics, IEEE Transactions on, 16(2):262—266, 1968.Myron J. Ross, Harry L. Shaffer, Asaf Cohen, Richard Freudberg, and Harold J. Manley. Average magnitude difference function pitch extractor. Acoustics, Speech and Signal Processing, IEEE Transactions on, 22(5):353—362, 1974.Na Yang, He Ba, Weiyang Cai, Ilker Demirkol, and Wendi Heinzelman. BaNa: A Noise Resilient Fundamental Frequency Detection Algorithm for Speech and Music. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 22(12):1833–1848, December 2014.Michael Noll. Cepstrum Pitch Determination. The Journal of the Acoustical Society of America, 41(2):293–309, 1967.Jong Wook Kim, Justin Salamon, Peter Li, and Juan Pablo Bello. CREPE: A Convolutional Representation for Pitch Estimation. arXiv:1802.06182 [cs, eess, stat], February 2018. arXiv: 1802.06182.Masanori Morise, Fumiya Yokomori, and Kenji Ozawa. WORLD: A Vocoder-Based High-Quality Speech Synthesis System for Real-Time Applications. IEICE Transactions on Information and Systems, E99.D(7):1877–1884, 2016.Kun Han and DeLiang Wang. Neural Network Based Pitch Tracking in Very Noisy Speech. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 22(12):2158–2168, Decem- ber 2014.Pegah Ghahremani, Bagher BabaAli, Daniel Povey, Korbinian Riedhammer, Jan Trmal, and Sanjeev Khudanpur. A pitch extraction algorithm tuned for automatic speech recognition. In Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on, pages 2494–2498. IEEE, 2014.Lee Ngee Tan and Abeer Alwan. Multi-band summary correlogram-based pitch detection for noisy speech. Speech Communication, 55(7-8):841–856, September 2013.Jesper Kjær Nielsen, Tobias Lindstrøm Jensen, Jesper Rindom Jensen, Mads Græsbøll Christensen, and Søren Holdt Jensen. Fast fundamental frequency estimation: Making a statistically efficient estimator computationally efficient. Signal Processing, 135:188–197, June 2017.Sira Gonzalez and Mike Brookes. PEFAC - A Pitch Estimation Algorithm Robust to High Levels of Noise. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 22(2):518—530, February 2014.Paul Boersma. Accurate short-term analysis of the fundamental frequency and the harmonics-to-noise ratio of a sampled sound. In Proceedings of the institute of phonetic sciences, volume 17, page 97—110. Amsterdam, 1993.David Talkin. A robust algorithm for pitch tracking (RAPT). Speech coding and synthesis, 495:518, 1995.Byung Suk Lee and Daniel PW Ellis. Noise robust pitch tracking by subband autocorrelation classification. In Interspeech, pages 707–710, 2012.Wei Chu and Abeer Alwan. SAFE: a statistical algorithm for F0 estimation for both clean and noisy speech. In INTERSPEECH, pages 2590–2593, 2010.Xuejing Sun. Pitch determination and voice quality analysis using subharmonic-to-harmonic ratio. In Acoustics, Speech, and Signal Processing (ICASSP), 2002 IEEE International Conference on, volume 1, page I—333. IEEE, 2002.Markel. The SIFT algorithm for fundamental frequency estimation. IEEE Transactions on Audio and Electroacoustics, 20(5):367—377, December 1972.Thomas Drugman and Abeer Alwan. Joint Robust Voicing Detection and Pitch Estimation Based on Residual Harmonics. In Interspeech, page 1973—1976, 2011.Hideki Kawahara, Masanori Morise, Toru Takahashi, Ryuichi Nisimura, Toshio Irino, and Hideki Banno. TANDEM-STRAIGHT: A temporally stable power spectral representation for periodic signals and applications to interference-free spectrum, F0, and aperiodicity estimation. In Acous- tics, Speech and Signal Processing, 2008. ICASSP 2008. IEEE International Conference on, pages 3933–3936. IEEE, 2008.Arturo Camacho. SWIPE: A sawtooth waveform inspired pitch estimator for speech and music. PhD thesis, University of Florida, 2007.Kavita Kasi and Stephen A. Zahorian. Yet Another Algorithm for Pitch Tracking. In IEEE International Conference on Acoustics Speech and Signal Processing, pages I–361–I–364, Orlando, FL, USA, May 2002. IEEE.Alain de Cheveigné and Hideki Kawahara. YIN, a fundamental frequency estimator for speech and music. The Journal of the Acoustical Society of America, 111(4):1917, 2002.

  15. h

    codeparrot-clean

    • huggingface.co
    Updated Dec 7, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CodeParrot (2021). codeparrot-clean [Dataset]. https://huggingface.co/datasets/codeparrot/codeparrot-clean
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 7, 2021
    Dataset provided by
    Good Engineering, Inc
    Authors
    CodeParrot
    Description

    CodeParrot 🦜 Dataset Cleaned

      What is it?
    

    A dataset of Python files from Github. This is the deduplicated version of the codeparrot.

      Processing
    

    The original dataset contains a lot of duplicated and noisy data. Therefore, the dataset was cleaned with the following steps:

    Deduplication Remove exact matches

    Filtering Average line length < 100 Maximum line length < 1000 Alpha numeric characters fraction > 0.25 Remove auto-generated files (keyword search)

    For… See the full description on the dataset page: https://huggingface.co/datasets/codeparrot/codeparrot-clean.

  16. S1 Data -

    • plos.figshare.com
    zip
    Updated Oct 11, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yancong Zhou; Wenyue Chen; Xiaochen Sun; Dandan Yang (2023). S1 Data - [Dataset]. http://doi.org/10.1371/journal.pone.0292466.s001
    Explore at:
    zipAvailable download formats
    Dataset updated
    Oct 11, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Yancong Zhou; Wenyue Chen; Xiaochen Sun; Dandan Yang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analyzing customers’ characteristics and giving the early warning of customer churn based on machine learning algorithms, can help enterprises provide targeted marketing strategies and personalized services, and save a lot of operating costs. Data cleaning, oversampling, data standardization and other preprocessing operations are done on 900,000 telecom customer personal characteristics and historical behavior data set based on Python language. Appropriate model parameters were selected to build BPNN (Back Propagation Neural Network). Random Forest (RF) and Adaboost, the two classic ensemble learning models were introduced, and the Adaboost dual-ensemble learning model with RF as the base learner was put forward. The four models and the other four classical machine learning models-decision tree, naive Bayes, K-Nearest Neighbor (KNN), Support Vector Machine (SVM) were utilized respectively to analyze the customer churn data. The results show that the four models have better performance in terms of recall rate, precision rate, F1 score and other indicators, and the RF-Adaboost dual-ensemble model has the best performance. Among them, the recall rates of BPNN, RF, Adaboost and RF-Adaboost dual-ensemble model on positive samples are respectively 79%, 90%, 89%,93%, the precision rates are 97%, 99%, 98%, 99%, and the F1 scores are 87%, 95%, 94%, 96%. The RF-Adaboost dual-ensemble model has the best performance, and the three indicators are 10%, 1%, and 6% higher than the reference. The prediction results of customer churn provide strong data support for telecom companies to adopt appropriate retention strategies for pre-churn customers and reduce customer churn.

  17. Evaluating the microscopic effect of brushing stone tools as a cleaning...

    • zenodo.org
    Updated Aug 9, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Antonella Pedergnana; Antonella Pedergnana; Ivan Calandra; Ivan Calandra; Konstantin Bob; Konstantin Bob; Walter Gneisinger; Walter Gneisinger; Eduardo Paixao; Lisa Schunk; Lisa Schunk; Andreas Hildebrandt; Joao Marreiros; Joao Marreiros; Eduardo Paixao; Andreas Hildebrandt (2022). Evaluating the microscopic effect of brushing stone tools as a cleaning procedure [Python analysis] [Dataset]. http://doi.org/10.5281/zenodo.3662428
    Explore at:
    Dataset updated
    Aug 9, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Antonella Pedergnana; Antonella Pedergnana; Ivan Calandra; Ivan Calandra; Konstantin Bob; Konstantin Bob; Walter Gneisinger; Walter Gneisinger; Eduardo Paixao; Lisa Schunk; Lisa Schunk; Andreas Hildebrandt; Joao Marreiros; Joao Marreiros; Eduardo Paixao; Andreas Hildebrandt
    Description

    This upload includes the following files related to the Python analysis:

    - Raw data as a XLSX table (brushing_v2.xlsx), i.e. results from R Script #1 (see https://doi.org/10.5281/zenodo.3632517)

    - Python script of the whole analysis (BrushingDirt_Analysis.py)

    - Jupyter notebook files of the analysis run on epLsar as an example (NotebookBrushingDirt_4Level.inpyb) and of a summary of the whole analysis (NotebookBrushingDirt_Overview_4LevelPlots.ipynb), and associated HTML output files (*.html).

    - Full samples of parameter values for each parameter (*.pkl)

    - Energy plots of Hamiltonian Monte Carlo for each parameter, as PDF files (*_Energy.pdf)

    - Contrast plots between each treatment (No_Is, Is_No, Is_Is) and the control (No_No) for each parameter (*_Contrasts.pdf)

    - Trace plots for each parameter (*_Trace.pdf)

    - Distribution of posteriors for each parameter (*_Posterior.pdf)

  18. Dirty Dataset to practice Data Cleaning

    • kaggle.com
    zip
    Updated May 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Martin Kanju (2024). Dirty Dataset to practice Data Cleaning [Dataset]. https://www.kaggle.com/datasets/martinkanju/dirty-dataset-to-practice-data-cleaning
    Explore at:
    zip(1235 bytes)Available download formats
    Dataset updated
    May 20, 2024
    Authors
    Martin Kanju
    Description

    Dataset

    This dataset was created by Martin Kanju

    Released under Other (specified in description)

    Contents

  19. Collocated PurpleAir Sensors and T640 Reference Data located at Durango...

    • catalog.data.gov
    Updated Sep 16, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. EPA Office of Research and Development (ORD) (2025). Collocated PurpleAir Sensors and T640 Reference Data located at Durango Complex in Phoenix, AZ May 2019: Case Study Demonstrating EPA's Performance Targets and sensorstoolkit Python Code Library [Dataset]. https://catalog.data.gov/dataset/collocated-purpleair-sensors-and-t640-reference-data-located-at-durango-complex-in-phoenix
    Explore at:
    Dataset updated
    Sep 16, 2025
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Area covered
    Arizona, Phoenix
    Description

    Three PurpleAir sensors were collocated with a T640x reference monitor at the Durango Complex Air Quality Monitoring Station in Phoenix, Arizona in May 2019. Both instruments measured PM2.5 and PM10 and this collocation exercise was done to better understand how the sensor data compared to the reference data and what data cleaning and correcting would need to be applied to the sensor data to make these two dataset more comparable. These data files contain the raw data from this experiment at 1 minute and 20 second time resolution for the sensor data and 1 hour time resolution for the reference monitor data. Data provided courtesy of USEPA and our project partners Maricopa County Air Quality Department. This dataset is associated with the following publication: Kumar, M., S. Frederick, K. Barkjohn, and A. Clements. Sensortoolkit—A Python Library for Standardizing the Ingestion, Analysis, and Reporting of Air Sensor Data for Performance Evaluation. Sensors. MDPI, Basel, SWITZERLAND, 25(18): 5645, (2025).

  20. Enhancing UNCDF Operations: Power BI Dashboard Development and Data Mapping

    • figshare.com
    Updated Jan 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Maryam Binti Haji Abdul Halim (2025). Enhancing UNCDF Operations: Power BI Dashboard Development and Data Mapping [Dataset]. http://doi.org/10.6084/m9.figshare.28147451.v1
    Explore at:
    Dataset updated
    Jan 6, 2025
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Maryam Binti Haji Abdul Halim
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This project focuses on data mapping, integration, and analysis to support the development and enhancement of six UNCDF operational applications: OrgTraveler, Comms Central, Internal Support Hub, Partnership 360, SmartHR, and TimeTrack. These apps streamline workflows for travel claims, internal support, partnership management, and time tracking within UNCDF.Key Features and Tools:Data Mapping for Salesforce CRM Migration: Structured and mapped data flows to ensure compatibility and seamless migration to Salesforce CRM.Python for Data Cleaning and Transformation: Utilized pandas, numpy, and APIs to clean, preprocess, and transform raw datasets into standardized formats.Power BI Dashboards: Designed interactive dashboards to visualize workflows and monitor performance metrics for decision-making.Collaboration Across Platforms: Integrated Google Collab for code collaboration and Microsoft Excel for data validation and analysis.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Hussein Al Chami (2023). Project Python- Data Cleaning - EDA- Visualization [Dataset]. https://www.kaggle.com/datasets/husseinalchami/project-python-data-cleaning-eda-visualization
Organization logo

Project Python- Data Cleaning - EDA- Visualization

Explore at:
zip(322085 bytes)Available download formats
Dataset updated
Dec 10, 2023
Authors
Hussein Al Chami
License

MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically

Description

Dataset

This dataset was created by Hussein Al Chami

Released under MIT

Contents

Search
Clear search
Close search
Google apps
Main menu