Facebook
TwitterAttribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
License information was derived automatically
This dataset is about Python programming. Question and answers are generated using Gemma. There are more than four hundred questions and their corresponding answers about Python programming.
Questions are ranging from concepts like data-types, variables and keywords to regular-expression and threading.
I have used this dataset here
The code used for dataset generated is available here
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Attention: This dataset is a summary and reformat pulled from github code.
You should make your own assumptions based on this. In fact, there is another dataset I formed through parsing that addresses several points:
out of 500k python related items, most of them are python-ish, not pythonic the majority of the items here contain excessive licensing inclusion of original code the items here are sometimes not even python but have references There's a whole lot of gpl summaries… See the full description on the dataset page: https://huggingface.co/datasets/jtatman/python-code-dataset-500k.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
Description: - This dataset includes all 22 built-in datasets from the Seaborn library, a widely used Python data visualization tool. Seaborn's built-in datasets are essential resources for anyone interested in practicing data analysis, visualization, and machine learning. They span a wide range of topics, from classic datasets like the Iris flower classification to real-world data such as Titanic survival records and diamond characteristics.
This complete collection serves as an excellent starting point for anyone looking to improve their data science skills, offering a wide array of datasets suitable for both beginners and advanced users.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Machine learning (ML) has gained much attention and has been incorporated into our daily lives. While there are numerous publicly available ML projects on open source platforms such as GitHub, there have been limited attempts in filtering those projects to curate ML projects of high quality. The limited availability of such high-quality dataset poses an obstacle to understanding ML projects. To help clear this obstacle, we present NICHE, a manually labelled dataset consisting of 572 ML projects. Based on evidences of good software engineering practices, we label 441 of these projects as engineered and 131 as non-engineered. In this repository we provide "NICHE.csv" file that contains the list of the project names along with their labels, descriptive information for every dimension, and several basic statistics, such as the number of stars and commits. This dataset can help researchers understand the practices that are followed in high-quality ML projects. It can also be used as a benchmark for classifiers designed to identify engineered ML projects.
GitHub page: https://github.com/soarsmu/NICHE
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Sample data set used in an introductory course on Programming in Python
Facebook
Twitteriamketan25/python-qa-instructions-dataset dataset hosted on Hugging Face and contributed by the HF Datasets community
Facebook
TwitterDataset Card for my-distiset-3c1699f5
This dataset has been created with distilabel.
Dataset Summary
This dataset contains a pipeline.yaml which can be used to reproduce the pipeline that generated it in distilabel using the distilabel CLI: distilabel pipeline run --config "https://huggingface.co/datasets/sdiazlor/my-distiset-3c1699f5/raw/main/pipeline.yaml"
or explore the configuration: distilabel pipeline info --config… See the full description on the dataset page: https://huggingface.co/datasets/sdiazlor/math-python-reasoning-dataset.
Facebook
TwitterAutomatically describing images using natural sentences is an essential task to visually impaired people's inclusion on the Internet. Although there are many datasets in the literature, most of them contain only English captions, whereas datasets with captions described in other languages are scarce.
PraCegoVer arose on the Internet, stimulating users from social media to publish images, tag #PraCegoVer and add a short description of their content. Inspired by this movement, we have proposed the #PraCegoVer, a multi-modal dataset with Portuguese captions based on posts from Instagram. It is the first large dataset for image captioning in Portuguese with freely annotated images.
Dataset Structure
containing the images. The file dataset.json comprehends a list of json objects with the attributes:
user: anonymized user that made the post;
filename: image file name;
raw_caption: raw caption;
caption: clean caption;
date: post date.
Each instance in dataset.json is associated with exactly one image in the images directory whose filename is pointed by the attribute filename. Also, we provide a sample with five instances, so the users can download the sample to get an overview of the dataset before downloading it completely.
Download Instructions
If you just want to have an overview of the dataset structure, you can download sample.tar.gz. But, if you want to use the dataset, or any of its subsets (63k and 173k), you must download all the files and run the following commands to uncompress and join the files:
cat images.tar.gz.part* > images.tar.gz tar -xzvf images.tar.gz
Alternatively, you can download the entire dataset from the terminal using the python script download_dataset.py available in PraCegoVer repository. In this case, first, you have to download the script and create an access token here. Then, you can run the following command to download and uncompress the image files:
python download_dataset.py --access_token=
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This folder contains datasets to be downloaded from students for their practices with R and Python
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset is gathered on Sep. 17th 2020. It has more than 5.4K Python repositories that are hosted on GitHub. Check out the file ManyTypes4PyDataset.spec for repositories URL and their commit SHA. The dataset is also de-duplicated using the CD4Py tool. The list of duplicate files is provided in duplicate_files.txt file. All of its Python projects are processed in JSON-formatted files. They contain a seq2seq representation of each file, type-related hints, and information for machine learning models. The structure of JSON-formatted files is described in JSONOutput.md file. The dataset is split into train, validation and test sets by source code files. The list of files and their corresponding set is provided in dataset_split.csv file. Notable changes to each version of the dataset are documented in CHANGELOG.md.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
Dataset Card for "code-search-net-python"
Dataset Description
Homepage: None Repository: https://huggingface.co/datasets/Nan-Do/code-search-net-python Paper: None Leaderboard: None Point of Contact: @Nan-Do
Dataset Summary
This dataset is the Python portion of the CodeSarchNet annotated with a summary column.The code-search-net dataset includes open source functions that include comments found at GitHub.The summary is a short description of what the… See the full description on the dataset page: https://huggingface.co/datasets/Nan-Do/code-search-net-python.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
We present Code4ML: a Large-scale Dataset of annotated Machine Learning Code, a corpus of Python code snippets, competition summaries, and data descriptions from Kaggle.
The data is organized in a table structure. Code4ML includes several main objects: competitions information, raw code blocks collected form Kaggle and manually marked up snippets. Each table has a .csv format.
Each competition has the text description and metadata, reflecting competition and used dataset characteristics as well as evaluation metrics (competitions.csv). The corresponding datasets can be loaded using Kaggle API and data sources.
The code blocks themselves and their metadata are collected to the data frames concerning the publishing year of the initial kernels. The current version of the corpus includes two code blocks files: snippets from kernels up to the 2020 year (сode_blocks_upto_20.csv) and those from the 2021 year (сode_blocks_21.csv) with corresponding metadata. The corpus consists of 2 743 615 ML code blocks collected from 107 524 Jupyter notebooks.
Marked up code blocks have the following metadata: anonymized id, the format of the used data (for example, table or audio), the id of the semantic type, a flag for the code errors, the estimated relevance to the semantic class (from 1 to 5), the id of the parent notebook, and the name of the competition. The current version of the corpus has ~12 000 labeled snippets (markup_data_20220415.csv).
As marked up code blocks data contains the numeric id of the code block semantic type, we also provide a mapping from this number to semantic type and subclass (actual_graph_2022-06-01.csv).
The dataset can help solve various problems, including code synthesis from a prompt in natural language, code autocompletion, and semantic code classification.
Facebook
TwitterThis dataset was created by Monis Ahmad
Facebook
TwitterCodeParrot 🦜 Dataset
What is it?
This is the full CodeParrot dataset. It contains Python files used to train the code generation model in Chapter 10: Training Transformers from Scratch in the NLP with Transformers book. You can find the full code in the accompanying Github repository.
Creation
It was created with the GitHub dataset available via Google's BigQuery. It contains approximately 22 million Python files and is 180 GB (50 GB compressed) big. The… See the full description on the dataset page: https://huggingface.co/datasets/transformersbook/codeparrot.
Facebook
TwitterThe EPA GitHub repository PAU4ChemAs as described in the README.md file, contains Python scripts written to build the PAU dataset modules (technologies, capital and operating costs, and chemical prices) for tracking chemical flows transfers, releases estimation, and identification of potential occupation exposure scenarios in pollution abatement units (PAUs). These PAUs are employed for on-site chemical end-of-life management. The folder datasets contains the outputs for each framework step. The Chemicals_in_categories.csv contains the chemicals for the TRI chemical categories. The EPA GitHub repository PAU_case_study as described in its readme.md entry, contains the Python scripts to run the manuscript case study for designing the PAUs, the data-driven models, and the decision-making module for chemicals of concern and tracking flow transfers at the end-of-life stage. The data was obtained by means of data engineering using different publicly-available databases. The properties of chemicals were obtained using the GitHub repository Properties_Scraper, while the PAU dataset using the repository PAU4Chem. Finally, the EPA GitHub repository Properties_Scraper contains a Python script to massively gather information about exposure limits and physical properties from different publicly-available sources: EPA, NOAA, OSHA, and the institute for Occupational Safety and Health of the German Social Accident Insurance (IFA). Also, all GitHub repositories describe the Python libraries required for running their code, how to use them, the obtained outputs files after running the Python script modules, and the corresponding EPA Disclaimer. This dataset is associated with the following publication: Hernandez-Betancur, J.D., M. Martin, and G.J. Ruiz-Mercado. A data engineering framework for on-site end-of-life industrial operations. JOURNAL OF CLEANER PRODUCTION. Elsevier Science Ltd, New York, NY, USA, 327: 129514, (2021).
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
Dataset Card for "instructional_code-search-net-python"
Dataset Summary
This is an instructional dataset for Python. The dataset contains two different kind of tasks:
Given a piece of code generate a description of what it does. Given a description generate a piece of code that fulfils the description.
Languages
The dataset is in English.
Data Splits
There are no splits.
Dataset Creation
May of 2023
Curation Rationale
This… See the full description on the dataset page: https://huggingface.co/datasets/Nan-Do/instructional_code-search-net-python.
Facebook
Twittergreatdarklord/python-raw-dataset dataset hosted on Hugging Face and contributed by the HF Datasets community
Facebook
TwitterAttribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
XLCoST is a machine learning benchmark dataset that contains fine-grained parallel data in 7 commonly used programming languages (C++, Java, Python, C#, Javascript, PHP, C), and natural language (English).
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
What is Pandas?
Pandas is a Python library used for working with data sets.
It has functions for analyzing, cleaning, exploring, and manipulating data.
The name "Pandas" has a reference to both "Panel Data", and "Python Data Analysis" and was created by Wes McKinney in 2008.
Why Use Pandas?
Pandas allows us to analyze big data and make conclusions based on statistical theories.
Pandas can clean messy data sets, and make them readable and relevant.
Relevant data is very important in data science.
What Can Pandas Do?
Pandas gives you answers about the data. Like:
Is there a correlation between two or more columns?
What is average value?
Max value?
Min value?
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
These are demo data files used to teach machine learning with Python in 3011979 course at Chulalongkorn University in Spring 2021 and Spring 2022
Facebook
TwitterAttribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
License information was derived automatically
This dataset is about Python programming. Question and answers are generated using Gemma. There are more than four hundred questions and their corresponding answers about Python programming.
Questions are ranging from concepts like data-types, variables and keywords to regular-expression and threading.
I have used this dataset here
The code used for dataset generated is available here