Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Alinaghi, N., Giannopoulos, I., Kattenbeck, M., & Raubal, M. (2025). Decoding wayfinding: analyzing wayfinding processes in the outdoor environment. International Journal of Geographical Information Science, 1–31. https://doi.org/10.1080/13658816.2025.2473599
Link to the paper: https://www.tandfonline.com/doi/full/10.1080/13658816.2025.2473599
The folder named “submission” contains the following:
ijgis.yml
: This file lists all the Python libraries and dependencies required to run the code.ijgis.yml
file to create a Python project and environment. Ensure you activate the environment before running the code.pythonProject
folder contains several .py
files and subfolders, each with specific functionality as described below..png
file for each column of the raw gaze and IMU recordings, color-coded with logged events..csv
files.overlapping_sliding_window_loop.py
.plot_labels_comparison(df, save_path, x_label_freq=10, figsize=(15, 5))
in line 116 visualizes the data preparation results. As this visualization is not used in the paper, the line is commented out, but if you want to see visually what has been changed compared to the original data, you can comment out this line..csv
files in the results folder.This part contains three main code blocks:
iii. One for the XGboost code with correct hyperparameter tuning:
Please read the instructions for each block carefully to ensure that the code works smoothly. Regardless of which block you use, you will get the classification results (in the form of scores) for unseen data. The way we empirically test the confidence threshold of
Note: Please read the instructions for each block carefully to ensure that the code works smoothly. Regardless of which block you use, you will get the classification results (in the form of scores) for unseen data. The way we empirically calculated the confidence threshold of the model (explained in the paper in Section 5.2. Part II: Decoding surveillance by sequence analysis) is given in this block in lines 361 to 380.
.csv
file containing inferred labels.The data is licensed under CC-BY, the code is licensed under MIT.
klib library enables us to quickly visualize missing data, perform data cleaning, visualize data distribution plot, visualize correlation plot and visualize categorical column values. klib is a Python library for importing, cleaning, analyzing and preprocessing data. Explanations on key functionalities can be found on Medium / TowardsDataScience in the examples section or on YouTube (Data Professor).
Original Github repo
https://raw.githubusercontent.com/akanz1/klib/main/examples/images/header.png" alt="klib Header">
!pip install klib
import klib
import pandas as pd
df = pd.DataFrame(data)
# klib.describe functions for visualizing datasets
- klib.cat_plot(df) # returns a visualization of the number and frequency of categorical features
- klib.corr_mat(df) # returns a color-encoded correlation matrix
- klib.corr_plot(df) # returns a color-encoded heatmap, ideal for correlations
- klib.dist_plot(df) # returns a distribution plot for every numeric feature
- klib.missingval_plot(df) # returns a figure containing information about missing values
Take a look at this starter notebook.
Further examples, as well as applications of the functions can be found here.
Pull requests and ideas, especially for further functions are welcome. For major changes or feedback, please open an issue first to discuss what you would like to change. Take a look at this Github repo.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
A collection of datasets and python scripts for extraction and analysis of isograms (and some palindromes and tautonyms) from corpus-based word-lists, specifically Google Ngram and the British National Corpus (BNC).Below follows a brief description, first, of the included datasets and, second, of the included scripts.1. DatasetsThe data from English Google Ngrams and the BNC is available in two formats: as a plain text CSV file and as a SQLite3 database.1.1 CSV formatThe CSV files for each dataset actually come in two parts: one labelled ".csv" and one ".totals". The ".csv" contains the actual extracted data, and the ".totals" file contains some basic summary statistics about the ".csv" dataset with the same name.The CSV files contain one row per data point, with the colums separated by a single tab stop. There are no labels at the top of the files. Each line has the following columns, in this order (the labels below are what I use in the database, which has an identical structure, see section below):
Label Data type Description
isogramy int The order of isogramy, e.g. "2" is a second order isogram
length int The length of the word in letters
word text The actual word/isogram in ASCII
source_pos text The Part of Speech tag from the original corpus
count int Token count (total number of occurences)
vol_count int Volume count (number of different sources which contain the word)
count_per_million int Token count per million words
vol_count_as_percent int Volume count as percentage of the total number of volumes
is_palindrome bool Whether the word is a palindrome (1) or not (0)
is_tautonym bool Whether the word is a tautonym (1) or not (0)
The ".totals" files have a slightly different format, with one row per data point, where the first column is the label and the second column is the associated value. The ".totals" files contain the following data:
Label
Data type
Description
!total_1grams
int
The total number of words in the corpus
!total_volumes
int
The total number of volumes (individual sources) in the corpus
!total_isograms
int
The total number of isograms found in the corpus (before compacting)
!total_palindromes
int
How many of the isograms found are palindromes
!total_tautonyms
int
How many of the isograms found are tautonyms
The CSV files are mainly useful for further automated data processing. For working with the data set directly (e.g. to do statistics or cross-check entries), I would recommend using the database format described below.1.2 SQLite database formatOn the other hand, the SQLite database combines the data from all four of the plain text files, and adds various useful combinations of the two datasets, namely:• Compacted versions of each dataset, where identical headwords are combined into a single entry.• A combined compacted dataset, combining and compacting the data from both Ngrams and the BNC.• An intersected dataset, which contains only those words which are found in both the Ngrams and the BNC dataset.The intersected dataset is by far the least noisy, but is missing some real isograms, too.The columns/layout of each of the tables in the database is identical to that described for the CSV/.totals files above.To get an idea of the various ways the database can be queried for various bits of data see the R script described below, which computes statistics based on the SQLite database.2. ScriptsThere are three scripts: one for tiding Ngram and BNC word lists and extracting isograms, one to create a neat SQLite database from the output, and one to compute some basic statistics from the data. The first script can be run using Python 3, the second script can be run using SQLite 3 from the command line, and the third script can be run in R/RStudio (R version 3).2.1 Source dataThe scripts were written to work with word lists from Google Ngram and the BNC, which can be obtained from http://storage.googleapis.com/books/ngrams/books/datasetsv2.html and [https://www.kilgarriff.co.uk/bnc-readme.html], (download all.al.gz).For Ngram the script expects the path to the directory containing the various files, for BNC the direct path to the *.gz file.2.2 Data preparationBefore processing proper, the word lists need to be tidied to exclude superfluous material and some of the most obvious noise. This will also bring them into a uniform format.Tidying and reformatting can be done by running one of the following commands:python isograms.py --ngrams --indir=INDIR --outfile=OUTFILEpython isograms.py --bnc --indir=INFILE --outfile=OUTFILEReplace INDIR/INFILE with the input directory or filename and OUTFILE with the filename for the tidied and reformatted output.2.3 Isogram ExtractionAfter preparing the data as above, isograms can be extracted from by running the following command on the reformatted and tidied files:python isograms.py --batch --infile=INFILE --outfile=OUTFILEHere INFILE should refer the the output from the previosu data cleaning process. Please note that the script will actually write two output files, one named OUTFILE with a word list of all the isograms and their associated frequency data, and one named "OUTFILE.totals" with very basic summary statistics.2.4 Creating a SQLite3 databaseThe output data from the above step can be easily collated into a SQLite3 database which allows for easy querying of the data directly for specific properties. The database can be created by following these steps:1. Make sure the files with the Ngrams and BNC data are named “ngrams-isograms.csv” and “bnc-isograms.csv” respectively. (The script assumes you have both of them, if you only want to load one, just create an empty file for the other one).2. Copy the “create-database.sql” script into the same directory as the two data files.3. On the command line, go to the directory where the files and the SQL script are. 4. Type: sqlite3 isograms.db 5. This will create a database called “isograms.db”.See the section 1 for a basic descript of the output data and how to work with the database.2.5 Statistical processingThe repository includes an R script (R version 3) named “statistics.r” that computes a number of statistics about the distribution of isograms by length, frequency, contextual diversity, etc. This can be used as a starting point for running your own stats. It uses RSQLite to access the SQLite database version of the data described above.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Reddit is a social news, content rating and discussion website. It's one of the most popular sites on the internet. Reddit has 52 million daily active users and approximately 430 million users who use it once a month. Reddit has different subreddits and here We'll use the r/AskScience Subreddit.
The dataset is extracted from the subreddit /r/AskScience from Reddit. The data was collected between 01-01-2016 and 20-05-2022. It contains 612,668 Datapoints and 25 Columns. The database contains a number of information about the questions asked on the subreddit, the description of the submission, the flair of the question, NSFW or SFW status, the year of the submission, and more. The data is extracted using python and Pushshift's API. A little bit of cleaning is done using NumPy and pandas as well. (see the descriptions of individual columns below).
The dataset contains the following columns and descriptions: author - Redditor Name author_fullname - Redditor Full name contest_mode - Contest mode [implement obscured scores and randomized sorting]. created_utc - Time the submission was created, represented in Unix Time. domain - Domain of submission. edited - If the post is edited or not. full_link - Link of the post on the subreddit. id - ID of the submission. is_self - Whether or not the submission is a self post (text-only). link_flair_css_class - CSS Class used to identify the flair. link_flair_text - Flair on the post or The link flair’s text content. locked - Whether or not the submission has been locked. num_comments - The number of comments on the submission. over_18 - Whether or not the submission has been marked as NSFW. permalink - A permalink for the submission. retrieved_on - time ingested. score - The number of upvotes for the submission. description - Description of the Submission. spoiler - Whether or not the submission has been marked as a spoiler. stickied - Whether or not the submission is stickied. thumbnail - Thumbnail of Submission. question - Question Asked in the Submission. url - The URL the submission links to, or the permalink if a self post. year - Year of the Submission. banned - Banned by the moderator or not.
This dataset can be used for Flair Prediction, NSFW Classification, and different Text Mining/NLP tasks. Exploratory Data Analysis can also be done to get the insights and see the trend and patterns over the years.
CodeParrot 🦜 Dataset Cleaned
What is it?
A dataset of Python files from Github. This is the deduplicated version of the codeparrot.
Processing
The original dataset contains a lot of duplicated and noisy data. Therefore, the dataset was cleaned with the following steps:
Deduplication Remove exact matches
Filtering Average line length < 100 Maximum line length < 1000 Alpha numeric characters fraction > 0.25 Remove auto-generated files (keyword search)
For… See the full description on the dataset page: https://huggingface.co/datasets/codeparrot/codeparrot-clean.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analyzing customers’ characteristics and giving the early warning of customer churn based on machine learning algorithms, can help enterprises provide targeted marketing strategies and personalized services, and save a lot of operating costs. Data cleaning, oversampling, data standardization and other preprocessing operations are done on 900,000 telecom customer personal characteristics and historical behavior data set based on Python language. Appropriate model parameters were selected to build BPNN (Back Propagation Neural Network). Random Forest (RF) and Adaboost, the two classic ensemble learning models were introduced, and the Adaboost dual-ensemble learning model with RF as the base learner was put forward. The four models and the other four classical machine learning models-decision tree, naive Bayes, K-Nearest Neighbor (KNN), Support Vector Machine (SVM) were utilized respectively to analyze the customer churn data. The results show that the four models have better performance in terms of recall rate, precision rate, F1 score and other indicators, and the RF-Adaboost dual-ensemble model has the best performance. Among them, the recall rates of BPNN, RF, Adaboost and RF-Adaboost dual-ensemble model on positive samples are respectively 79%, 90%, 89%,93%, the precision rates are 97%, 99%, 98%, 99%, and the F1 scores are 87%, 95%, 94%, 96%. The RF-Adaboost dual-ensemble model has the best performance, and the three indicators are 10%, 1%, and 6% higher than the reference. The prediction results of customer churn provide strong data support for telecom companies to adopt appropriate retention strategies for pre-churn customers and reduce customer churn.
Making Byzantine Computational Musicology FAIR - a working example This is the repository for the Making Byzantine Computational Musicology FAIR - a working example project. We have submitted a short paper for this. In this repository, there is a folder with the dataset, the data package schemas in YAML file, as well as the python code (main.py) for describing and validating the data. Upon acceptance of the paper, the accepted draft will also be uploaded.
This upload includes the following files related to the Python analysis:
- Raw data as a XLSX table (brushing_v2.xlsx), i.e. results from R Script #1 (see https://doi.org/10.5281/zenodo.3632517)
- Python script of the whole analysis (BrushingDirt_Analysis.py)
- Jupyter notebook files of the analysis run on epLsar as an example (NotebookBrushingDirt_4Level.inpyb) and of a summary of the whole analysis (NotebookBrushingDirt_Overview_4LevelPlots.ipynb), and associated HTML output files (*.html).
- Full samples of parameter values for each parameter (*.pkl)
- Energy plots of Hamiltonian Monte Carlo for each parameter, as PDF files (*_Energy.pdf)
- Contrast plots between each treatment (No_Is, Is_No, Is_Is) and the control (No_No) for each parameter (*_Contrasts.pdf)
- Trace plots for each parameter (*_Trace.pdf)
- Distribution of posteriors for each parameter (*_Posterior.pdf)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This project focuses on data mapping, integration, and analysis to support the development and enhancement of six UNCDF operational applications: OrgTraveler, Comms Central, Internal Support Hub, Partnership 360, SmartHR, and TimeTrack. These apps streamline workflows for travel claims, internal support, partnership management, and time tracking within UNCDF.Key Features and Tools:Data Mapping for Salesforce CRM Migration: Structured and mapped data flows to ensure compatibility and seamless migration to Salesforce CRM.Python for Data Cleaning and Transformation: Utilized pandas, numpy, and APIs to clean, preprocess, and transform raw datasets into standardized formats.Power BI Dashboards: Designed interactive dashboards to visualize workflows and monitor performance metrics for decision-making.Collaboration Across Platforms: Integrated Google Collab for code collaboration and Microsoft Excel for data validation and analysis.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This is the supplementary material accompanying the manuscript "Daily life in the Open Biologist’s second job, as a Data Curator", published in Wellcome Open Research.
It contains:
- Python_scripts.zip: Python scripts used for data cleaning and organization:
-add_headers.py: adds specified headers automatically to a list of csv files, creating new output files containing a "_with_headers" suffix.
-count_NaN_values.py: counts the total number of rows containing null values in a csv file and prints the location of null values in the (row, column) format.
-remove_rowsNaN_file.py: removes rows containing null values in a single csv file and saves the modified file with a "_dropNaN" suffix.
-remove_rowsNaN_list.py: removes rows containing null values in list of csv files and saves the modified files with a "_dropNaN" suffix.
- README_template.txt: a template for a README file to be used to describe and accompany a dataset.
- template_for_source_data_information.xlsx: a spreadsheet to help manuscript authors to keep track of data used for each figure (e.g., information about data location and links to dataset description).
- Supplementary_Figure_1.tif: Example of a dataset shared by us on Zenodo. The elements that make the dataset FAIR are indicated by the respective letters. Findability (F) is achieved by the dataset unique and persistent identifier (DOI), as well as by the related identifiers for the publication and dataset on GitHub. Additionally, the dataset is described with rich metadata, (e.g., keywords). Accessibility (A) is achieved by the ease of visualization and downloading using a standardised communications protocol (https). Also, the metadata are publicly accessible and licensed under the public domain. Interoperability (I) is achieved by the open formats used (CSV; R), and metadata are harvestable using the Open Archives Initiative Protocol for Metadata Harvesting (OAI-PMH), a low-barrier mechanism for repository interoperability. Reusability (R) is achieved by the complete description of the data with metadata in README files and links to the related publication (which contains more detailed information, as well as links to protocols on protocols.io). The dataset has a clear and accessible data usage license (CC-BY 4.0).
Perform this analysis on 2 excel files ‘Unstructured Data English.xlsx’ and ‘Unstructured Data Japanese.xls
Task: 1. Generate code for data cleansing in Python 2. Write a SQL Query/python to generate top 10 frequently occurring meaningful phrases in the data set 3. Using above cleansed data create a term document matrix for the given unstructured data. Use Python 3.7. The output should be in excel format explained as below,
S.no. (Unique identifier of a comment)
Token 1 2 3 4 so on…….. Unique identifier of each comment
Fire 0 0 3 0 ………. Token
Bad 2 0 1 8 ………. Number of times a token appears in a comment
Hate 5 2 2 0 ……….
Shine 1 1 2 3 ……….
The provided Python code is a comprehensive analysis of sales data for a business that involves the merging of monthly sales data, cleaning and augmenting the dataset, and performing various analytical tasks. Here's a breakdown of the code:
Data Preparation and Merging:
The code begins by importing necessary libraries and filtering out warnings. It merges sales data from 12 months into a single file named "all_data.csv." Data Cleaning:
Rows with NaN values are dropped, and any entries starting with 'Or' in the 'Order Date' column are removed. Columns like 'Quantity Ordered' and 'Price Each' are converted to numeric types for further analysis. Data Augmentation:
Additional columns such as 'Month,' 'Sales,' and 'City' are added to the dataset. The 'City' column is derived from the 'Purchase Address' column. Analysis:
Several analyses are conducted, answering questions such as: The best month for sales and total earnings. The city with the highest number of sales. The ideal time for advertisements based on the number of orders per hour. Products that are often sold together. The best-selling products and their correlation with price. Visualization:
Bar charts and line plots are used for visualizing the analysis results, making it easier to interpret trends and patterns. Matplotlib is employed for creating visualizations. Summary:
The code concludes with a comprehensive visualization that combines the quantity ordered and average price for each product, shedding light on product performance. This code is structured to offer insights into sales patterns, customer behavior, and product performance, providing valuable information for strategic decision-making in the business.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
python scripts and functions needed to view and clean saccade data
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Data set consisting of data joined for analyzing the SBIR/STTR program. Data consists of individual awards and agency-level observations. The R and python code required for pulling, cleaning, and creating useful data sets has been included. Allard_Get and Clean Data.R This file provides the code for getting, cleaning, and joining the numerous data sets that this project combined. This code is written in the R language and can be used in any R environment running R 3.5.1 or higher. If the other files in this Dataverse are downloaded to the working directory, then this Rcode will be able to replicate the original study without needing the user to update any file paths. Allard SBIR STTR WebScraper.py This is the code I deployed to multiple Amazon EC2 instances to scrape data o each individual award in my data set, including the contact info and DUNS data. Allard_Analysis_APPAM SBIR project Forthcoming Allard_Spatial Analysis Forthcoming Awards_SBIR_df.Rdata This unique data set consists of 89,330 observations spanning the years 1983 - 2018 and accounting for all eleven SBIR/STTR agencies. This data set consists of data collected from the Small Business Administration's Awards API and also unique data collected through web scraping by the author. Budget_SBIR_df.Rdata 246 observations for 20 agencies across 25 years of their budget-performance in the SBIR/STTR program. Data was collected from the Small Business Administration using the Annual Reports Dashboard, the Awards API, and an author-designed web crawler of the websites of awards. Solicit_SBIR-df.Rdata This data consists of observations of solicitations published by agencies for the SBIR program. This data was collected from the SBA Solicitations API. Primary Sources Small Business Administration. “Annual Reports Dashboard,” 2018. https://www.sbir.gov/awards/annual-reports. Small Business Administration. “SBIR Awards Data,” 2018. https://www.sbir.gov/api. Small Business Administration. “SBIR Solicit Data,” 2018. https://www.sbir.gov/api.
Overview This repository contains ready-to-use frequency time series as well as the corresponding pre-processing scripts in python. The data covers three synchronous areas of the European power grid:
Continental Europe
Great Britain
Nordic
This work is part of the paper "Predictability of Power Grid Frequency"[1]. Please cite this paper, when using the data and the code. For a detailed documentation of the pre-processing procedure we refer to the supplementary material of the paper.
Data sources We downloaded the frequency recordings from publically available repositories of three different Transmission System Operators (TSOs).
Continental Europe [2]: We downloaded the data from the German TSO TransnetBW GmbH, which retains the Copyright on the data, but allows to re-publish it upon request [3].
Great Britain [4]: The download was supported by National Grid ESO Open Data, which belongs to the British TSO National Grid. They publish the frequency recordings under the NGESO Open License [5].
Nordic [6]: We obtained the data from the Finish TSO Fingrid, which provides the data under the open license CC-BY 4.0 [7].
Content of the repository
A) Scripts
In the "Download_scripts" folder you will find three scripts to automatically download frequency data from the TSO's websites.
In "convert_data_format.py" we save the data with corrected timestamp formats. Missing data is marked as NaN (processing step (1) in the supplementary material of [1]).
In "clean_corrupted_data.py" we load the converted data and identify corrupted recordings. We mark them as NaN and clean some of the resulting data holes (processing step (2) in the supplementary material of [1]).
The python scripts run with Python 3.7 and with the packages found in "requirements.txt".
B) Yearly converted and cleansed data The folders "_converted" contain the output of "convert_data_format.py" and "_cleansed" contain the output of "clean_corrupted_data.py".
File type: The files are zipped csv-files, where each file comprises one year.
Data format: The files contain two columns. The second column contains the frequency values in Hz. The first one represents the time stamps in the format Year-Month-Day Hour-Minute-Second, which is given as naive local time. The local time refers to the following time zones and includes Daylight Saving Times (python time zone in brackets):
TransnetBW: Continental European Time (CE)
Nationalgrid: Great Britain (GB)
Fingrid: Finland (Europe/Helsinki)
NaN representation: We mark corrupted and missing data as "NaN" in the csv-files.
Use cases We point out that this repository can be used in two different was:
Use pre-processed data: You can directly use the converted or the cleansed data. Note however, that both data sets include segments of NaN-values due to missing and corrupted recordings. Only a very small part of the NaN-values were eliminated in the cleansed data to not manipulate the data too much.
Produce your own cleansed data: Depending on your application, you might want to cleanse the data in a custom way. You can easily add your custom cleansing procedure in "clean_corrupted_data.py" and then produce cleansed data from the raw data in "_converted".
License
This work is licensed under multiple licenses, which are located in the "LICENSES" folder.
We release the code in the folder "Scripts" under the MIT license .
The pre-processed data in the subfolders "**/Fingrid" and "**/Nationalgrid" are licensed under CC-BY 4.0.
TransnetBW originally did not publish their data under an open license. We have explicitly received the permission to publish the pre-processed version from TransnetBW. However, we cannot publish our pre-processed version under an open license due to the missing license of the original TransnetBW data.
Changelog Version 2:
Add time zone information to description
Include new frequency data
Update references
Change folder structure to yearly folders
Version 3:
Correct TransnetBW files for missing data in May 2016
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This dataset provides annual records of threatened species from 2004 to 2023, focusing on the 25 countries most impacted by biodiversity loss. For direct download of datasets. The data is organized into three categories—Vertebrates, Invertebrates, and Plants—and sourced from UNdata and the IUCN Red List. Each entry includes the country name, year, species count, and biodiversity group. It is designed to support research, education, and public engagement on global conservation priorities. Source and Collection Timeline Original Data Range: 2004–2023 Cleaned and Extracted: November 2024 Primary Sources: UNdata, IUCN Red List (via UN Statistics Division) Data Processing Summary Data Cleaning: Removed incomplete entries and excluded non-country-level data (e.g., continents or regions). Grouping: Categorized into Vertebrates, Invertebrates, and Plants. Top 25 Filter: Selected the top 25 countries per year and per category to improve visual clarity. File Generation: Created three structured CSVs using Python (Pandas). Data Format File Type: CSV (.csv) Columns Include: Country – Name of the country Year – Range from 2004 to 2023 Value – Number of threatened species Group – Vertebrates, Invertebrates, or Plants
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset and documentation contains detailed information of the iTEM Open Database, a harmonized transport data set of historical values, 1970 - present. It aims to create transparency through two key features:
The iTEM Open Database is comprised of individual datasets collected from public sources. Each dataset is downloaded, cleaned, and harmonised to the common region and technology definitions defined by the iTEM consortium https://transportenergy.org. For each dataset, we describe the name of the dataset, the web link to the original source, the web link to the cleaning script (in python), variables, and explain the data cleaning steps (which explains the data cleaning script in plain English).
Shall you find any problems with the dataset, please report the issues here https://github.com/transportenergy/database/issues.
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
The zipped folder includes individual folders of each study pertained in the thesis. Within each study's folder, there are two separated subfolders: "Data_Processed" which includes processed data, and "scripts" with MATLAB and Python code for data cleaning, processing and analysis. There is a readme.txt file accompanying this submission as well.
US Census Bureau conducts American Census Survey 1 and 5 Yr surveys that record various demographics and provide public access through APIs. I have attempted to call the APIs through the python environment using the requests library, Clean, and organize the data in a usable format.
ACS Subject data [2011-2019] was accessed using Python by following the below API Link:
https://api.census.gov/data/2011/acs/acs1?get=group(B08301)&for=county:*
The data was obtained in JSON format by calling the above API, then imported as Python Pandas Dataframe. The 84 variables returned have 21 Estimate values for various metrics, 21 pairs of respective Margin of Error, and respective Annotation values for Estimate and Margin of Error Values. This data was then undergone through various cleaning processes using Python, where excess variables were removed, and the column names were renamed. Web-Scraping was carried out to extract the variables' names and replace the codes in the column names in raw data.
The above step was carried out for multiple ACS/ACS-1 datasets spanning 2011-2019 and then merged into a single Python Pandas Dataframe. The columns were rearranged, and the "NAME" column was split into two columns, namely 'StateName' and 'CountyName.' The counties for which no data was available were also removed from the Dataframe. Once the Dataframe was ready, it was separated into two new dataframes for separating State and County Data and exported into '.csv' format
More information about the source of Data can be found at the URL below:
US Census Bureau. (n.d.). About: Census Bureau API. Retrieved from Census.gov
https://www.census.gov/data/developers/about.html
I hope this data helps you to create something beautiful, and awesome. I will be posting a lot more databases shortly, if I get more time from assignments, submissions, and Semester Projects 🧙🏼♂️. Good Luck.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically