Subscribers can find out export and import data of 23 countries by HS code or product’s name. This demo is helpful for market analysis.
Subscribers can find out export and import data of 23 countries by HS code or product’s name. This demo is helpful for market analysis.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
By Vezora (From Huggingface) [source]
The Vezora/Tested-188k-Python-Alpaca dataset is a comprehensive collection of functional Python code samples, specifically designed for training and analysis purposes. With 188,000 samples, this dataset offers an extensive range of examples that cater to the research needs of Python programming enthusiasts.
This valuable resource consists of various columns, including input, which represents the input or parameters required for executing the Python code sample. The instruction column describes the task or objective that the Python code sample aims to solve. Additionally, there is an output column that showcases the resulting output generated by running the respective Python code.
By utilizing this dataset, researchers can effectively study and analyze real-world scenarios and applications of Python programming. Whether for educational purposes or development projects, this dataset serves as a reliable reference for individuals seeking practical examples and solutions using Python
The Vezora/Tested-188k-Python-Alpaca dataset is a comprehensive collection of functional Python code samples, containing 188,000 samples in total. This dataset can be a valuable resource for researchers and programmers interested in exploring various aspects of Python programming.
Contents of the Dataset
The dataset consists of several columns:
- output: This column represents the expected output or result that is obtained when executing the corresponding Python code sample.
- instruction: It provides information about the task or instruction that each Python code sample is intended to solve.
- input: The input parameters or values required to execute each Python code sample.
Exploring the Dataset
To make effective use of this dataset, it is essential to understand its structure and content properly. Here are some steps you can follow:
- Importing Data: Load the dataset into your preferred environment for data analysis using appropriate tools like pandas in Python.
import pandas as pd # Load the dataset df = pd.read_csv('train.csv')
- Understanding Column Names: Familiarize yourself with the column names and their meanings by referring to the provided description.
# Display column names print(df.columns)
- Sample Exploration: Get an initial understanding of the data structure by examining a few random samples from different columns.
# Display random samples from 'output' column print(df['output'].sample(5))
- Analyzing Instructions: Analyze different instructions or tasks present in the 'instruction' column to identify specific areas you are interested in studying or learning about.
# Count unique instructions and display top ones with highest occurrences instruction_counts = df['instruction'].value_counts() print(instruction_counts.head(10))
Potential Use Cases
The Vezora/Tested-188k-Python-Alpaca dataset can be utilized in various ways:
- Code Analysis: Analyze the code samples to understand common programming patterns and best practices.
- Code Debugging: Use code samples with known outputs to test and debug your own Python programs.
- Educational Purposes: Utilize the dataset as a teaching tool for Python programming classes or tutorials.
- Machine Learning Applications: Train machine learning models to predict outputs based on given inputs.
Remember that this dataset provides a plethora of diverse Python coding examples, allowing you to explore different
- Code analysis: Researchers and developers can use this dataset to analyze various Python code samples and identify patterns, best practices, and common mistakes. This can help in improving code quality and optimizing performance.
- Language understanding: Natural language processing techniques can be applied to the instruction column of this dataset to develop models that can understand and interpret natural language instructions for programming tasks.
- Code generation: The input column of this dataset contains the required inputs for executing each Python code sample. Researchers can build models that generate Python code based on specific inputs or task requirements using the examples provided in this dataset. This can be useful in automating repetitive programming tasks o...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Author: Andrew J. FeltonDate: 5/5/2024
This R project contains the primary code and data (following pre-processing in python) used for data production, manipulation, visualization, and analysis and figure production for the study entitled:
"Global estimates of the storage and transit time of water through vegetation"
Please note that 'turnover' and 'transit' are used interchangeably in this project.
Data information:
The data folder contains key data sets used for analysis. In particular:
"data/turnover_from_python/updated/annual/multi_year_average/average_annual_turnover.nc" contains a global array summarizing five year (2016-2020) averages of annual transit, storage, canopy transpiration, and number of months of data. This is the core dataset for the analysis; however, each folder has much more data, including a dataset for each year of the analysis. Data are also available is separate .csv files for each land cover type. Oterh data can be found for the minimum, monthly, and seasonal transit time found in their respective folders. These data were produced using the python code found in the "supporting_code" folder given the ease of working with .nc and EASE grid in the xarray python module. R was used primarily for data visualization purposes. The remaining files in the "data" and "data/supporting_data"" folder primarily contain ground-based estimates of storage and transit found in public databases or through a literature search, but have been extensively processed and filtered here.
Python scripts can be found in the "supporting_code" folder.
Each R script in this project has a particular function:
01_start.R: This script loads the R packages used in the analysis, sets thedirectory, and imports custom functions for the project. You can also load in the main transit time (turnover) datasets here using the source()
function.
02_functions.R: This script contains the custom function for this analysis, primarily to work with importing the seasonal transit data. Load this using the source()
function in the 01_start.R script.
03_generate_data.R: This script is not necessary to run and is primarilyfor documentation. The main role of this code was to import and wranglethe data needed to calculate ground-based estimates of aboveground water storage.
04_annual_turnover_storage_import.R: This script imports the annual turnover andstorage data for each landcover type. You load in these data from the 01_start.R scriptusing the source()
function.
05_minimum_turnover_storage_import.R: This script imports the minimum turnover andstorage data for each landcover type. Minimum is defined as the lowest monthlyestimate.You load in these data from the 01_start.R scriptusing the source()
function.
06_figures_tables.R: This is the main workhouse for figure/table production and supporting analyses. This script generates the key figures and summary statistics used in the study that then get saved in the manuscript_figures folder. Note that allmaps were produced using Python code found in the "supporting_code"" folder.
Subscribers can find out export and import data of 23 countries by HS code or product’s name. This demo is helpful for market analysis.
Eximpedia Export import trade data lets you search trade data and active Exporters, Importers, Buyers, Suppliers, manufacturers exporters from over 209 countries
Subscribers can find out export and import data of 23 countries by HS code or product’s name. This demo is helpful for market analysis.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Build a trapezoidal PCHE two channel model using FLUNT software as a unit for processing, simulate by changing different input conditions, obtain corresponding results, export them as CSV files, use Python for data processing, remove unnecessary information columns, and combine certain information from each file to form a snapshot matrix CSV file. After processing the snapshot matrix CSV file in Python, import it into MATLAB for prediction, and finally export the MATLAB results as a result CSV file.
Dataset Card for Python-DPO
This dataset is the larger version of Python-DPO dataset and has been created using Argilla.
Load with datasets
To load this dataset with datasets, you'll just need to install datasets as pip install datasets --upgrade and then use the following code: from datasets import load_dataset
ds = load_dataset("NextWealth/Python-DPO")
Data Fields
Each data instance contains:
instruction: The problem description/requirements chosen_code:… See the full description on the dataset page: https://huggingface.co/datasets/NextWealth/Python-DPO-Large.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Author: Andrew J. Felton
Date: 10/29/2024
This R project contains the primary code and data (following pre-processing in python) used for data production, manipulation, visualization, and analysis, and figure production for the study entitled:
"Global estimates of the storage and transit time of water through vegetation"
Please note that 'turnover' and 'transit' are used interchangeably. Also please note that this R project has been updated multiple times as the analysis has updated.
Data information:
The data folder contains key data sets used for analysis. In particular:
"data/turnover_from_python/updated/august_2024_lc/" contains the core datasets used in this study including global arrays summarizing five year (2016-2020) averages of mean (annual) and minimum (monthly) transit time, storage, canopy transpiration, and number of months of data able as both an array (.nc) or data table (.csv). These data were produced in python using the python scripts found in the "supporting_code" folder. The remaining files in the "data" and "data/supporting_data"" folder primarily contain ground-based estimates of storage and transit found in public databases or through a literature search, but have been extensively processed and filtered here. The "supporting_data"" folder also contains annual (2016-2020) MODIS land cover data used in the analysis and contains separate filters containing the original data (.hdf) and then the final process (filtered) data in .nc format. The resulting annual land cover distributions were used in the pre-processing of data in python.
#Code information
Python scripts can be found in the "supporting_code" folder.
Each R script in this project has a role:
"01_start.R": This script sets the working directory, loads in the tidyverse package (the remaining packages in this project are called using the `::` operator), and can run two other scripts: one that loads the customized functions (02_functions.R) and one for importing and processing the key dataset for this analysis (03_import_data.R).
"02_functions.R": This script contains custom functions. Load this using the
`source()` function in the 01_start.R script.
"03_import_data.R": This script imports and processes the .csv transit data. It joins the mean (annual) transit time data with the minimum (monthly) transit data to generate one dataset for analysis: annual_turnover_2. Load this using the
`source()` function in the 01_start.R script.
"04_figures_tables.R": This is the main workhouse for figure/table production and
supporting analyses. This script generates the key figures and summary statistics
used in the study that then get saved in the manuscript_figures folder. Note that all
maps were produced using Python code found in the "supporting_code"" folder.
"supporting_generate_data.R": This script processes supporting data used in the analysis, primarily the varying ground-based datasets of leaf water content.
"supporting_process_land_cover.R": This takes annual MODIS land cover distributions and processes them through a multi-step filtering process so that they can be used in preprocessing of datasets in python.
polyOne Data Set
The data set contains 100 million hypothetical polymers each with 29 predicted properties using machine learning models. We use PSMILES strings to represent polymer structures, see here and here. The polymers are generated by decomposing previously synthesized polymers into unique chemical fragments. Random and enumerative compositions of these fragments yield 100 million hypothetical PSMILES strings. All PSMILES strings are chemically valid polymers but, mostly, have never been synthesized before. More information can be found in the paper. Please note the license agreement in the LICENSE file.
Full data set including the properties
The data files are in Apache Parquet format. The files start with polyOne_*.parquet
.
I recommend using dask (pip install dask
) to load and process the data set. Pandas also works but is slower.
Load sharded data set with dask
python
import dask.dataframe as dd
ddf = dd.read_parquet("*.parquet", engine="pyarrow")
For example, compute the description of data set ```python df_describe = ddf.describe().compute() df_describe
PSMILES strings only
generated_polymer_smiles_train.txt - 80 million PSMILES strings for training polyBERT. One string per line.
generated_polymer_smiles_dev.txt - 20 million PSMILES strings for testing polyBERT. One string per line.
Dolma: an Open Corpus of Three Trillion Tokens for Language Model Pretraining Research
To use this dataset:
import tensorflow_datasets as tfds
ds = tfds.load('dolma', split='train')
for ex in ds.take(4):
print(ex)
See the guide for more informations on tensorflow_datasets.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This archive reproduces a figure titled "Figure 3.2 Boone County population distribution" from Wang and vom Hofe (2007, p.60). The archive provides a Jupyter Notebook that uses Python and can be run in Google Colaboratory. The workflow uses the Census API to retrieve data, reproduce the figure, and ensure reproducibility for anyone accessing this archive.The Python code was developed in Google Colaboratory, or Google Colab for short, which is an Integrated Development Environment (IDE) of JupyterLab and streamlines package installation, code collaboration, and management. The Census API is used to obtain population counts from the 2000 Decennial Census (Summary File 1, 100% data). Shapefiles are downloaded from the TIGER/Line FTP Server. All downloaded data are maintained in the notebook's temporary working directory while in use. The data and shapefiles are stored separately with this archive. The final map is also stored as an HTML file.The notebook features extensive explanations, comments, code snippets, and code output. The notebook can be viewed in a PDF format or downloaded and opened in Google Colab. References to external resources are also provided for the various functional components. The notebook features code that performs the following functions:install/import necessary Python packagesdownload the Census Tract shapefile from the TIGER/Line FTP Serverdownload Census data via CensusAPI manipulate Census tabular data merge Census data with TIGER/Line shapefileapply a coordinate reference systemcalculate land area and population densitymap and export the map to HTMLexport the map to ESRI shapefileexport the table to CSVThe notebook can be modified to perform the same operations for any county in the United States by changing the State and County FIPS code parameters for the TIGER/Line shapefile and Census API downloads. The notebook can be adapted for use in other environments (i.e., Jupyter Notebook) as well as reading and writing files to a local or shared drive, or cloud drive (i.e., Google Drive).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This resource contains Jupyter Notebooks with examples for accessing USGS NWIS data via web services and performing subsequent analysis related to drought with particular focus on sites in Utah and the southwestern United States (could be modified to any USGS sites). The code uses the Python DataRetrieval package. The resource is part of set of materials for hydroinformatics and water data science instruction. Complete learning module materials are found in HydroLearn: Jones, A.S., Horsburgh, J.S., Bastidas Pacheco, C.J. (2022). Hydroinformatics and Water Data Science. HydroLearn. https://edx.hydrolearn.org/courses/course-v1:USU+CEE6110+2022/about.
This resources consists of 6 example notebooks: 1. Example 1: Import and plot daily flow data 2. Example 2: Import and plot instantaneous flow data for multiple sites 3. Example 3: Perform analyses with USGS annual statistics data 4. Example 4: Retrieve data and find daily flow percentiles 3. Example 5: Further examination of drought year flows 6. Coding challenge: Assess drought severity
Real dataset of 14 long horizon manipulation tasks. A mix of human play data and single robot arm data performing the same tasks.
To use this dataset:
import tensorflow_datasets as tfds
ds = tfds.load('mimic_play', split='train')
for ex in ds.take(4):
print(ex)
See the guide for more informations on tensorflow_datasets.
https://www.gnu.org/licenses/gpl-3.0.htmlhttps://www.gnu.org/licenses/gpl-3.0.html
This dataset used to investigate the influence of the unique amount of 3D-Models (Shapes) and Materials (Textures) towards the shape-textures bias, performance and generalization of deep neural network instance segmentation in my bachelor exam.
You can load the images like:
import cv2
image = cv2.imread(img_path)
if image is None:
raise FileNotFoundError(f"Error during data loading: there is no '{img_path}'")
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
depth = cv2.imread(depth_path, cv2.IMREAD_UNCHANGED)
if len(depth.shape) > 2:
_, depth, _, _ = cv2.split(depth)
mask = cv2.imread(mask_path, cv2.IMREAD_UNCHANGED) # cv2.IMREAD_GRAYSCALE)
For easy use I recommend to use my own code. You can directly use it to train Mask R-CNN or just use the dataloader. Both are shown now:
First: Clone my torch github project into your project
terminal
cd ./path/to/your/project
git clone https://github.com/xXAI-botXx/torch-mask-rcnn-instance-segmentation.git
Second: Install the anaconda env (optional)
terminal
cd ./path/to/your/project
cd ./torch-mask-rcnn-instance-segmentation
conda env create -f conda_env.yml
Third: You are ready to use
Using only the dataloader for your custom project: ```python import os import numpy as np import matplotlib.pyplot as plt import cv2 from torch.utils.data import DataLoader
import sys sys.path.append("./torch-mask-rcnn-instance-segmentation")
from maskrcnn_toolkit import DATA_LOADING_MODE, Dual_Dir_Dataset, collate_fn, extract_and_visualize_mask
data_mode = DATA_LOADING_MODE.ALL
dataset = Dual_Dir_Dataset(img_dir="/path/to/rgb-folder", depth_dir="/path/to/depth-folder", mask_dir="/path/to/mask-folder", transform=None, amount=1, start_idx=0, end_idx=0, image_name="...", data_mode=data_mode, use_mask=True, use_depth=False, log_path="./logs", width=1920, height=1080, should_log=True, should_print=True, should_verify=False) data_loader = DataLoader(dataset, batch_size=5, shuffle=True, num_workers=4, collate_fn=collate_fn)
for data in data_loader: for batch_idx in range(len(data[0])): if len(data) == 3: image = data[0][batch_idx].cpu().unsqueeze(0) masks = data[1][batch_idx]["masks"] masks = masks.cpu() name = data[2][batch_idx] else: image = data[0][batch_idx].cpu().unsqueeze(0) name = data[1][batch_idx]
image = image.cpu().numpy().squeeze(0)
image = np.transpose(image, (1, 2, 0)) # Convert to HWC
# Remove 4.th channel if existing
if image.shape[2] == 4:
depth = image[:, :, 3]
image = image[:, :, :3]
else:
depth = None
masks_gt = masks.cpu().numpy()
masks_gt = np.transpose(masks_gt, (1, 2, 0))
mask = extract_and_visualize_mask(masks_gt, image=None, ax=None, visualize=False, color_map=None, soft_join=False)
# plot
cols = 1
if depth is not None:
cols += 1
if mask is not None:
cols += 1
fig, ax = plt.subplots(nrows=1, ncols=cols, figsize=(20, 15*cols))
fig.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=0.05, hspace=0.05)
plot_idx = 0
ax[plot_idx].imshow(image)
ax[plot_idx].set_title("RGB Input Image")
ax[plot_idx].axis("off")
if depth is not None:
plot_idx += 1
ax[plot_idx].imshow(depth, cmap="gray")
ax[plot_idx].set_title("Depth Input Image")
ax[plot_idx].axis("off")
if mask is not None:
plot_idx += 1
ax[plot_idx].imshow(mask)
ax[plot_idx].set_title("Mask Ground Truth")
ax[plot_idx].axis("off")
plt.show()
**Using the whole Mask R-CNN training pipeline:**
```python
import sys
sys.path.append("./torch-mask-rcnn-instance-segmentation")
from maskrcnn_toolkit import DATA_LOADING_MODE, train
# set the vars as you need
WEIGHTS_PATH = None # Path to the model weights file
USE_DEPTH = False # Whether to include depth information -> as rgb and depth on green channel
VERIFY_DATA = False # True is recommended
GROUND_PATH = "D:/3xM"
DATASET_NAME = "3xM_Dataset_80_160"
IMG_DIR = os.path.join(G...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The goal of this task is to train a model that can localize and classify each instance of Person and Car as accurately as possible.
from IPython.display import Markdown, display
display(Markdown("../input/Car-Person-v2-Roboflow/README.roboflow.txt"))
In this Notebook, I have processed the images with RoboFlow because in COCO formatted dataset was having different dimensions of image and Also data set was not splitted into different Format. To train a custom YOLOv7 model we need to recognize the objects in the dataset. To do so I have taken the following steps:
Image Credit - jinfagang
!git clone https://github.com/WongKinYiu/yolov7 # Downloading YOLOv7 repository and installing requirements
%cd yolov7
!pip install -qr requirements.txt
!pip install -q roboflow
!wget "https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7.pt"
import os
import glob
import wandb
import torch
from roboflow import Roboflow
from kaggle_secrets import UserSecretsClient
from IPython.display import Image, clear_output, display # to display images
print(f"Setup complete. Using torch {torch._version_} ({torch.cuda.get_device_properties(0).name if torch.cuda.is_available() else 'CPU'})")
https://camo.githubusercontent.com/dd842f7b0be57140e68b2ab9cb007992acd131c48284eaf6b1aca758bfea358b/68747470733a2f2f692e696d6775722e636f6d2f52557469567a482e706e67">
I will be integrating W&B for visualizations and logging artifacts and comparisons of different models!
try:
user_secrets = UserSecretsClient()
wandb_api_key = user_secrets.get_secret("wandb_api")
wandb.login(key=wandb_api_key)
anonymous = None
except:
wandb.login(anonymous='must')
print('To use your W&B account,
Go to Add-ons -> Secrets and provide your W&B access token. Use the Label name as WANDB.
Get your W&B access token from here: https://wandb.ai/authorize')
wandb.init(project="YOLOvR",name=f"7. YOLOv7-Car-Person-Custom-Run-7")
https://uploads-ssl.webflow.com/5f6bc60e665f54545a1e52a5/615627e5824c9c6195abfda9_computer-vision-cycle.png" alt="">
In order to train our custom model, we need to assemble a dataset of representative images with bounding box annotations around the objects that we want to detect. And we need our dataset to be in YOLOv7 format.
In Roboflow, We can choose between two paths:
https://raw.githubusercontent.com/Owaiskhan9654/Yolo-V7-Custom-Dataset-Train-on-Kaggle/main/Roboflow.PNG" alt="">
user_secrets = UserSecretsClient()
roboflow_api_key = user_secrets.get_secret("roboflow_api")
rf = Roboflow(api_key=roboflow_api_key)
project = rf.workspace("owais-ahmad").project("custom-yolov7-on-kaggle-on-custom-dataset-rakiq")
dataset = project.version(2).download("yolov7")
Here, I am able to pass a number of arguments: - img: define input image size - batch: determine
Subscribers can find out export and import data of 23 countries by HS code or product’s name. This demo is helpful for market analysis.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
A compressed NumPy version of the EMAG2 (v3) global Earth Magnetic anomaly grid compiled from satellite, ship, and airborne magnetic measurements. The original CSV data was imported, transformed, and saved to a compressed NumPy archive as follows:
import numpy as np
mag_data = np.loadtxt('EMAG2_V3_20170530.csv', delimiter=',', usecols=(2,3,4,5,7))
lon_mask = mag_data[:,0] > 180.0
mag_data[lon_mask,0] -= 360.0
np.savez_compressed('EMAG2_V3_20170530.npz', data=mag_data.astype(np.float32))
The NumPy archive (contained in this repository) can be efficiently loaded in Python workflows. It contains the following columns:
Code 888 is assigned in certain cells on grid edges where the data source is ambiguous and assigned an error of -888 nT.
Code 999 is assigned in cells where no data is reported with the anomaly value assigned 99999 nT and an error of -999 nT.
Reference
Brian Meyer, Richard Saltus, Arnaud Chulliat (2017): EMAG2: Earth Magnetic Anomaly Grid (2-arc-minute resolution) Version 3. National Centers for Environmental Information, NOAA. Model. doi:10.7289/V5H70CVX
Machine learning approaches are often trained and evaluated with datasets that require a clear separation between positive and negative examples. This approach overly simplifies the natural subjectivity present in many tasks and content items. It also obscures the inherent diversity in human perceptions and opinions. Often tasks that attempt to preserve the variance in content and diversity in humans are quite expensive and laborious. To fill in this gap and facilitate more in-depth model performance analyses we propose the DICES dataset - a unique dataset with diverse perspectives on safety of AI generated conversations. We focus on the task of safety evaluation of conversational AI systems. The DICES dataset contains detailed demographics information about each rater, extremely high replication of unique ratings per conversation to ensure statistical significance of further analyses and encodes rater votes as distributions across different demographics to allow for in-depth explorations of different rating aggregation strategies.
This dataset is well suited to observe and measure variance, ambiguity and diversity in the context of safety of conversational AI. The dataset is accompanied by a paper describing a set of metrics that show how rater diversity influences the safety perception of raters from different geographic regions, ethnicity groups, age groups and genders. The goal of the DICES dataset is to be used as a shared benchmark for safety evaluation of conversational AI systems.
CONTENT WARNING: This dataset contains adversarial examples of conversations that may be offensive.
To use this dataset:
import tensorflow_datasets as tfds
ds = tfds.load('dices', split='train')
for ex in ds.take(4):
print(ex)
See the guide for more informations on tensorflow_datasets.
Subscribers can find out export and import data of 23 countries by HS code or product’s name. This demo is helpful for market analysis.