Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
We implemented automated workflows using Jupyter notebooks for each state. The GIS processing, crucial for merging, extracting, and projecting GeoTIFF data, was performed using ArcPy—a Python package for geographic data analysis, conversion, and management within ArcGIS (Toms, 2015). After generating state-scale LES (large extent spatial) datasets in GeoTIFF format, we utilized the xarray and rioxarray Python packages to convert GeoTIFF to NetCDF. Xarray is a Python package to work with multi-dimensional arrays and rioxarray is rasterio xarray extension. Rasterio is a Python library to read and write GeoTIFF and other raster formats. Xarray facilitated data manipulation and metadata addition in the NetCDF file, while rioxarray was used to save GeoTIFF as NetCDF. These procedures resulted in the creation of three HydroShare resources (HS 3, HS 4 and HS 5) for sharing state-scale LES datasets. Notably, due to licensing constraints with ArcGIS Pro, a commercial GIS software, the Jupyter notebook development was undertaken on a Windows OS.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains information on the Surface Soil Moisture (SM) state derived from satellite observations in the microwave domain.
The operational (ACTIVE, PASSIVE, COMBINED) ESA CCI SM products are available at https://catalogue.ceda.ac.uk/uuid/c256fcfeef24460ca6eb14bf0fe09572/
Understanding whether the soil surface is frozen or thawed is crucial for interpreting satellite-based soil moisture measurements and for many Earth system applications. The physical state of water in the soil strongly affects its dielectric properties, which in turn determine how satellites sense moisture content. Current ESA CCI Soil Moisture products exclude data when the surface is likely frozen, as reliable retrievals are not possible under such conditions. Yet, the freeze/thaw state itself carries valuable environmental information: it reflects the changing energy and water exchange between land and atmosphere, shapes seasonal hydrological cycles, and influences agriculture, ecosystems, and climate feedbacks across much of the Northern Hemisphere.
This dataset provides global estimates of the soil moisture freeze/thaw state for the period from 11-1978 to 12-2024 derived from PASSIVE (radiometer) satellite observations within the ESA CCI Soil Moisture framework. These radiometers, operating in the K-band frequency range, are sensitive to surface temperature, enabling the detection of frozen versus thawed conditions at daily temporal and ~25 km spatial sampling. Data from L-band missions (e.g., SMAP, SMOS) are not included, resulting in a total number of 12 satellites.
The classification algorithm, described in Van der Vliet et al. (2020), was originally developed to flag frozen conditions in soil moisture retrievals and has since evolved into a dedicated data product. It applies a decision-tree approach using multi-frequency satellite measurements to classify the surface state for each sensor. Individual classifications are then merged into a single spatiotemporal record using a conservative unanimity rule—if any contributing satellite detects a frozen surface, the merged product is classified as “frozen.”
While this approach ensures reliability, it may lead to some over-flagging, which could be refined in future versions. The current product achieves an estimated accuracy of 75% against in situ surface temperature observations and 92% compared to ERA5 reanalysis data.
You can use command-line tools such as wget or curl to download (and extract) data for multiple years. The following command will download and extract the complete data set to the local directory ~/Download on Linux or macOS systems.
#!/bin/bash
# Set download directory
DOWNLOAD_DIR=~/Downloads
base_url="https://researchdata.tuwien.at/records/m3g2x-a6958/files"
# Loop through years 1978 to 2024 and download & extract data
for year in {1978..2024}; do
echo "Downloading $year.zip..."
wget -q -P "$DOWNLOAD_DIR" "$base_url/$year.zip"
unzip -o "$DOWNLOAD_DIR/$year.zip" -d $DOWNLOAD_DIR
rm "$DOWNLOAD_DIR/$year.zip"
done
The dataset provides global daily estimates for the 1978-2024 period at 0.25° (~25 km) horizontal grid resolution. Daily images are grouped by year (YYYY), each subdirectory containing one netCDF image file for a specific day (DD) and month (MM) of that year in a 2-dimensional (longitude, latitude) grid system (CRS: WGS84). The file name follows the convention:
ESACCI-SOILMOISTURE-L3S-FT-YYYYMMDD000000-fv09.2.nc
Each netCDF file contains 3 coordinate variables
and the following data variables
Additional information for each variable is given in the netCDF attributes.
Changes in v9.2 (first released version):
These data can be read by any software that supports Climate and Forecast (CF) conform metadata standards for netCDF files, such as:
Facebook
TwitterThis item contains data and code used in experiments that produced the results for Sadler et. al (2022) (see below for full reference). We ran five experiments for the analysis, Experiment A, Experiment B, Experiment C, Experiment D, and Experiment AuxIn. Experiment A tested multi-task learning for predicting streamflow with 25 years of training data and using a different model for each of 101 sites. Experiment B tested multi-task learning for predicting streamflow with 25 years of training data and using a single model for all 101 sites. Experiment C tested multi-task learning for predicting streamflow with just 2 years of training data. Experiment D tested multi-task learning for predicting water temperature with over 25 years of training data. Experiment AuxIn used water temperature as an input variable for predicting streamflow. These experiments and their results are described in detail in the WRR paper. Data from a total of 101 sites across the US was used for the experiments. The model input data and streamflow data were from the Catchment Attributes and Meteorology for Large-sample Studies (CAMELS) dataset (Newman et. al 2014, Addor et. al 2017). The water temperature data were gathered from the National Water Information System (NWIS) (U.S. Geological Survey, 2016). The contents of this item are broken into 13 files or groups of files aggregated into zip files:
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Data Summary: US states grid mask file and NOAA climate regions grid mask file, both compatible with the 12US1 modeling grid domain. Note:The datasets are on a Google Drive. The metadata associated with this DOI contain the link to the Google Drive folder and instructions for downloading the data. These files can be used with CMAQ-ISAMv5.3 to track state- or region-specific emissions. See Chapter 11 and Appendix B.4 in the CMAQ User's Guide for further information on how to use the ISAM control file with GRIDMASK files. The files can also be used for state or region-specific scaling of emissions using the CMAQv5.3 DESID module. See the DESID Tutorial and Appendix B.4 in the CMAQ User's Guide for further information on how to use the Emission Control File to scale emissions in predetermined geographical areas. File Location and Download Instructions: Link to GRIDMASK files Link to README text file with information on how these files were created File Format: The grid mask are stored as netcdf formatted files using I/O API data structures (https://www.cmascenter.org/ioapi/). Information on the model projection and grid structure is contained in the header information of the netcdf file. The output files can be opened and manipulated using I/O API utilities (e.g. M3XTRACT, M3WNDW) or other software programs that can read and write netcdf formatted files (e.g. Fortran, R, Python). File descriptions These GRIDMASK files can be used with the 12US1 modeling grid domain (grid origin x = -2556000 m, y = -1728000 m; N columns = 459, N rows = 299). GRIDMASK_STATES_12US1.nc - This file containes 49 variables for the 48 states in the conterminous U.S. plus DC. Each state variable (e.g., AL, AZ, AR, etc.) is a 2D array (299 x 459) providing the fractional area of each grid cell that falls within that state. GRIDMASK_CLIMATE_REGIONS_12US1.nc - This file containes 9 variables for 9 NOAA climate regions based on the Karl and Koss (1984) definition of climate regions. Each climate region variable (e.g., CLIMATE_REGION_1, CLIMATE_REGION_2, etc.) is a 2D array (299 x 459) providing the fractional area of each grid cell that falls within that climate region. NOAA Climate regions: CLIMATE_REGION_1: Northwest (OR, WA, ID) CLIMATE_REGION_2: West (CA, NV) CLIMATE_REGION_3: West North Central (MT, WY, ND, SD, NE) CLIMATE_REGION_4: Southwest (UT, AZ, NM, CO) CLIMATE_REGION_5: South (KS, OK, TX, LA, AR, MS) CLIMATE_REGION_6: Central (MO, IL, IN, KY, TN, OH, WV) CLIMATE_REGION_7: East North Central (MN, IA, WI, MI) CLIMATE_REGION_8: Northeast (MD, DE, NJ, PA, NY, CT, RI, MA, VT, NH, ME) + Washington, D.C.* CLIMATE_REGION_9: Southeast (VA, NC, SC, GA, AL, GA) *Note that Washington, D.C. is not included in any of the climate regions on the website but was included with the “Northeast” region for the generation of this GRIDMASK file.
Facebook
Twitterhttp://dcat-ap.ch/vocabulary/licenses/terms_byhttp://dcat-ap.ch/vocabulary/licenses/terms_by
This dataset contains the experimental results described in Bergfeld et al. (2025). It includes three Propagation Saw Test (PST) experiments, each approximately 9 m long, performed side-by-side on a 37° slope. For each PST, we provide the full field of view along the crack-propagation direction. For the second and third PSTs, we additionally provide close-up recordings focused on the weak layer where cracking occurred. All data are supplied as netCDF files containing displacement and strain measurements derived from Digital Image Correlation (DIC) analysis. Metadata describing dimensions and units are stored directly within the netCDF files. We recommend using the xarray package in Python to read and work with these datasets. All figures presented in Bergfeld et al. (2025) can be reproduced using the included Python scripts. Information about the snowpack is provided in PDF, pickle, and CAAML file formats.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
These datasets contain time series of the PV-gradient tropopause (PVG tropopause) introduced by A. Kunz (2011, doi:10.1029/2010JD014343) and calculated by K. Turhal (2024, paper " Variability and Trends in the PVG Tropopause", preprint in EGUsphere: https://doi.org/10.5194/egusphere-2024-471).
The PVG tropopause has been computed by means of the Eddy Tracking Toolkit (developed by J. Clemens and K. Turhal, to be published):
Datasets are provided for each year and isentropic level in NetCDF4 format, every file consisting of two groups for the northern and southern hemisphere. Each group contains the following variables, with time as dimension:
In this upload, the PVG tropopause time series are included as *.zip files:
The variables in these netCDF files are grouped by hemisphere. To read in the data, specify the group first ("NorthernHemisphere" or "SouthernHemisphere") and then the variable name (see list above). In Python, this can be done as follows:
import netCDF4 as nc
file="
If you would like to read in all variables in both hemispheres, you can loop e.g. as follows:
import netCDF4 as nc
file = "
This project has been funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – TRR 301 – Project-ID 428312742, TPChange: The Tropopause Region in a Changing Atmosphere (https://tpchange.de/).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Wave and sea surface temperature measurements collected by a Sofar Spotter buoy in 2023. The buoy was deployed on July 27, 2023 at 11:30 UTC northwest of Culebra Island, Puerto Rico, (18.3878 N, 65.3899 W) and recovered on Nov 5, 2023 at 12:45 UTC. Data are saved here in netCDF format, organized by month, and include directional wave statistics, GPS, and SST measurements at 30-minute intervals. Figures produced from these data are provided here as well. They include timeseries of wave height/period/direction and SST, GPS location, wave roses, and directional spectra. Additionally, raw CSV files from the Spotter's memory card can also be found below. NetCDF files can be read in python using the netCDF4 or Xarray packages, or through MATLAB using the "ncread()" command.
Facebook
TwitterCMAQv5.3 input data for a 01/01/2016 - 12/31/2016 simulation over the Continental US. Note:The datasets are on a Google Drive. The metadata associated with this DOI contain the link to the Google Drive folder and instructions for downloading the data.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset was produced with funding from the European Space Agency (ESA) Climate Change Initiative (CCI) Plus Soil Moisture Project (CCN 3 to ESRIN Contract No: 4000126684/19/I-NB "ESA CCI+ Phase 1 New R&D on CCI ECVS Soil Moisture"). Project website: https://climate.esa.int/en/projects/soil-moisture/" target="_blank" rel="noopener">https://climate.esa.int/en/projects/soil-moisture/
This dataset contains information on the Root Zone Soil Moisture (RZSM) content derived from satellite observations in the microwave domain.
The operational (ACTIVE, PASSIVE, COMBINED) ESA CCI SM products are available at https://catalogue.ceda.ac.uk/uuid/c256fcfeef24460ca6eb14bf0fe09572/ (Dorigo et al., 2017; Gruber et al., 2019; Preimesberger et al., 2021).
You can use command-line tools such as wget or curl to download (and extract) data for multiple years. The following command will download and extract the complete data set to the local directory ~/Download on Linux or macOS systems.
#!/bin/bash
# Set download directory
DOWNLOAD_DIR=~/Downloads
base_url="https://researchdata.tuwien.at/records/tqrwj-t7r58/files"
# Loop through years 1980 to 2024 and download & extract data
for year in {1980..2024}; do
echo "Downloading $year.zip..."
wget -q -P "$DOWNLOAD_DIR" "$base_url/$year.zip"
unzip -o "$DOWNLOAD_DIR/$year.zip" -d $DOWNLOAD_DIR
rm "$DOWNLOAD_DIR/$year.zip"
done
The dataset provides global daily estimates for the 1980-2024 period at 0.25° (~25 km) horizontal grid resolution. Daily images are grouped by year (YYYY), each subdirectory containing one netCDF image file for a specific day (DD) and month (MM) of that year in a 2-dimensional (longitude, latitude) grid system (CRS: WGS84). The file name follows the convention:
ESACCI-SOILMOISTURE-L3S-RZSMV-COMBINED-YYYYMMDD000000-fv09.2.nc
Each netCDF file contains 3 coordinate variables
and the following data variables
Additional information for each variable are given in the netCDF attributes.
Changes in v9.2:
These data can be read by any software that supports Climate and Forecast (CF) conform metadata standards for netCDF files, such as:
This record and all related records are part of the ESA CCI Soil Moisture science data records community.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This data repository contains the accompanying data for the study by Stradiotti et al. (2025). Developed as part of the ESA Climate Change Initiative (CCI) Soil Moisture project. Project website: https://climate.esa.int/en/projects/soil-moisture/
This dataset was created as part of the following study, which contains a description of the algorithm and validation results.
Stradiotti, P., Gruber, A., Preimesberger, W., & Dorigo, W. (2025). Accounting for seasonal retrieval errors in the merging of multi-sensor satellite soil moisture products. Science of Remote Sensing, 12, 100242. https://doi.org/10.1016/j.srs.2025.100242
This repository contains the final, merged soil moisture and uncertainty values from Stradiotti et al. (2025), derived using a novel uncertainty quantification and merging scheme. In the accompanying study, we present a method to quantify the seasonal component of satellite soil moisture observations, based on Triple Collocation Analysis. Data from three independent satellite missions are used (from ASCAT, AMSR2, and SMAP). We observe consistent intra-annual variations in measurement uncertainties across all products (primarily caused by dynamics on the land surface such as seasonal vegetation changes), which affect the quality of the received signals. We then use these estimates to merge data from the three missions into a single consistent record, following the approach described by Dorigo et al. (2017). The new (seasonal) uncertainty estimates are propagated through the merging scheme, to enhance the uncertainty characterization of the final merged product provided here.
Evaluation against in situ data suggests that the estimated uncertainties of the new product are more representative of their true seasonal behaviour, compared to the previously used static approach. Based on these findings, we conclude that using a seasonal TCA approach can provide a more realistic characterization of dataset uncertainty, in particular its temporal variation. However, improvements in the merged soil moisture values are constrained, primarily due to correlated uncertainties among the sensors.
The dataset provides global daily gridded soil moisture estimates for the 2012-2023 period at 0.25° (~25 km) resolution. Daily images are grouped by year (YYYY), each subdirectory containing one netCDF image file for a specific day (DD), month (MM) in a 2-dimensional (longitude, latitude) grid system (CRS: WGS84). All file names follow the naming convention:
L3S-SSMS-MERGED-SOILMOISTURE-YYYYMMDD000000-fv0.1.nc
Each netCDF file contains 3 coordinate variables (WGS84 longitude, latitude and time stamp), as well as the following data variables:
After extracting the .nc files from the downloaded zip archived, they can read by any software that supports Climate and Forecast (CF) standard conform netCDF files, such as:
This dataset was produced with funding from the European Space Agency (ESA) Climate Change Initiative (CCI) Plus Soil Moisture Project (CCN 3 to ESRIN Contract No: 4000126684/19/I-NB "ESA CCI+ Phase 1 New R&D on CCI ECVS Soil Moisture"). Project website: https://climate.esa.int/en/projects/soil-moisture/
Facebook
Twitter
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
# ERA-NUTS (1980-2018)
This dataset contains a set of time-series of meteorological variables based on Copernicus Climate Change Service (C3S) ERA5 reanalysis. The data files can be downloaded from here while notebooks and other files can be found on the associated Github repository.
This data has been generated with the aim of providing hourly time-series of the meteorological variables commonly used for power system modelling and, more in general, studies on energy systems.
An example of the analysis that can be performed with ERA-NUTS is shown in this video.
Important: this dataset is still a work-in-progress, we will add more analysis and variables in the near-future. If you spot an error or something strange in the data please tell us sending an email or opening an Issue in the associated Github repository.
## Data
The time-series have hourly/daily/monthly frequency and are aggregated following the NUTS 2016 classification. NUTS (Nomenclature of Territorial Units for Statistics) is a European Union standard for referencing the subdivisions of countries (member states, candidate countries and EFTA countries).
This dataset contains NUTS0/1/2 time-series for the following variables obtained from the ERA5 reanalysis data (in brackets the name of the variable on the Copernicus Data Store and its unit measure):
- t2m: 2-meter temperature (`2m_temperature`, Celsius degrees)
- ssrd: Surface solar radiation (`surface_solar_radiation_downwards`, Watt per square meter)
- ssrdc: Surface solar radiation clear-sky (`surface_solar_radiation_downward_clear_sky`, Watt per square meter)
- ro: Runoff (`runoff`, millimeters)
There are also a set of derived variables:
- ws10: Wind speed at 10 meters (derived by `10m_u_component_of_wind` and `10m_v_component_of_wind`, meters per second)
- ws100: Wind speed at 100 meters (derived by `100m_u_component_of_wind` and `100m_v_component_of_wind`, meters per second)
- CS: Clear-Sky index (the ratio between the solar radiation and the solar radiation clear-sky)
- HDD/CDD: Heating/Cooling Degree days (derived by 2-meter temperature the EUROSTAT definition.
For each variable we have 350 599 hourly samples (from 01-01-1980 00:00:00 to 31-12-2019 23:00:00) for 34/115/309 regions (NUTS 0/1/2).
The data is provided in two formats:
- NetCDF version 4 (all the variables hourly and CDD/HDD daily). NOTE: the variables are stored as `int16` type using a `scale_factor` of 0.01 to minimise the size of the files.
- Comma Separated Value ("single index" format for all the variables and the time frequencies and "stacked" only for daily and monthly)
All the CSV files are stored in a zipped file for each variable.
## Methodology
The time-series have been generated using the following workflow:
1. The NetCDF files are downloaded from the Copernicus Data Store from the ERA5 hourly data on single levels from 1979 to present dataset
2. The data is read in R with the climate4r packages and aggregated using the function `/get_ts_from_shp` from panas. All the variables are aggregated at the NUTS boundaries using the average except for the runoff, which consists of the sum of all the grid points within the regional/national borders.
3. The derived variables (wind speed, CDD/HDD, clear-sky) are computed and all the CSV files are generated using R
4. The NetCDF are created using `xarray` in Python 3.7.
NOTE: air temperature, solar radiation, runoff and wind speed hourly data have been rounded with two decimal digits.
## Example notebooks
In the folder `notebooks` on the associated Github repository there are two Jupyter notebooks which shows how to deal effectively with the NetCDF data in `xarray` and how to visualise them in several ways by using matplotlib or the enlopy package.
There are currently two notebooks:
- exploring-ERA-NUTS: it shows how to open the NetCDF files (with Dask), how to manipulate and visualise them.
- ERA-NUTS-explore-with-widget: explorer interactively the datasets with [jupyter]() and ipywidgets.
The notebook `exploring-ERA-NUTS` is also available rendered as HTML.
## Additional files
In the folder `additional files`on the associated Github repository there is a map showing the spatial resolution of the ERA5 reanalysis and a CSV file specifying the number of grid points with respect to each NUTS0/1/2 region.
## License
This dataset is released under CC-BY-4.0 license.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides global daily estimates of Root-Zone Soil Moisture (RZSM) content at 0.25° spatial grid resolution, derived from gap-filled merged satellite observations of 14 passive satellites sensors operating in the microwave domain of the electromagnetic spectrum. Data is provided from January 1991 to December 2023.
This dataset was produced with funding from the European Space Agency (ESA) Climate Change Initiative (CCI) Plus Soil Moisture Project (CCN 3 to ESRIN Contract No: 4000126684/19/I-NB "ESA CCI+ Phase 1 New R&D on CCI ECVS Soil Moisture"). Project website: https://climate.esa.int/en/projects/soil-moisture/" target="_blank" rel="noopener">https://climate.esa.int/en/projects/soil-moisture/. Operational implementation is supported by the Copernicus Climate Change Service implemented by ECMWF through C3S2 312a/313c.
This dataset is used by Hirschi et al. (2025) to assess recent summer drought trends in Switzerland.
Hirschi, M., Michel, D., Schumacher, D. L., Preimesberger, W., and Seneviratne, S. I.: Recent summer soil moisture drying in Switzerland based on measurements from the SwissSMEX network, Earth Syst. Sci. Data Discuss. [preprint], https://doi.org/10.5194/essd-2025-416, in review, 2025.
ESA CCI Soil Moisture is a multi-satellite climate data record that consists of harmonized, daily observations from various microwave satellite remote sensing sensors (Dorigo et al., 2017, 2024; Gruber et al., 2019). This version of the dataset uses the PASSIVE record as input, which contains only observations from passive (radiometer) measurements (scaling reference AMSR-E). The surface observations are gap-filled using a univariate interpolation algorithm (Preimesberger et al., 2025). The gap-filled passive observations serve as input for an exponential filter based method to assess soil moisture in different layers of the root-zone of soil (0-200 cm) following the approach by Pasik et al. (2023). The final gap-free root-zone soil moisture estimates based on passive surface input data are provided here at 4 separate depth layers (0-10, 10-40, 40-100, 100-200 cm) over the period 1991-2023.
You can use command line tools such as wget or curl to download (and extract) data for multiple years. The following command will download and extract the complete data set to the local directory ~/Downloads on Linux or macOS systems.
#!/bin/bash
# Set download directory
DOWNLOAD_DIR=~/Downloads
base_url="https://researchdata.tuwien.ac.at/records/8dda4-xne96/files"
# Loop through years 1991 to 2023 and download & extract data
for year in {1991..2023}; do
echo "Downloading $year.zip..."
wget -q -P "$DOWNLOAD_DIR" "$base_url/$year.zip"
unzip -o "$DOWNLOAD_DIR/$year.zip" -d $DOWNLOAD_DIR
rm "$DOWNLOAD_DIR/$year.zip"
done
The dataset provides global daily estimates for the 1991-2023 period at 0.25° (~25 km) horizontal grid resolution. Daily images are grouped by year (YYYY), each subdirectory containing one netCDF image file for a specific day (DD), month (MM) in a 2-dimensional (longitude, latitude) grid system (CRS: WGS84). The file name has the following convention:
ESA_CCI_PASSIVERZSM-YYYYMMDD000000-fv09.1.nc
Each netCDF file contains 3 coordinate variables (WGS84 longitude, latitude and time stamp), as well as the following data variables:
Additional information for each variable is given in the netCDF attributes.
These data can be read by any software that supports Climate and Forecast (CF) conform metadata standards for netCDF files, such as:
Please see the ESA CCI Soil Moisture science data records community for more records based on ESA CCI SM.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Datasets for all figures in "Multiphase turbulent flow explains lightning rings in volcanic plumes." Data comes from observations of the Hunga Tonga-Hunga Ha’apai (HTHH) eruption on January 15, 2022, and from numerical simulations of the Boussinesq equations with inertial particles using the GHOST code. Observational data is provided in CSV and Matlab FIG format. Data from numerical simulations is provided in NetCDF files with Python scripts giving examples on how to read the files.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
We implemented automated workflows using Jupyter notebooks for each state. The GIS processing, crucial for merging, extracting, and projecting GeoTIFF data, was performed using ArcPy—a Python package for geographic data analysis, conversion, and management within ArcGIS (Toms, 2015). After generating state-scale LES (large extent spatial) datasets in GeoTIFF format, we utilized the xarray and rioxarray Python packages to convert GeoTIFF to NetCDF. Xarray is a Python package to work with multi-dimensional arrays and rioxarray is rasterio xarray extension. Rasterio is a Python library to read and write GeoTIFF and other raster formats. Xarray facilitated data manipulation and metadata addition in the NetCDF file, while rioxarray was used to save GeoTIFF as NetCDF. These procedures resulted in the creation of three HydroShare resources (HS 3, HS 4 and HS 5) for sharing state-scale LES datasets. Notably, due to licensing constraints with ArcGIS Pro, a commercial GIS software, the Jupyter notebook development was undertaken on a Windows OS.