14 datasets found
  1. H

    (HS 2) Automate Workflows using Jupyter notebook to create Large Extent...

    • hydroshare.org
    • search.dataone.org
    zip
    Updated Oct 15, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Young-Don Choi (2024). (HS 2) Automate Workflows using Jupyter notebook to create Large Extent Spatial Datasets [Dataset]. http://doi.org/10.4211/hs.a52df87347ef47c388d9633925cde9ad
    Explore at:
    zip(2.4 MB)Available download formats
    Dataset updated
    Oct 15, 2024
    Dataset provided by
    HydroShare
    Authors
    Young-Don Choi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    We implemented automated workflows using Jupyter notebooks for each state. The GIS processing, crucial for merging, extracting, and projecting GeoTIFF data, was performed using ArcPy—a Python package for geographic data analysis, conversion, and management within ArcGIS (Toms, 2015). After generating state-scale LES (large extent spatial) datasets in GeoTIFF format, we utilized the xarray and rioxarray Python packages to convert GeoTIFF to NetCDF. Xarray is a Python package to work with multi-dimensional arrays and rioxarray is rasterio xarray extension. Rasterio is a Python library to read and write GeoTIFF and other raster formats. Xarray facilitated data manipulation and metadata addition in the NetCDF file, while rioxarray was used to save GeoTIFF as NetCDF. These procedures resulted in the creation of three HydroShare resources (HS 3, HS 4 and HS 5) for sharing state-scale LES datasets. Notably, due to licensing constraints with ArcGIS Pro, a commercial GIS software, the Jupyter notebook development was undertaken on a Windows OS.

  2. t

    ESA CCI SM FREEZE/THAW Long-term Climate Data Record of surface conditions...

    • researchdata.tuwien.at
    zip
    Updated Nov 28, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wolfgang Preimesberger; Wolfgang Preimesberger; Johanna Lems; Maud Formanek; Maud Formanek; Wouter Arnoud Dorigo; Wouter Arnoud Dorigo; Johanna Lems; Johanna Lems; Johanna Lems (2025). ESA CCI SM FREEZE/THAW Long-term Climate Data Record of surface conditions from merged multi-satellite observations [Dataset]. http://doi.org/10.48436/m3g2x-a6958
    Explore at:
    zipAvailable download formats
    Dataset updated
    Nov 28, 2025
    Dataset provided by
    TU Wien
    Authors
    Wolfgang Preimesberger; Wolfgang Preimesberger; Johanna Lems; Maud Formanek; Maud Formanek; Wouter Arnoud Dorigo; Wouter Arnoud Dorigo; Johanna Lems; Johanna Lems; Johanna Lems
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description
    This dataset was produced with funding from the European Space Agency (ESA) Climate Change Initiative (CCI) Plus Soil Moisture Project (CCN 3 to ESRIN Contract No: 4000126684/19/I-NB "ESA CCI+ Phase 1 New R&D on CCI ECVS Soil Moisture"). Project website: https://climate.esa.int/en/projects/soil-moisture/

    This dataset contains information on the Surface Soil Moisture (SM) state derived from satellite observations in the microwave domain.

    The operational (ACTIVE, PASSIVE, COMBINED) ESA CCI SM products are available at https://catalogue.ceda.ac.uk/uuid/c256fcfeef24460ca6eb14bf0fe09572/

    Abstract

    Understanding whether the soil surface is frozen or thawed is crucial for interpreting satellite-based soil moisture measurements and for many Earth system applications. The physical state of water in the soil strongly affects its dielectric properties, which in turn determine how satellites sense moisture content. Current ESA CCI Soil Moisture products exclude data when the surface is likely frozen, as reliable retrievals are not possible under such conditions. Yet, the freeze/thaw state itself carries valuable environmental information: it reflects the changing energy and water exchange between land and atmosphere, shapes seasonal hydrological cycles, and influences agriculture, ecosystems, and climate feedbacks across much of the Northern Hemisphere.

    This dataset provides global estimates of the soil moisture freeze/thaw state for the period from 11-1978 to 12-2024 derived from PASSIVE (radiometer) satellite observations within the ESA CCI Soil Moisture framework. These radiometers, operating in the K-band frequency range, are sensitive to surface temperature, enabling the detection of frozen versus thawed conditions at daily temporal and ~25 km spatial sampling. Data from L-band missions (e.g., SMAP, SMOS) are not included, resulting in a total number of 12 satellites.

    The classification algorithm, described in Van der Vliet et al. (2020), was originally developed to flag frozen conditions in soil moisture retrievals and has since evolved into a dedicated data product. It applies a decision-tree approach using multi-frequency satellite measurements to classify the surface state for each sensor. Individual classifications are then merged into a single spatiotemporal record using a conservative unanimity rule—if any contributing satellite detects a frozen surface, the merged product is classified as “frozen.”

    While this approach ensures reliability, it may lead to some over-flagging, which could be refined in future versions. The current product achieves an estimated accuracy of 75% against in situ surface temperature observations and 92% compared to ERA5 reanalysis data.

    Summary

    • Daily binary (true/false) freeze/thaw surface soil moisture state classification dataset (~25 km spatial sampling) for the period November 1978 to December 2024.
    • Based on a satellite brightness temperature (K-band) classification algorithm (Van der Vliet et al., 2020) from 12 satellite radiometers.
    • A pixel is classified as "frozen" if it was classified accordingly for at least one satellite. This can lead to potential over-flagging in the current version.
    • Approximately 75% agreement with in situ surface temperature measurements (Dorigo et al., 2021) and 92% with ERA5-Land reanalysis temperature fields (Muñoz-Sabater et al., 2021)

    Programmatic (bulk) download

    You can use command-line tools such as wget or curl to download (and extract) data for multiple years. The following command will download and extract the complete data set to the local directory ~/Download on Linux or macOS systems.

    #!/bin/bash

    # Set download directory
    DOWNLOAD_DIR=~/Downloads

    base_url="https://researchdata.tuwien.at/records/m3g2x-a6958/files"

    # Loop through years 1978 to 2024 and download & extract data
    for year in {1978..2024}; do
    echo "Downloading $year.zip..."
    wget -q -P "$DOWNLOAD_DIR" "$base_url/$year.zip"
    unzip -o "$DOWNLOAD_DIR/$year.zip" -d $DOWNLOAD_DIR
    rm "$DOWNLOAD_DIR/$year.zip"
    done

    Data details

    Filename template

    The dataset provides global daily estimates for the 1978-2024 period at 0.25° (~25 km) horizontal grid resolution. Daily images are grouped by year (YYYY), each subdirectory containing one netCDF image file for a specific day (DD) and month (MM) of that year in a 2-dimensional (longitude, latitude) grid system (CRS: WGS84). The file name follows the convention:

    ESACCI-SOILMOISTURE-L3S-FT-YYYYMMDD000000-fv09.2.nc

    Data Variables

    Each netCDF file contains 3 coordinate variables

    • lon: longitude (WGS84), [-180,180] degree W/E
    • lat: latitude (WGS84), [-90,90] degree N/S
    • time: datetime, encoded as "number of days since 1970-01-01 00:00:00 UTC"

    and the following data variables

    • ft: (int) Soil moisture freeze-thaw state binary indicator (0=not frozen, 1=frozen, -1=missing data)
    • ft_agreement (float): Classification agreement between available sensors. 1 means that the frozen/unfrozen classification was the same for all merged sensors. The number decreases as the classification results between available satellites contradict.
    • sensor_count (int): Total number of merged sensors/overpasses
    • sensor_count_frozen (int): Total number of measuring sensors/overpasses that detected frozen soils
    • mode: (int) Indicator for satellite orbit(s) used in the retrieval (1=ascending, 2=descending, 3=both, 0=missing data)
    • sensor: (int) Indicator for satellite sensor(s) used in the retrieval. For more details, see netcdf attributes.

    Additional information for each variable is given in the netCDF attributes.

    Version Changelog

    Changes in v9.2 (first released version):

    • This version uses the classification algorithm described by Van der Vliet et al. (2020) applied to 12 sensors and a unanimous merging approach. Covers the period from 11-1978 to 12-2024.

    Software to open netCDF files

    These data can be read by any software that supports Climate and Forecast (CF) conform metadata standards for netCDF files, such as:

    References

    Dorigo, W., Himmelbauer, I., Aberer, D., Schremmer, L., Petrakovic, I., Zappa, L., Preimesberger, W., Xaver, A., Annor, F., Ardö, J., Baldocchi, D., Bitelli, M., Blöschl, G., Bogena, H., Brocca, L., Calvet, J.-C., Camarero, J. J., Capello, G., Choi, M., Cosh, M. C., van de Giesen, N., Hajdu, I., Ikonen, J., Jensen, K. H., Kanniah, K. D., de Kat, I., Kirchengast, G., Kumar Rai, P., Kyrouac, J., Larson, K., Liu, S., Loew, A., Moghaddam, M., Martínez Fernández, J., Mattar Bader, C., Morbidelli, R., Musial, J. P., Osenga, E., Palecki, M. A., Pellarin, T., Petropoulos, G. P., Pfeil, I., Powers, J., Robock, A., Rüdiger, C., Rummel, U., Strobel, M., Su, Z., Sullivan, R., Tagesson, T., Varlagin, A., Vreugdenhil, M., Walker, J., Wen, J., Wenger, F., Wigneron, J. P., Woods, M., Yang, K., Zeng, Y., Zhang, X., Zreda, M., Dietrich, S., Gruber, A., van Oevelen, P., Wagner, W., Scipal, K., Drusch, M., and Sabia, R.: The International Soil Moisture Network: serving Earth system science for over a decade, Hydrol. Earth Syst. Sci., 25, 5749–5804, https://doi.org/10.5194/hess-25-5749-2021, 2021.
    van der Vliet, M.; van der Schalie, R.; Rodriguez-Fernandez, N.; Colliander, A.; de Jeu, R.; Preimesberger, W.; Scanlon, T.; Dorigo, W. Reconciling Flagging Strategies for Multi-Sensor Satellite Soil Moisture Climate Data Records. Remote Sens. 2020, 12, 3439. https://doi.org/10.3390/rs12203439

    Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., Boussetta, S., Choulga, M., Harrigan, S., Hersbach, H., Martens, B., Miralles, D. G., Piles, M., Rodríguez-Fernández, N. J., Zsoter, E., Buontempo, C., and Thépaut, J.-N.: ERA5-Land: a state-of-the-art global reanalysis dataset for

  3. d

    Data from: Multi-task Deep Learning for Water Temperature and Streamflow...

    • catalog.data.gov
    Updated Nov 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Multi-task Deep Learning for Water Temperature and Streamflow Prediction (ver. 1.1, June 2022) [Dataset]. https://catalog.data.gov/dataset/multi-task-deep-learning-for-water-temperature-and-streamflow-prediction-ver-1-1-june-2022
    Explore at:
    Dataset updated
    Nov 11, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    This item contains data and code used in experiments that produced the results for Sadler et. al (2022) (see below for full reference). We ran five experiments for the analysis, Experiment A, Experiment B, Experiment C, Experiment D, and Experiment AuxIn. Experiment A tested multi-task learning for predicting streamflow with 25 years of training data and using a different model for each of 101 sites. Experiment B tested multi-task learning for predicting streamflow with 25 years of training data and using a single model for all 101 sites. Experiment C tested multi-task learning for predicting streamflow with just 2 years of training data. Experiment D tested multi-task learning for predicting water temperature with over 25 years of training data. Experiment AuxIn used water temperature as an input variable for predicting streamflow. These experiments and their results are described in detail in the WRR paper. Data from a total of 101 sites across the US was used for the experiments. The model input data and streamflow data were from the Catchment Attributes and Meteorology for Large-sample Studies (CAMELS) dataset (Newman et. al 2014, Addor et. al 2017). The water temperature data were gathered from the National Water Information System (NWIS) (U.S. Geological Survey, 2016). The contents of this item are broken into 13 files or groups of files aggregated into zip files:

    1. input_data_processing.zip: A zip file containing the scripts used to collate the observations, input weather drivers, and catchment attributes for the multi-task modeling experiments
    2. flow_observations.zip: A zip file containing collated daily streamflow data for the sites used in multi-task modeling experiments. The streamflow data were originally accessed from the CAMELs dataset. The data are stored in csv and Zarr formats.
    3. temperature_observations.zip: A zip file containing collated daily water temperature data for the sites used in multi-task modeling experiments. The data were originally accessed via NWIS. The data are stored in csv and Zarr formats.
    4. temperature_sites.geojson: Geojson file of the locations of the water temperature and streamflow sites used in the analysis.
    5. model_drivers.zip: A zip file containing the daily input weather driver data for the multi-task deep learning models. These data are from the Daymet drivers and were collated from the CAMELS dataset. The data are stored in csv and Zarr formats.
    6. catchment_attrs.csv: Catchment attributes collatted from the CAMELS dataset. These data are used for the Random Forest modeling. For full metadata regarding these data see CAMELS dataset.
    7. experiment_workflow_files.zip: A zip file containing workflow definitions used to run multi-task deep learning experiments. These are Snakemake workflows. To run a given experiment, one would run (for experiment A) 'snakemake -s expA_Snakefile --configfile expA_config.yml'
    8. river-dl-paper_v0.zip: A zip file containing python code used to run multi-task deep learning experiments. This code was called by the Snakemake workflows contained in 'experiment_workflow_files.zip'.
    9. random_forest_scripts.zip: A zip file containing Python code and a Python Jupyter Notebook used to prepare data for, train, and visualize feature importance of a Random Forest model.
    10. plotting_code.zip: A zip file containing python code and Snakemake workflow used to produce figures showing the results of multi-task deep learning experiments.
    11. results.zip: A zip file containing results of multi-task deep learning experiments. The results are stored in csv and netcdf formats. The netcdf files were used by the plotting libraries in 'plotting_code.zip'. These files are for five experiments, 'A', 'B', 'C', 'D', and 'AuxIn'. These experiment names are shown in the file name.
    12. sample_scripts.zip: A zip file containing scripts for creating sample output to demonstrate how the modeling workflow was executed.
    13. sample_output.zip: A zip file containing sample output data. Similar files are created by running the sample scripts provided.
    A. Newman; K. Sampson; M. P. Clark; A. Bock; R. J. Viger; D. Blodgett, 2014. A large-sample watershed-scale hydrometeorological dataset for the contiguous USA. Boulder, CO: UCAR/NCAR. https://dx.doi.org/10.5065/D6MW2F4D

    N. Addor, A. Newman, M. Mizukami, and M. P. Clark, 2017. Catchment attributes for large-sample studies. Boulder, CO: UCAR/NCAR. https://doi.org/10.5065/D6G73C3Q

    Sadler, J. M., Appling, A. P., Read, J. S., Oliver, S. K., Jia, X., Zwart, J. A., & Kumar, V. (2022). Multi-Task Deep Learning of Daily Streamflow and Water Temperature. Water Resources Research, 58(4), e2021WR030138. https://doi.org/10.1029/2021WR030138

    U.S. Geological Survey, 2016, National Water Information System data available on the World Wide Web (USGS Water Data for the Nation), accessed Dec. 2020.

  4. U

    CMAQ Grid Mask Files for 12km CONUS - US States and NOAA Climate Regions

    • dataverse-staging.rdmc.unc.edu
    • datasearch.gesis.org
    Updated Dec 12, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UNC Dataverse (2019). CMAQ Grid Mask Files for 12km CONUS - US States and NOAA Climate Regions [Dataset]. http://doi.org/10.15139/S3/XDYYB9
    Explore at:
    Dataset updated
    Dec 12, 2019
    Dataset provided by
    UNC Dataverse
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    United States
    Description

    Data Summary: US states grid mask file and NOAA climate regions grid mask file, both compatible with the 12US1 modeling grid domain. Note:The datasets are on a Google Drive. The metadata associated with this DOI contain the link to the Google Drive folder and instructions for downloading the data. These files can be used with CMAQ-ISAMv5.3 to track state- or region-specific emissions. See Chapter 11 and Appendix B.4 in the CMAQ User's Guide for further information on how to use the ISAM control file with GRIDMASK files. The files can also be used for state or region-specific scaling of emissions using the CMAQv5.3 DESID module. See the DESID Tutorial and Appendix B.4 in the CMAQ User's Guide for further information on how to use the Emission Control File to scale emissions in predetermined geographical areas. File Location and Download Instructions: Link to GRIDMASK files Link to README text file with information on how these files were created File Format: The grid mask are stored as netcdf formatted files using I/O API data structures (https://www.cmascenter.org/ioapi/). Information on the model projection and grid structure is contained in the header information of the netcdf file. The output files can be opened and manipulated using I/O API utilities (e.g. M3XTRACT, M3WNDW) or other software programs that can read and write netcdf formatted files (e.g. Fortran, R, Python). File descriptions These GRIDMASK files can be used with the 12US1 modeling grid domain (grid origin x = -2556000 m, y = -1728000 m; N columns = 459, N rows = 299). GRIDMASK_STATES_12US1.nc - This file containes 49 variables for the 48 states in the conterminous U.S. plus DC. Each state variable (e.g., AL, AZ, AR, etc.) is a 2D array (299 x 459) providing the fractional area of each grid cell that falls within that state. GRIDMASK_CLIMATE_REGIONS_12US1.nc - This file containes 9 variables for 9 NOAA climate regions based on the Karl and Koss (1984) definition of climate regions. Each climate region variable (e.g., CLIMATE_REGION_1, CLIMATE_REGION_2, etc.) is a 2D array (299 x 459) providing the fractional area of each grid cell that falls within that climate region. NOAA Climate regions: CLIMATE_REGION_1: Northwest (OR, WA, ID) CLIMATE_REGION_2: West (CA, NV) CLIMATE_REGION_3: West North Central (MT, WY, ND, SD, NE) CLIMATE_REGION_4: Southwest (UT, AZ, NM, CO) CLIMATE_REGION_5: South (KS, OK, TX, LA, AR, MS) CLIMATE_REGION_6: Central (MO, IL, IN, KY, TN, OH, WV) CLIMATE_REGION_7: East North Central (MN, IA, WI, MI) CLIMATE_REGION_8: Northeast (MD, DE, NJ, PA, NY, CT, RI, MA, VT, NH, ME) + Washington, D.C.* CLIMATE_REGION_9: Southeast (VA, NC, SC, GA, AL, GA) *Note that Washington, D.C. is not included in any of the climate regions on the website but was included with the “Northeast” region for the generation of this GRIDMASK file.

  5. e

    Sub-Rayleigh to supershear fracture transition in long Propagation Saw Tests...

    • data.europa.eu
    • envidat.ch
    octet stream, pdf +1
    Updated Nov 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    EnviDat (2025). Sub-Rayleigh to supershear fracture transition in long Propagation Saw Tests [Dataset]. https://data.europa.eu/data/datasets/938ce90f-e917-4838-af40-e2e161a22122-envidat?locale=bg
    Explore at:
    octet stream(280950), octet stream(138010), octet stream(217503), pdf(117573), octet stream, octet stream(95474900), octet stream(20239), tiff(256122), octet stream(63991645), octet stream(3092), octet stream(3309), octet stream(5763)Available download formats
    Dataset updated
    Nov 24, 2025
    Dataset authored and provided by
    EnviDat
    License

    http://dcat-ap.ch/vocabulary/licenses/terms_byhttp://dcat-ap.ch/vocabulary/licenses/terms_by

    Description

    This dataset contains the experimental results described in Bergfeld et al. (2025). It includes three Propagation Saw Test (PST) experiments, each approximately 9 m long, performed side-by-side on a 37° slope. For each PST, we provide the full field of view along the crack-propagation direction. For the second and third PSTs, we additionally provide close-up recordings focused on the weak layer where cracking occurred. All data are supplied as netCDF files containing displacement and strain measurements derived from Digital Image Correlation (DIC) analysis. Metadata describing dimensions and units are stored directly within the netCDF files. We recommend using the xarray package in Python to read and work with these datasets. All figures presented in Bergfeld et al. (2025) can be reproduced using the included Python scripts. Information about the snowpack is provided in PDF, pickle, and CAAML file formats.

  6. PV-gradient (PVG) tropopause: Time series 1980--2017 in four reanalyses

    • zenodo.org
    • data-staging.niaid.nih.gov
    zip
    Updated Mar 27, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Katharina Turhal; Katharina Turhal (2024). PV-gradient (PVG) tropopause: Time series 1980--2017 in four reanalyses [Dataset]. http://doi.org/10.5281/zenodo.10529153
    Explore at:
    zipAvailable download formats
    Dataset updated
    Mar 27, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Katharina Turhal; Katharina Turhal
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    PV-gradient tropopause time series

    General description

    These datasets contain time series of the PV-gradient tropopause (PVG tropopause) introduced by A. Kunz (2011, doi:10.1029/2010JD014343) and calculated by K. Turhal (2024, paper " Variability and Trends in the PVG Tropopause", preprint in EGUsphere: https://doi.org/10.5194/egusphere-2024-471).

    Data and methods

    The PVG tropopause has been computed by means of the Eddy Tracking Toolkit (developed by J. Clemens and K. Turhal, to be published):

    • from four reanalyses: ERA5, ERA-Interim, MERRA-2 and JRA-55
    • for the time range 1980/01/01 -- 2017/12/31 in time steps of the according reanalyses, i.e. four times daily at 00h, 06h, 12h and 18h
    • on each isentropic level, with potential temperatures (theta) ranging from 320 K to 380 K, in steps of 5 K for ERA5 and 10 K for the other reanalyses.

    Contents

    Datasets are provided for each year and isentropic level in NetCDF4 format, every file consisting of two groups for the northern and southern hemisphere. Each group contains the following variables, with time as dimension:

    • time in seconds since 2000/01/01 00:00 UTC
    • u_lim: Zonal wind speed at the PVG tropopause
    • vh_lim: Horizontal wind speed at the PVG tropopause
    • q_lim: Maximum of Q = vh * Grad PV
    • eqlat_lim: Location of the PVG tropopause in equivalent latitudes
    • latmean_lim: Location of the PVG tropopause in latitudes
    • pv_lim: PV value at the PVG tropopause

    In this upload, the PVG tropopause time series are included as *.zip files:

    • ERA5 dataset: "pvg-tp_era5_ts.zip"
    • ERA-Interim dataset: "pvg-tp_eraint_ts.zip"
    • MERRA-2 dataset: "pvg-tp_merra2_ts.zip"
    • JRA-55 dataset: "pvg-tp_jra55_ts.zip"
    • Plots of time series for each reanalysis of the variables eqlat_lim, latmean_lim and pv_lim: "pvg_tropopause_timeseries_plots.zip".

    How to use

    The variables in these netCDF files are grouped by hemisphere. To read in the data, specify the group first ("NorthernHemisphere" or "SouthernHemisphere") and then the variable name (see list above). In Python, this can be done as follows:

    import netCDF4 as nc
    
    file="

    If you would like to read in all variables in both hemispheres, you can loop e.g. as follows:

    import netCDF4 as nc
    
    file = "

    Funding

    This project has been funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – TRR 301 – Project-ID 428312742, TPChange: The Tropopause Region in a Changing Atmosphere (https://tpchange.de/).

  7. g

    Wave Measurements taken NW of Culebra Is., PR, 2023

    • gimi9.com
    • data.openei.org
    • +3more
    Updated Jul 27, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Wave Measurements taken NW of Culebra Is., PR, 2023 [Dataset]. https://gimi9.com/dataset/data-gov_wave-measurements-taken-nw-of-culebra-is-pr-2023/
    Explore at:
    Dataset updated
    Jul 27, 2023
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Culebra
    Description

    Wave and sea surface temperature measurements collected by a Sofar Spotter buoy in 2023. The buoy was deployed on July 27, 2023 at 11:30 UTC northwest of Culebra Island, Puerto Rico, (18.3878 N, 65.3899 W) and recovered on Nov 5, 2023 at 12:45 UTC. Data are saved here in netCDF format, organized by month, and include directional wave statistics, GPS, and SST measurements at 30-minute intervals. Figures produced from these data are provided here as well. They include timeseries of wave height/period/direction and SST, GPS location, wave roses, and directional spectra. Additionally, raw CSV files from the Spotter's memory card can also be found below. NetCDF files can be read in python using the netCDF4 or Xarray packages, or through MATLAB using the "ncread()" command.

  8. g

    CMAQ Model Version 5.3 Input Data -- 1/1/2016 - 12/31/2016 12km CONUS

    • datasearch.gesis.org
    • dataverse-staging.rdmc.unc.edu
    Updated Jan 22, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    US EPA (2020). CMAQ Model Version 5.3 Input Data -- 1/1/2016 - 12/31/2016 12km CONUS [Dataset]. http://doi.org/10.15139/S3/MHNUNE
    Explore at:
    Dataset updated
    Jan 22, 2020
    Dataset provided by
    Odum Institute Dataverse Network
    Authors
    US EPA
    Description

    Data Summary:

    CMAQv5.3 input data for a 01/01/2016 - 12/31/2016 simulation over the Continental US. Note:The datasets are on a Google Drive. The metadata associated with this DOI contain the link to the Google Drive folder and instructions for downloading the data.

    File Location and Download Instructions:

    File Format:

    The 2016 model input are stored as netcdf formatted files using I/O API data structures (https://www.cmascenter.org/ioapi/). Information on the model projection and grid structure is contained in the header information of the netcdf file. The output files can be opened and manipulated using I/O API utilities (e.g. M3XTRACT, M3WNDW) or other software programs that can read and write netcdf formatted files (e.g. Fortran, R, Python).

  9. t

    ESA CCI SM RZSM Long-term Climate Data Record of Root-Zone Soil Moisture...

    • researchdata.tuwien.at
    zip
    Updated Oct 28, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Johanna Lems; Wolfgang Preimesberger; Wolfgang Preimesberger; Wouter Arnoud Dorigo; Wouter Arnoud Dorigo; Johanna Lems; Johanna Lems; Johanna Lems (2025). ESA CCI SM RZSM Long-term Climate Data Record of Root-Zone Soil Moisture from merged multi-satellite observations [Dataset]. http://doi.org/10.48436/tqrwj-t7r58
    Explore at:
    zipAvailable download formats
    Dataset updated
    Oct 28, 2025
    Dataset provided by
    TU Wien
    Authors
    Johanna Lems; Wolfgang Preimesberger; Wolfgang Preimesberger; Wouter Arnoud Dorigo; Wouter Arnoud Dorigo; Johanna Lems; Johanna Lems; Johanna Lems
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset was produced with funding from the European Space Agency (ESA) Climate Change Initiative (CCI) Plus Soil Moisture Project (CCN 3 to ESRIN Contract No: 4000126684/19/I-NB "ESA CCI+ Phase 1 New R&D on CCI ECVS Soil Moisture"). Project website: https://climate.esa.int/en/projects/soil-moisture/" target="_blank" rel="noopener">https://climate.esa.int/en/projects/soil-moisture/

    This dataset contains information on the Root Zone Soil Moisture (RZSM) content derived from satellite observations in the microwave domain.

    The operational (ACTIVE, PASSIVE, COMBINED) ESA CCI SM products are available at https://catalogue.ceda.ac.uk/uuid/c256fcfeef24460ca6eb14bf0fe09572/ (Dorigo et al., 2017; Gruber et al., 2019; Preimesberger et al., 2021).

    Abstract

    Soil moisture is a key variable in monitoring climate and an important component of the hydrological, carbon, and energy cycles. Satellite products ameliorate the sparsity of field measurements but are inherently limited to observing the near-surface layer, while water available in the unobserved root-zone controls critical processes like plant water uptake and evapotranspiration. A variety of approaches exist for modelling root-zone soil moisture (RZSM), including approximating it from surface layer observations through an infiltration model (Pasik et al., 2023; Wagner et al., 1999, Albergel et al., 2008).
    Here, we apply the method described by Pasik et al. (2023) to the COMBINED product of ESA CCI SM v9.2 to derive RZSM and uncertainty estimates in four depth layers of the soil (0-10, 10-40, 40-100, and 0-100 cm) over the period from January 1980 to December 2024 at ~25 km spatial sampling. In situ soil moisture measurements from the International Soil Moisture Network (Dorigo et al., 2021) were used for (global) T-parameter calibration and to quantify the (structural) model error component required to propagate surface measurement uncertainties to the root-zone layers. The 0-1 m layer is a (weighted) average of the other three layers. The dataset has been validated against ERA5 reanalysis RZSM fields, with global median correlations of ~0.6 [-] and ubRMSD <0.04 m³/m³.

    Summary

    • Global estimates of root-zone soil moisture from 01-1980 to 12-2024 at ~25 km spatial sampling based on the COMBINED product of ESA CCI SM v9.2.
    • Method: Exponential filter model, calibrated with in situ measurements for 3 depth layers: 0-10, 10-40, 40-100 cm with uncertainty estimates. Additionally, one layer representing the average condition from 0-1 m depth is provided. See Pasik et al. (2023) for more details.
    • Good agreement with independent reanalysis data (R ~0.6 [-] and ubRMSD <0.04 m³/m³), decreasing performance for deeper layers due to weaker coupling with surface SM.

    Programmatic (bulk) download

    You can use command-line tools such as wget or curl to download (and extract) data for multiple years. The following command will download and extract the complete data set to the local directory ~/Download on Linux or macOS systems.

    #!/bin/bash

    # Set download directory
    DOWNLOAD_DIR=~/Downloads

    base_url="https://researchdata.tuwien.at/records/tqrwj-t7r58/files"

    # Loop through years 1980 to 2024 and download & extract data
    for year in {1980..2024}; do
    echo "Downloading $year.zip..."
    wget -q -P "$DOWNLOAD_DIR" "$base_url/$year.zip"
    unzip -o "$DOWNLOAD_DIR/$year.zip" -d $DOWNLOAD_DIR
    rm "$DOWNLOAD_DIR/$year.zip"
    done

    Data details

    Filename template

    The dataset provides global daily estimates for the 1980-2024 period at 0.25° (~25 km) horizontal grid resolution. Daily images are grouped by year (YYYY), each subdirectory containing one netCDF image file for a specific day (DD) and month (MM) of that year in a 2-dimensional (longitude, latitude) grid system (CRS: WGS84). The file name follows the convention:

    ESACCI-SOILMOISTURE-L3S-RZSMV-COMBINED-YYYYMMDD000000-fv09.2.nc

    Data Variables

    Each netCDF file contains 3 coordinate variables

    • lon: longitude (WGS84), [-180,180] degree W/E
    • lat: latitude (WGS84), [-90,90] degree N/S
    • time: float, datetime encoded as "number of days since 1970-01-01 00:00:00 UTC"

    and the following data variables

    • rzsm_1: (float) Volumetric Root Zone Soil Moisture at 0-10 cm depth
    • rzsm_2: (float) Volumetric Root Zone Soil Moisture at 10-40 cm depth
    • rzsm_3: (float) Volumetric Root Zone Soil Moisture at 40-100 cm depth
    • rzsm_1m: (float) Root Zone Soil Moisture at 0-1 m
    • uncertainty_1: (float) Volumetric Root Zone Soil Moisture uncertainty at 0-10 cm depth
    • uncertainty_2: (float) Volumetric Root Zone Soil Moisture uncertainty at 0-10 cm depth
    • uncertainty_3: (float) Volumetric Root Zone Soil Moisture uncertainty at 0-10 cm depth

    Additional information for each variable are given in the netCDF attributes.

    Version Changelog

    Changes in v9.2:

    • The COMBINED product of v9.2 is used as input.
    • The period was extended to 12-2024.

    Software to open netCDF files

    These data can be read by any software that supports Climate and Forecast (CF) conform metadata standards for netCDF files, such as:

    Related Records

    This record and all related records are part of the ESA CCI Soil Moisture science data records community.

  10. t

    Study data for "Accounting for seasonal retrieval errors in the merging of...

    • researchdata.tuwien.at
    • researchdata.tuwien.ac.at
    zip
    Updated Aug 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pietro Stradiotti; Pietro Stradiotti; Alexander Gruber; Alexander Gruber; Wolfgang Preimesberger; Wolfgang Preimesberger; Wouter Arnoud Dorigo; Wouter Arnoud Dorigo (2025). Study data for "Accounting for seasonal retrieval errors in the merging of multi-sensor satellite soil moisture products" [Dataset]. http://doi.org/10.48436/z0zzp-f4j39
    Explore at:
    zipAvailable download formats
    Dataset updated
    Aug 25, 2025
    Dataset provided by
    TU Wien
    Authors
    Pietro Stradiotti; Pietro Stradiotti; Alexander Gruber; Alexander Gruber; Wolfgang Preimesberger; Wolfgang Preimesberger; Wouter Arnoud Dorigo; Wouter Arnoud Dorigo
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This data repository contains the accompanying data for the study by Stradiotti et al. (2025). Developed as part of the ESA Climate Change Initiative (CCI) Soil Moisture project. Project website: https://climate.esa.int/en/projects/soil-moisture/

    Journal Article (Open Access)

    This dataset was created as part of the following study, which contains a description of the algorithm and validation results.

    Stradiotti, P., Gruber, A., Preimesberger, W., & Dorigo, W. (2025). Accounting for seasonal retrieval errors in the merging of multi-sensor satellite soil moisture products. Science of Remote Sensing, 12, 100242. https://doi.org/10.1016/j.srs.2025.100242

    Summary

    This repository contains the final, merged soil moisture and uncertainty values from Stradiotti et al. (2025), derived using a novel uncertainty quantification and merging scheme. In the accompanying study, we present a method to quantify the seasonal component of satellite soil moisture observations, based on Triple Collocation Analysis. Data from three independent satellite missions are used (from ASCAT, AMSR2, and SMAP). We observe consistent intra-annual variations in measurement uncertainties across all products (primarily caused by dynamics on the land surface such as seasonal vegetation changes), which affect the quality of the received signals. We then use these estimates to merge data from the three missions into a single consistent record, following the approach described by Dorigo et al. (2017). The new (seasonal) uncertainty estimates are propagated through the merging scheme, to enhance the uncertainty characterization of the final merged product provided here.

    Evaluation against in situ data suggests that the estimated uncertainties of the new product are more representative of their true seasonal behaviour, compared to the previously used static approach. Based on these findings, we conclude that using a seasonal TCA approach can provide a more realistic characterization of dataset uncertainty, in particular its temporal variation. However, improvements in the merged soil moisture values are constrained, primarily due to correlated uncertainties among the sensors.

    Technical details

    The dataset provides global daily gridded soil moisture estimates for the 2012-2023 period at 0.25° (~25 km) resolution. Daily images are grouped by year (YYYY), each subdirectory containing one netCDF image file for a specific day (DD), month (MM) in a 2-dimensional (longitude, latitude) grid system (CRS: WGS84). All file names follow the naming convention:

    L3S-SSMS-MERGED-SOILMOISTURE-YYYYMMDD000000-fv0.1.nc

    Data Variables

    Each netCDF file contains 3 coordinate variables (WGS84 longitude, latitude and time stamp), as well as the following data variables:

    • sm: (float) The Soil Moisture variable contains the daily average volumetric soil moisture content (m3/m3) in the soil surface layer (~0-5 cm) over a whole grid cell (0.25 degree). Based on (merged) observations from ASCAT, AMSR2 and SMAP using the new merging scheme described in our study.
    • sm_uncertainty: (float) The Soil Moisture Uncertainty variable contains the uncertainty estimates (random error) for the ‘sm’ field. Based on the uncertainty estimation and propagation scheme described in our study.
    • dnflag: (int) Indicator for satellite orbit(s) used in the retrieval (day/nighttime). 1=day, 2=night, 3=both
    • flag: (int) Indicator for data quality / missing data indicator. For more details, see netcdf attributes.
    • freqbandID: (int) Indicator for frequency band(s) used in the retrieval. For more details, see netcdf attributes.
    • mode: (int) Indicator for satellite orbit(s) used in the retrieval (ascending, descending)
    • sensor: (int) Indicator for satellite sensor(s) used in the retrieval. For more details, see netcdf attributes.
    • t0: (float) Representative time stamp, based on overpass times of all merged satellites.

    Software to open netCDF files

    After extracting the .nc files from the downloaded zip archived, they can read by any software that supports Climate and Forecast (CF) standard conform netCDF files, such as:

    • Xarray (python)
    • netCDF4 (python)
    • esa_cci_sm (python)
    • Similar tools exists for other programming languages (Matlab, R, etc.)
    • GIS and netCDF tools such as CDO, NCO, QGIS, ArCGIS.
    • You can also use the GUI software Panoply to view the contents of each file

    Funding

    This dataset was produced with funding from the European Space Agency (ESA) Climate Change Initiative (CCI) Plus Soil Moisture Project (CCN 3 to ESRIN Contract No: 4000126684/19/I-NB "ESA CCI+ Phase 1 New R&D on CCI ECVS Soil Moisture"). Project website: https://climate.esa.int/en/projects/soil-moisture/

  11. g

    MCIP Version 4.3 output based on WRF Version 3.8 -- 1/2015-12/2015...

    • datasearch.gesis.org
    • dataverse-staging.rdmc.unc.edu
    Updated Jan 22, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    EPA (2020). MCIP Version 4.3 output based on WRF Version 3.8 -- 1/2015-12/2015 Continental US_12km [Dataset]. http://doi.org/10.15139/S3/KISNXI
    Explore at:
    Dataset updated
    Jan 22, 2020
    Dataset provided by
    Odum Institute Dataverse Network
    Authors
    EPA
    Area covered
    United States
    Description

    Data Summary:

    MCIPv4.3 output data from a January to December 2015 simulation over the Continental US based on WRFv3.8.Note:The datasets are on a Google Drive. The metadata associated with this DOI contain the link to the Google Drive folder and instructions for downloading the data.

    File Location and Download Instructions:

    File Format:

    The 2015 model output are stored as netcdf formatted files using I/O API data structures (https://www.cmascenter.org/ioapi/). Information on the model projection and grid structure is contained in the header information of the netcdf file. The output files can be opened and manipulated using I/O API utilities (e.g. M3XTRACT, M3WNDW) or other software programs that can read and write netcdf formatted files (e.g. Fortran, R, Python).

  12. ERA-NUTS: time-series based on C3S ERA5 for European regions

    • zenodo.org
    nc, zip
    Updated Aug 4, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    M. De Felice; M. De Felice; K. Kavvadias; K. Kavvadias (2022). ERA-NUTS: time-series based on C3S ERA5 for European regions [Dataset]. http://doi.org/10.5281/zenodo.2650191
    Explore at:
    zip, ncAvailable download formats
    Dataset updated
    Aug 4, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    M. De Felice; M. De Felice; K. Kavvadias; K. Kavvadias
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    # ERA-NUTS (1980-2018)

    This dataset contains a set of time-series of meteorological variables based on Copernicus Climate Change Service (C3S) ERA5 reanalysis. The data files can be downloaded from here while notebooks and other files can be found on the associated Github repository.

    This data has been generated with the aim of providing hourly time-series of the meteorological variables commonly used for power system modelling and, more in general, studies on energy systems.

    An example of the analysis that can be performed with ERA-NUTS is shown in this video.

    Important: this dataset is still a work-in-progress, we will add more analysis and variables in the near-future. If you spot an error or something strange in the data please tell us sending an email or opening an Issue in the associated Github repository.

    ## Data
    The time-series have hourly/daily/monthly frequency and are aggregated following the NUTS 2016 classification. NUTS (Nomenclature of Territorial Units for Statistics) is a European Union standard for referencing the subdivisions of countries (member states, candidate countries and EFTA countries).

    This dataset contains NUTS0/1/2 time-series for the following variables obtained from the ERA5 reanalysis data (in brackets the name of the variable on the Copernicus Data Store and its unit measure):

    - t2m: 2-meter temperature (`2m_temperature`, Celsius degrees)
    - ssrd: Surface solar radiation (`surface_solar_radiation_downwards`, Watt per square meter)
    - ssrdc: Surface solar radiation clear-sky (`surface_solar_radiation_downward_clear_sky`, Watt per square meter)
    - ro: Runoff (`runoff`, millimeters)

    There are also a set of derived variables:
    - ws10: Wind speed at 10 meters (derived by `10m_u_component_of_wind` and `10m_v_component_of_wind`, meters per second)
    - ws100: Wind speed at 100 meters (derived by `100m_u_component_of_wind` and `100m_v_component_of_wind`, meters per second)
    - CS: Clear-Sky index (the ratio between the solar radiation and the solar radiation clear-sky)
    - HDD/CDD: Heating/Cooling Degree days (derived by 2-meter temperature the EUROSTAT definition.

    For each variable we have 350 599 hourly samples (from 01-01-1980 00:00:00 to 31-12-2019 23:00:00) for 34/115/309 regions (NUTS 0/1/2).

    The data is provided in two formats:

    - NetCDF version 4 (all the variables hourly and CDD/HDD daily). NOTE: the variables are stored as `int16` type using a `scale_factor` of 0.01 to minimise the size of the files.
    - Comma Separated Value ("single index" format for all the variables and the time frequencies and "stacked" only for daily and monthly)

    All the CSV files are stored in a zipped file for each variable.

    ## Methodology

    The time-series have been generated using the following workflow:

    1. The NetCDF files are downloaded from the Copernicus Data Store from the ERA5 hourly data on single levels from 1979 to present dataset
    2. The data is read in R with the climate4r packages and aggregated using the function `/get_ts_from_shp` from panas. All the variables are aggregated at the NUTS boundaries using the average except for the runoff, which consists of the sum of all the grid points within the regional/national borders.
    3. The derived variables (wind speed, CDD/HDD, clear-sky) are computed and all the CSV files are generated using R
    4. The NetCDF are created using `xarray` in Python 3.7.

    NOTE: air temperature, solar radiation, runoff and wind speed hourly data have been rounded with two decimal digits.

    ## Example notebooks

    In the folder `notebooks` on the associated Github repository there are two Jupyter notebooks which shows how to deal effectively with the NetCDF data in `xarray` and how to visualise them in several ways by using matplotlib or the enlopy package.

    There are currently two notebooks:

    - exploring-ERA-NUTS: it shows how to open the NetCDF files (with Dask), how to manipulate and visualise them.
    - ERA-NUTS-explore-with-widget: explorer interactively the datasets with [jupyter]() and ipywidgets.

    The notebook `exploring-ERA-NUTS` is also available rendered as HTML.

    ## Additional files

    In the folder `additional files`on the associated Github repository there is a map showing the spatial resolution of the ERA5 reanalysis and a CSV file specifying the number of grid points with respect to each NUTS0/1/2 region.

    ## License

    This dataset is released under CC-BY-4.0 license.

  13. t

    ESA CCI SM PASSIVE Daily Gap-filled Root-Zone Soil Moisture from merged...

    • researchdata.tuwien.ac.at
    • researchdata.tuwien.at
    zip
    Updated Oct 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wolfgang Preimesberger; Wolfgang Preimesberger; Johanna Lems; Martin Hirschi; Martin Hirschi; Wouter Arnoud Dorigo; Wouter Arnoud Dorigo; Johanna Lems; Johanna Lems; Johanna Lems (2025). ESA CCI SM PASSIVE Daily Gap-filled Root-Zone Soil Moisture from merged multi-satellite observations [Dataset]. http://doi.org/10.48436/8dda4-xne96
    Explore at:
    zipAvailable download formats
    Dataset updated
    Oct 3, 2025
    Dataset provided by
    TU Wien
    Authors
    Wolfgang Preimesberger; Wolfgang Preimesberger; Johanna Lems; Martin Hirschi; Martin Hirschi; Wouter Arnoud Dorigo; Wouter Arnoud Dorigo; Johanna Lems; Johanna Lems; Johanna Lems
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset provides global daily estimates of Root-Zone Soil Moisture (RZSM) content at 0.25° spatial grid resolution, derived from gap-filled merged satellite observations of 14 passive satellites sensors operating in the microwave domain of the electromagnetic spectrum. Data is provided from January 1991 to December 2023.

    This dataset was produced with funding from the European Space Agency (ESA) Climate Change Initiative (CCI) Plus Soil Moisture Project (CCN 3 to ESRIN Contract No: 4000126684/19/I-NB "ESA CCI+ Phase 1 New R&D on CCI ECVS Soil Moisture"). Project website: https://climate.esa.int/en/projects/soil-moisture/" target="_blank" rel="noopener">https://climate.esa.int/en/projects/soil-moisture/. Operational implementation is supported by the Copernicus Climate Change Service implemented by ECMWF through C3S2 312a/313c.

    Studies using this dataset [preprint]

    This dataset is used by Hirschi et al. (2025) to assess recent summer drought trends in Switzerland.

    Hirschi, M., Michel, D., Schumacher, D. L., Preimesberger, W., and Seneviratne, S. I.: Recent summer soil moisture drying in Switzerland based on measurements from the SwissSMEX network, Earth Syst. Sci. Data Discuss. [preprint], https://doi.org/10.5194/essd-2025-416, in review, 2025.

    Abstract

    ESA CCI Soil Moisture is a multi-satellite climate data record that consists of harmonized, daily observations from various microwave satellite remote sensing sensors (Dorigo et al., 2017, 2024; Gruber et al., 2019). This version of the dataset uses the PASSIVE record as input, which contains only observations from passive (radiometer) measurements (scaling reference AMSR-E). The surface observations are gap-filled using a univariate interpolation algorithm (Preimesberger et al., 2025). The gap-filled passive observations serve as input for an exponential filter based method to assess soil moisture in different layers of the root-zone of soil (0-200 cm) following the approach by Pasik et al. (2023). The final gap-free root-zone soil moisture estimates based on passive surface input data are provided here at 4 separate depth layers (0-10, 10-40, 40-100, 100-200 cm) over the period 1991-2023.

    Summary

    • Gap-free root-zone soil moisture estimates from 1991-2023 at 0.25° spatial sampling from passive measurements
    • Fields of application include: climate variability and change, land-atmosphere interactions, global biogeochemical cycles and ecology, hydrological and land surface modelling, drought applications, agriculture and meteorology
    • More information: See Dorigo et al. (2017, 2024) and Gruber et al. (2019) for a description of the satellite base product and uncertainty estimates, Preimesberger et al. (2025) for the gap-filling, and Pasik et al. (2023) for the root-zone soil moisture and uncertainty propagation algorithm.

    Programmatic Download

    You can use command line tools such as wget or curl to download (and extract) data for multiple years. The following command will download and extract the complete data set to the local directory ~/Downloads on Linux or macOS systems.

    #!/bin/bash

    # Set download directory
    DOWNLOAD_DIR=~/Downloads

    base_url="https://researchdata.tuwien.ac.at/records/8dda4-xne96/files"

    # Loop through years 1991 to 2023 and download & extract data
    for year in {1991..2023}; do
    echo "Downloading $year.zip..."
    wget -q -P "$DOWNLOAD_DIR" "$base_url/$year.zip"
    unzip -o "$DOWNLOAD_DIR/$year.zip" -d $DOWNLOAD_DIR
    rm "$DOWNLOAD_DIR/$year.zip"
    done

    Data details

    The dataset provides global daily estimates for the 1991-2023 period at 0.25° (~25 km) horizontal grid resolution. Daily images are grouped by year (YYYY), each subdirectory containing one netCDF image file for a specific day (DD), month (MM) in a 2-dimensional (longitude, latitude) grid system (CRS: WGS84). The file name has the following convention:

    ESA_CCI_PASSIVERZSM-YYYYMMDD000000-fv09.1.nc

    Data Variables

    Each netCDF file contains 3 coordinate variables (WGS84 longitude, latitude and time stamp), as well as the following data variables:

    • rzsm_1: (float) Root Zone Soil Moisture at 0-10 cm. Given in volumetric units [m3/m3].
    • rzsm_2: (float) Root Zone Soil Moisture at 10-40 cm. Given in volumetric units [m3/m3].
    • rzsm_3: (float) Root Zone Soil Moisture at 40-100 cm. Given in volumetric units [m3/m3].
    • rzsm_4: (float) Root Zone Soil Moisture at 100-200. Given in volumetric units [m3/m3].
    • uncertainty_1: (float) Root Zone Soil Moisture uncertainty at 0-10 cm from propagated surface uncertainties [m3/m3].
    • uncertainty_2: (float) Root Zone Soil Moisture uncertainty at 10-40 cm from propagated surface uncertainties [m3/m3].
    • uncertainty_3: (float) Root Zone Soil Moisture uncertainty at 40-100 cm from propagated surface uncertainties [m3/m3].
    • uncertainty_4: (float) Root Zone Soil Moisture uncertainty at 100-200 cm from propagated surface uncertainties [m3/m3].

    Additional information for each variable is given in the netCDF attributes.

    Version Changelog

    • v9.1
      • Initial version based on PASSIVE input data from ESA CCI SM v09.1 as used by Hirschi et al. (2025).

    Software to open netCDF files

    These data can be read by any software that supports Climate and Forecast (CF) conform metadata standards for netCDF files, such as:

    References

    • Dorigo, W., Wagner, W., Albergel, C., Albrecht, F., Balsamo, G., Brocca, L., Chung, D., Ertl, M., Forkel, M., Gruber, A., Haas, E., Hamer, P. D., Hirschi, M., Ikonen, J., de Jeu, R., Kidd, R., Lahoz, W., Liu, Y. Y., Miralles, D., Mistelbauer, T., Nicolai-Shaw, N., Parinussa, R., Pratola, C., Reimer, C., van der Schalie, R., Seneviratne, S. I., Smolander, T., and Lecomte, P.: ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions, Remote Sensing of Environment, 203, 185-215, 10.1016/j.rse.2017.07.001, 2017
    • Dorigo, W., Stradiotti, P., Preimesberger, W., Kidd, R., van der Schalie, R., Frederikse, T., Rodriguez-Fernandez, N., & Baghdadi, N. (2024). ESA Climate Change Initiative Plus - Soil Moisture Algorithm Theoretical Baseline Document (ATBD) Supporting Product Version 09.0. Zenodo. https://doi.org/10.5281/zenodo.13860922
    • Gruber, A., Scanlon, T., van der Schalie, R., Wagner, W., and Dorigo, W.: Evolution of the ESA CCI Soil Moisture climate data records and their underlying merging methodology, Earth Syst. Sci. Data, 11, 717–739, https://doi.org/10.5194/essd-11-717-2019, 2019.
    • Hirschi, M., Michel, D., Schumacher, D. L., Preimesberger, W., Seneviratne, S. I.: Recent summer soil moisture drying in Switzerland based on the SwissSMEX network, 2025 (paper submitted)
    • Pasik, A., Gruber, A., Preimesberger, W., De Santis, D., and Dorigo, W.: Uncertainty estimation for a new exponential-filter-based long-term root-zone soil moisture dataset from Copernicus Climate Change Service (C3S) surface observations, Geosci. Model Dev., 16, 4957–4976, https://doi.org/10.5194/gmd-16-4957-2023, 2023
    • Preimesberger, W., Stradiotti, P., and Dorigo, W.: ESA CCI Soil Moisture GAPFILLED: An independent global gap-free satellite climate data record with uncertainty estimates, Earth Syst. Sci. Data Discuss. [preprint], https://doi.org/10.5194/essd-2024-610, in review, 2025.

    Related Records

    Please see the ESA CCI Soil Moisture science data records community for more records based on ESA CCI SM.

  14. Dataset for Multiphase turbulent flow explains lightning rings in volcanic...

    • zenodo.org
    bin, csv, nc +1
    Updated Oct 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pablo Daniel Mininni; Pablo Daniel Mininni; Mie Ichihara; Mie Ichihara; S. Ravichandran; S. Ravichandran; Corrado Cimarelli; Corrado Cimarelli; Chris Vagasky; Chris Vagasky (2023). Dataset for Multiphase turbulent flow explains lightning rings in volcanic plumes [Dataset]. http://doi.org/10.5281/zenodo.8417338
    Explore at:
    text/x-python, nc, bin, csvAvailable download formats
    Dataset updated
    Oct 8, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Pablo Daniel Mininni; Pablo Daniel Mininni; Mie Ichihara; Mie Ichihara; S. Ravichandran; S. Ravichandran; Corrado Cimarelli; Corrado Cimarelli; Chris Vagasky; Chris Vagasky
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Datasets for all figures in "Multiphase turbulent flow explains lightning rings in volcanic plumes." Data comes from observations of the Hunga Tonga-Hunga Ha’apai (HTHH) eruption on January 15, 2022, and from numerical simulations of the Boussinesq equations with inertial particles using the GHOST code. Observational data is provided in CSV and Matlab FIG format. Data from numerical simulations is provided in NetCDF files with Python scripts giving examples on how to read the files.

  15. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Young-Don Choi (2024). (HS 2) Automate Workflows using Jupyter notebook to create Large Extent Spatial Datasets [Dataset]. http://doi.org/10.4211/hs.a52df87347ef47c388d9633925cde9ad

(HS 2) Automate Workflows using Jupyter notebook to create Large Extent Spatial Datasets

Explore at:
zip(2.4 MB)Available download formats
Dataset updated
Oct 15, 2024
Dataset provided by
HydroShare
Authors
Young-Don Choi
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

We implemented automated workflows using Jupyter notebooks for each state. The GIS processing, crucial for merging, extracting, and projecting GeoTIFF data, was performed using ArcPy—a Python package for geographic data analysis, conversion, and management within ArcGIS (Toms, 2015). After generating state-scale LES (large extent spatial) datasets in GeoTIFF format, we utilized the xarray and rioxarray Python packages to convert GeoTIFF to NetCDF. Xarray is a Python package to work with multi-dimensional arrays and rioxarray is rasterio xarray extension. Rasterio is a Python library to read and write GeoTIFF and other raster formats. Xarray facilitated data manipulation and metadata addition in the NetCDF file, while rioxarray was used to save GeoTIFF as NetCDF. These procedures resulted in the creation of three HydroShare resources (HS 3, HS 4 and HS 5) for sharing state-scale LES datasets. Notably, due to licensing constraints with ArcGIS Pro, a commercial GIS software, the Jupyter notebook development was undertaken on a Windows OS.

Search
Clear search
Close search
Google apps
Main menu