1 dataset found
  1. d

    Replication Data for: A Rydberg atom based system for benchmarking mmWave...

    • search.dataone.org
    Updated Oct 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Borówka, Sebastian; Krokosz, Wiktor; Mazelanik, Mateusz; Wasilewski, Wojciech; Parniak, Michał (2025). Replication Data for: A Rydberg atom based system for benchmarking mmWave automotive radar chips [Dataset]. http://doi.org/10.7910/DVN/OYUNJ1
    Explore at:
    Dataset updated
    Oct 29, 2025
    Dataset provided by
    Harvard Dataverse
    Authors
    Borówka, Sebastian; Krokosz, Wiktor; Mazelanik, Mateusz; Wasilewski, Wojciech; Parniak, Michał
    Description

    Simulation Data The waveplate.hdf5 file stores the results of the FDTD simulation that are visualized in Fig. 3 b)-d). The simulation was performed using the Tidy 3D Python library and also utilizes its methods for data visualization. The following snippet can be used to visualize the data: import tidy3d as td import matplotlib.pyplot as plt sim_data: td.SimulationData = td.SimulationData.from_file(f"waveplate.hdf5") fig, axs = plt.subplots(1, 2, tight_layout=True, figsize=(12, 5)) for fn, ax in zip(("Ex", "Ey"), axs): sim_data.plot_field("field_xz", field_name=fn, val="abs^2", ax=ax).set_aspect(1 / 10) ax.set_xlabel("x [$\mu$m]") ax.set_ylabel("z [$\mu$m]") fig.show() Measurement Data Signal data used for plotting Fig. 4-6. The data is stored in NetCDF providing self describing data format that is easy to manipulate using the Xarray Python library, specifically by calling xarray.open_dataset() Three datasets are provided and structured as follows: The electric_fields.nc dataset contains data displayed in Fig. 4. It has 3 data variables, corresponding to the signals themselves, as well as estimated Rabi frequencies and electric fields. The freq dimension is the x-axis and contains coordinates for the Probe field detuning in MHz. The n dimension labels different configurations of applied electric field, with the 0th one having no EHF field. The detune.nc dataset contains data displayed in Fig. 6. It has 2 data variables, corresponding to the signals themselves, as well as estimated peak separations, multiplied by the coupling factor. The freq dimension is the same, while the detune dimension labels different EHF field detunings, from -100 to 100 MHz with a step of 10. The waveplates.nc dataset contains data displayed in Fig. 5. It contains estimated Rabi frequencies calculated for different waveplate positions. The angles are stored in radians. There is the quarter- and half-waveplate to choose from. Usage examples Opening the dataset import matplotlib.pyplot as plt import xarray as xr electric_fields_ds = xr.open_dataset("data/electric_fields.nc") detuned_ds = xr.open_dataset("data/detune.nc") waveplates_ds = xr.open_dataset("data/waveplates.nc") sigmas_da = xr.open_dataarray("data/sigmas.nc") peak_heights_da = xr.open_dataarray("data/peak_heights.nc") Plotting the Fig. 4 signals and printing params fig, ax = plt.subplots() electric_fields_ds["signals"].plot.line(x="freq", hue="n", ax=ax) print(f"Rabi frequencies [Hz]: {electric_fields_ds['rabi_freqs'].values}") print(f"Electric fields [V/m]: {electric_fields_ds['electric_fields'].values}") fig.show() Plotting the Fig. 5 data (waveplates_ds["rabi_freqs"] ** 2).plot.scatter(x="angle", col="waveplate") Plotting the Fig. 6 signals for chosen detunes fig, ax = plt.subplots() detuned_ds["signals"].sel( detune=[ -100, -70, -40, 40, 70, 100, ] ).plot.line(x="freq", hue="detune", ax=ax) fig.show() Plotting the Fig. 6 inset plot fig, ax = plt.subplots() detuned_ds["separations"].plot.scatter(x="detune", ax=ax) ax.plot( detuned_ds.detune, np.sqrt(detuned_ds.detune**2 + detuned_ds["separations"].sel(detune=0) ** 2), ) fig.show() Plotting the Fig. 7 calculated peak widths sigmas_da.plot.scatter() Plotting the Fig. 8 calculated detuned smaller peak heights peak_heights_da.plot.scatter()

  2. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Borówka, Sebastian; Krokosz, Wiktor; Mazelanik, Mateusz; Wasilewski, Wojciech; Parniak, Michał (2025). Replication Data for: A Rydberg atom based system for benchmarking mmWave automotive radar chips [Dataset]. http://doi.org/10.7910/DVN/OYUNJ1

Replication Data for: A Rydberg atom based system for benchmarking mmWave automotive radar chips

Explore at:
2 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Oct 29, 2025
Dataset provided by
Harvard Dataverse
Authors
Borówka, Sebastian; Krokosz, Wiktor; Mazelanik, Mateusz; Wasilewski, Wojciech; Parniak, Michał
Description

Simulation Data The waveplate.hdf5 file stores the results of the FDTD simulation that are visualized in Fig. 3 b)-d). The simulation was performed using the Tidy 3D Python library and also utilizes its methods for data visualization. The following snippet can be used to visualize the data: import tidy3d as td import matplotlib.pyplot as plt sim_data: td.SimulationData = td.SimulationData.from_file(f"waveplate.hdf5") fig, axs = plt.subplots(1, 2, tight_layout=True, figsize=(12, 5)) for fn, ax in zip(("Ex", "Ey"), axs): sim_data.plot_field("field_xz", field_name=fn, val="abs^2", ax=ax).set_aspect(1 / 10) ax.set_xlabel("x [$\mu$m]") ax.set_ylabel("z [$\mu$m]") fig.show() Measurement Data Signal data used for plotting Fig. 4-6. The data is stored in NetCDF providing self describing data format that is easy to manipulate using the Xarray Python library, specifically by calling xarray.open_dataset() Three datasets are provided and structured as follows: The electric_fields.nc dataset contains data displayed in Fig. 4. It has 3 data variables, corresponding to the signals themselves, as well as estimated Rabi frequencies and electric fields. The freq dimension is the x-axis and contains coordinates for the Probe field detuning in MHz. The n dimension labels different configurations of applied electric field, with the 0th one having no EHF field. The detune.nc dataset contains data displayed in Fig. 6. It has 2 data variables, corresponding to the signals themselves, as well as estimated peak separations, multiplied by the coupling factor. The freq dimension is the same, while the detune dimension labels different EHF field detunings, from -100 to 100 MHz with a step of 10. The waveplates.nc dataset contains data displayed in Fig. 5. It contains estimated Rabi frequencies calculated for different waveplate positions. The angles are stored in radians. There is the quarter- and half-waveplate to choose from. Usage examples Opening the dataset import matplotlib.pyplot as plt import xarray as xr electric_fields_ds = xr.open_dataset("data/electric_fields.nc") detuned_ds = xr.open_dataset("data/detune.nc") waveplates_ds = xr.open_dataset("data/waveplates.nc") sigmas_da = xr.open_dataarray("data/sigmas.nc") peak_heights_da = xr.open_dataarray("data/peak_heights.nc") Plotting the Fig. 4 signals and printing params fig, ax = plt.subplots() electric_fields_ds["signals"].plot.line(x="freq", hue="n", ax=ax) print(f"Rabi frequencies [Hz]: {electric_fields_ds['rabi_freqs'].values}") print(f"Electric fields [V/m]: {electric_fields_ds['electric_fields'].values}") fig.show() Plotting the Fig. 5 data (waveplates_ds["rabi_freqs"] ** 2).plot.scatter(x="angle", col="waveplate") Plotting the Fig. 6 signals for chosen detunes fig, ax = plt.subplots() detuned_ds["signals"].sel( detune=[ -100, -70, -40, 40, 70, 100, ] ).plot.line(x="freq", hue="detune", ax=ax) fig.show() Plotting the Fig. 6 inset plot fig, ax = plt.subplots() detuned_ds["separations"].plot.scatter(x="detune", ax=ax) ax.plot( detuned_ds.detune, np.sqrt(detuned_ds.detune**2 + detuned_ds["separations"].sel(detune=0) ** 2), ) fig.show() Plotting the Fig. 7 calculated peak widths sigmas_da.plot.scatter() Plotting the Fig. 8 calculated detuned smaller peak heights peak_heights_da.plot.scatter()

Search
Clear search
Close search
Google apps
Main menu