2 datasets found
  1. Model Zoo: A Dataset of Diverse Populations of Neural Network Models -...

    • zenodo.org
    • data.niaid.nih.gov
    bin, json, zip
    Updated Jun 13, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Konstantin Schürholt; Diyar Taskiran; Boris Knyazev; Xavier Giró-i-Nieto; Damian Borth; Konstantin Schürholt; Diyar Taskiran; Boris Knyazev; Xavier Giró-i-Nieto; Damian Borth (2022). Model Zoo: A Dataset of Diverse Populations of Neural Network Models - Fashion-MNIST [Dataset]. http://doi.org/10.5281/zenodo.6632105
    Explore at:
    bin, zip, jsonAvailable download formats
    Dataset updated
    Jun 13, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Konstantin Schürholt; Diyar Taskiran; Boris Knyazev; Xavier Giró-i-Nieto; Damian Borth; Konstantin Schürholt; Diyar Taskiran; Boris Knyazev; Xavier Giró-i-Nieto; Damian Borth
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Abstract

    In the last years, neural networks have evolved from laboratory environments to the state-of-the-art for many real-world problems. Our hypothesis is that neural network models (i.e., their weights and biases) evolve on unique, smooth trajectories in weight space during training. Following, a population of such neural network models (refereed to as “model zoo”) would form topological structures in weight space. We think that the geometry, curvature and smoothness of these structures contain information about the state of training and can be reveal latent properties of individual models. With such zoos, one could investigate novel approaches for (i) model analysis, (ii) discover unknown learning dynamics, (iii) learn rich representations of such populations, or (iv) exploit the model zoos for generative modelling of neural network weights and biases. Unfortunately, the lack of standardized model zoos and available benchmarks significantly increases the friction for further research about populations of neural networks. With this work, we publish a novel dataset of model zoos containing systematically generated and diverse populations of neural network models for further research. In total the proposed model zoo dataset is based on six image datasets, consist of 24 model zoos with varying hyperparameter combinations are generated and includes 47’360 unique neural network models resulting in over 2’415’360 collected model states. Additionally, to the model zoo data we provide an in-depth analysis of the zoos and provide benchmarks for multiple downstream tasks as mentioned before.

    Dataset

    This dataset is part of a larger collection of model zoos and contains the zoos trained on the labelled samples from Fashion-MNIST. All zoos with extensive information and code can be found at www.modelzoos.cc.

    This repository contains two types of files: the raw model zoos as collections of models (file names beginning with "fmnist_"), as well as preprocessed model zoos wrapped in a custom pytorch dataset class (filenames beginning with "dataset"). Zoos are trained in three configurations varying the seed only (seed), varying hyperparameters with fixed seeds (hyp_fix) or varying hyperparameters with random seeds (hyp_rand). The index_dict.json files contain information on how to read the vectorized models.

    For more information on the zoos and code to access and use the zoos, please see www.modelzoos.cc.

  2. Z

    OSCAR: Occluded Stereo dataset for Convolutional Architectures with...

    • data.niaid.nih.gov
    • zenodo.org
    Updated Dec 31, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Thomas Burwick (2021). OSCAR: Occluded Stereo dataset for Convolutional Architectures with Recurrence [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_3540899
    Explore at:
    Dataset updated
    Dec 31, 2021
    Dataset provided by
    Markus Roland Ernst
    Thomas Burwick
    Jochen Triesch
    Description

    OSCAR, the Occluded Stereo dataset for Convolutional Architectures with Recurrence. Version: 2.0 (dataset as presented in our JOV 2021 journal publication "Recurrent Processing Improves Occluded Object Recognition and Gives Rise to Perceptual Hysteresis")

    If you make use of the dataset, please cite as follows:

    Ernst, M. R., Burwick, T., & Triesch, J. (2021). Recurrent Processing Improves Occluded Object Recognition and Gives Rise to Perceptual Hysteresis. In Journal of Vision

    Contents

    readme.md - detailed description and sample pictures

    img.zip - folder that contains images for the readme file

    licence.md - licence agreement for using the datasets

    os-fmnist2c.zip - compressed archive of the occluded stereo FashionMNIST dataset (centered, ~1.1GB)

    os-fmnist2r.zip - compressed archive of the occluded stereo FashionMNIST dataset (random, ~1.2GB)

    os-mnist2c.zip - compressed archive of the occluded stereo MNIST dataset (centered, ~865MB)

    os-mnist2r.zip - compressed archive of the occluded stereo MNIST dataset (random, ~851MB)

    os-ycb2.zip - compressed archive of the occluded stereo ycb-object dataset (~1.1GB)

    os-ycb2_highres.zip - compressed archive of the occluded stereo ycb-object dataset (high resolution, ~9.8GB)

    OSCARv2_dataset.py - python script to directly load image data from folder, pytorch dataset

  3. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Konstantin Schürholt; Diyar Taskiran; Boris Knyazev; Xavier Giró-i-Nieto; Damian Borth; Konstantin Schürholt; Diyar Taskiran; Boris Knyazev; Xavier Giró-i-Nieto; Damian Borth (2022). Model Zoo: A Dataset of Diverse Populations of Neural Network Models - Fashion-MNIST [Dataset]. http://doi.org/10.5281/zenodo.6632105
Organization logo

Model Zoo: A Dataset of Diverse Populations of Neural Network Models - Fashion-MNIST

Explore at:
bin, zip, jsonAvailable download formats
Dataset updated
Jun 13, 2022
Dataset provided by
Zenodohttp://zenodo.org/
Authors
Konstantin Schürholt; Diyar Taskiran; Boris Knyazev; Xavier Giró-i-Nieto; Damian Borth; Konstantin Schürholt; Diyar Taskiran; Boris Knyazev; Xavier Giró-i-Nieto; Damian Borth
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

Abstract

In the last years, neural networks have evolved from laboratory environments to the state-of-the-art for many real-world problems. Our hypothesis is that neural network models (i.e., their weights and biases) evolve on unique, smooth trajectories in weight space during training. Following, a population of such neural network models (refereed to as “model zoo”) would form topological structures in weight space. We think that the geometry, curvature and smoothness of these structures contain information about the state of training and can be reveal latent properties of individual models. With such zoos, one could investigate novel approaches for (i) model analysis, (ii) discover unknown learning dynamics, (iii) learn rich representations of such populations, or (iv) exploit the model zoos for generative modelling of neural network weights and biases. Unfortunately, the lack of standardized model zoos and available benchmarks significantly increases the friction for further research about populations of neural networks. With this work, we publish a novel dataset of model zoos containing systematically generated and diverse populations of neural network models for further research. In total the proposed model zoo dataset is based on six image datasets, consist of 24 model zoos with varying hyperparameter combinations are generated and includes 47’360 unique neural network models resulting in over 2’415’360 collected model states. Additionally, to the model zoo data we provide an in-depth analysis of the zoos and provide benchmarks for multiple downstream tasks as mentioned before.

Dataset

This dataset is part of a larger collection of model zoos and contains the zoos trained on the labelled samples from Fashion-MNIST. All zoos with extensive information and code can be found at www.modelzoos.cc.

This repository contains two types of files: the raw model zoos as collections of models (file names beginning with "fmnist_"), as well as preprocessed model zoos wrapped in a custom pytorch dataset class (filenames beginning with "dataset"). Zoos are trained in three configurations varying the seed only (seed), varying hyperparameters with fixed seeds (hyp_fix) or varying hyperparameters with random seeds (hyp_rand). The index_dict.json files contain information on how to read the vectorized models.

For more information on the zoos and code to access and use the zoos, please see www.modelzoos.cc.

Search
Clear search
Close search
Google apps
Main menu