6 datasets found
  1. World UTM Grid

    • hub.arcgis.com
    • mapdirect-fdep.opendata.arcgis.com
    • +1more
    Updated Jun 30, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2013). World UTM Grid [Dataset]. https://hub.arcgis.com/datasets/esri::world-utm-grid/about
    Explore at:
    Dataset updated
    Jun 30, 2013
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    World,
    Description

    This layer presents the Universal Transverse Mercator (UTM) zones of the world. The layer symbolizes the 6-degree wide zones employed for UTM projection.To download the data for this layer as a layer package for use in ArcGIS desktop applications, refer to World UTM Zones Grid.

  2. Data from: Changes in the building stock of DaNang between 2015 and 2017

    • zenodo.org
    • data.niaid.nih.gov
    zip
    Updated May 9, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Andreas Braun; Andreas Braun; Gebhard Warth; Gebhard Warth; Felix Bachofer; Felix Bachofer; Tram Bui; Tram Bui; Hao Tran; Volker Hochschild; Hao Tran; Volker Hochschild (2020). Changes in the building stock of DaNang between 2015 and 2017 [Dataset]. http://doi.org/10.5281/zenodo.3757710
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 9, 2020
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Andreas Braun; Andreas Braun; Gebhard Warth; Gebhard Warth; Felix Bachofer; Felix Bachofer; Tram Bui; Tram Bui; Hao Tran; Volker Hochschild; Hao Tran; Volker Hochschild
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Da Nang, Da Nang
    Description

    Description

    This dataset consist of two vector files which show the change in the building stock of the City of DaNang retrieved from satellite image analysis. Buildings were first identified from a Pléiades satellite image from 24.10.2015 and classified into 9 categories in a semi-automatic workflow desribed by Warth et al. (2019) and Vetter-Gindele et al. (2019).

    In a second step, these buildings were inspected for changes based on a second Pléiades satellite image acquired on 13.08.2017 based on visual interpretation. Changes were also classified into 5 categories and aggregated by administrative wards (first dataset: adm) and a hexagon grid of 250 meter length (second dataset: hex).

    The full workflow of the generation of this dataset, including a detailled description of its contents and a discussion on its potential use is published by Braun et al. 2020: Changes in the building stock of DaNang between 2015 and 2017

    Contents

    Both datasets (adm and hex) are stored as ESRI shapefiles which can be used in common Geographic Information Systems (GIS) and consist of the following parts:

    • shp: polygon geometries (geometries of the administrative boundaries and hexagons)
    • dbf: attribute table (containing the number of buildings per class for 2015 and 2017 and the underlying changes (e.g. number of new buildings, number of demolished buildings, ect.)
    • shx: index file combining the geometries with the attributes
    • cpg: encoding of the attributes (UTF-8)
    • prj: spatial reference of the datasets (UTM zone 49 North, EPSG:32649) for ArcGIS
    • qpj: spatial reference of the datasets (UTM zone 49 North, EPSG:32649) for QGIS
    • lyr: symbology suggestion for the polygons(predefined is the number of local type shophouses in 2017) for ArcGIS
    • qml: symbology suggestion for the polygons (predefined is the number of new buildings between 2015 and 2017) for QGIS

    Citation and documentation

    To cite this dataset, please refer to the publication

    • Braun, A.; Warth, G.; Bachofer, F.; Quynh Bui, T.T.; Tran, H.; Hochschild, V. (2020): Changes in the Building Stock of Da Nang between 2015 and 2017. Data, 5, 42. doi:10.3390/data5020042

    This article contains a detailed description of the dataset, the defined building type classes and the types of changes which were analyzed. Furthermore, the article makes recommendations on the use of the datasets and discusses potential error sources.

  3. e

    Glacial landforms around the boundary between the central and northern Black...

    • b2find.eudat.eu
    Updated Jul 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Glacial landforms around the boundary between the central and northern Black Forest, south-western Germany - Dataset - B2FIND [Dataset]. https://b2find.eudat.eu/dataset/15323c23-8bb1-586c-b34e-b94338e65a6b
    Explore at:
    Dataset updated
    Jul 19, 2025
    Area covered
    Germany, Black Forest
    Description

    The aim of data collection was the reconstruction of the chronology and extent of the Late Pleistocene glaciation around the boundary between the central and northern Black Forest. This research has been undertaken as part of the 'Chronology of the last glaciation of low mountainous areas in Central Europe' project (funded by the German Research Foundation (DFG)). This project is granted to Felix Martin Hofmann (see https://gepris.dfg.de/gepris/projekt/534739108?language=en, last access: 13 June 2025). As a first step towards comprehensive glacier reconstruction, glacial geomorphological mapping according to present-day standard in the field of glacial geomorphology must be undertaken, allowing for the selection of suitable targets for dating campaigns. Previous cirque and moraine mapping led to valuable datasets but the adopted approach for the acquisition of data does not comply with up-to-date approaches in geomorphological mapping. Hence, a mapping campaign was undertaken to critically evaluate previous work on the region of interest to achieve the greatest possible accuracy during mapping. The acquired data represent the base of a manuscript which has been submitted to the Journal of Geomorphology for consideration for publication. The acquired data are geodata, digitised from field maps. These geodata represent cirques, initial cirques, moraines, and moraine crests in the study region:• Glacial cirques (Glaswaldsee_cirques_ETRS89UTM32N.shp)• Initial glacial cirques (Glaswaldsee_initial_cirques_ETRS89UTM32N.shp)• Moraine crests (Glaswaldsee_moraine_crests_ETRS89UTM32N.shp)• Moraines (Glaswaldsee_moraines_ETRS89UTM32N.shp)These are provided as ESRI shapefiles which can be easily opened and inspected with common geographical information system (GIS) software, such as QGIS (QGIS Development Team, 2024). Cirques, initial cirques, and moraine crests are represented as polylines, whilst the moraines are polygons. In addition, the dataset contains an ESRI shapefile (Glaswaldsee_Limit_study_region_ETRS89UTM32N.shp), representing the study region. Note that the coordinate reference system of all geodata is as follows: EPSG 25832: ETRS89 / UTM Zone 32N (https://epsg.io/25832, last access: 6 February 2025).Data collection began in June 2024 CE, starting with the identification of potential glacial landforms with the aid of derivatives of a high-resolution digital elevation model. Several field campaigns were undertaken to verify the results in the field. Data collection ended in May 2025 CE.Data collection was undertaken in a region (covering 64 km2) around the boundary between the central and northern Black Forest in south-western Germany. The minimum and maximum easting and northing (ETRS 1989 UTM Zone 32N) are as follows:easting_min = 443000easting_max = 451000northing_min = 5362000northing_max =5370000Data acquisition, i.e., the mapping of glacial landforms followed the common holistic approach in glacial geomorphology (e.g., Di Costanzo & Hofmann, 2016; Chandler & Lukas, 2017; Hofmann et al., 2020), involving both the interpretation of derivatives of a high-resolution digital elevation model of the study region, the DGM025 (xy-resolution of 0.25 m; vertical accuracy of 0.15 m; LGL, 2021) of LGL, the Baden-Württemberg State Agency for Geoinformation and Land Development, and extensive field surveys. Since red relief image maps (RRIMs) proved to be useful for the mapping of the glacial record in the southern Black Forest (Hofmann & Preusser, 2025) and elsewhere (Köse et al., 2021, 2022; Altınay et al., 2022), a RRIM was established for the whole study region with the QGIS software (QGIS Development Team, 2024). Establishing the RRIM required generating raster files, representing the positive and negative openness (Yokoyama et al., 2002). Note that openness is a measure for the degree of dominance or enclosure of a location on an irregular terrain surface (Yokoyama et al., 2002). These raster files were derived with the relief visualization toolbox (RVT; Kokalj & Somrak, 2019) for QGIS, available at https://rvt-py.readthedocs.io/en/latest/rvtfor_qgis.html (last access: 27 February 2024).The subsequent calculation of differential openness (Chiba et al., 2008) was based on the following equation:(positive openness – negative openness)/2Raster files representing the topographic slope and differential openness were finally blended with the 'multiply' option in QGIS. Candidates for glacial landforms were detected in QGIS.Potential glacial landforms were then directly targeted during extensive field surveys and marked on print-out versions of the RRIM with superimposed contour lines (1:5000 scale). If available, exposures on ice-marginal landforms were inspected. The geomorphological field maps were finally digitised.File descriptions: Glacial cirques (Glaswaldsee_cirques_ETRS89UTM32N.shp)Initial glacial cirques (Glaswaldsee_initial_cirques_ETRS89UTM32N.shp)Moraine crests (Glaswaldsee_moraine_crests_ETRS89UTM32N.shp)Moraines (Glaswaldsee_moraines_ETRS89UTM32N.shp)Limit of the study region (Glaswaldsee_Limit_study_region_ETRS89UTM32N.shp)

  4. e

    WMS – zone de operare conform Ordonanței privind accidentul (12.BImSchV) cu...

    • data.europa.eu
    wms
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WMS – zone de operare conform Ordonanței privind accidentul (12.BImSchV) cu atenție în statul liber Saxonia (UTM) (Versiunea desktop) [Dataset]. https://data.europa.eu/data/datasets/82dcecad-0cce-42a6-8ca2-fb3982042248?locale=ro
    Explore at:
    wmsAvailable download formats
    Description

    WMS cu date privind zonele de operare în conformitate cu reglementările privind accidentele din FS Sachsen. Distanțe de atenție la intervale de operare, versiune pentru aplicații bazate pe desktop (ArcGIS, QGIS etc.). WMS cu date privind zonele de operare în conformitate cu reglementările privind accidentele din FS Sachsen. Distanțe de atenție la intervale de operare, versiune pentru aplicații bazate pe desktop (ArcGIS, QGIS etc.). WMS cu date privind zonele de operare în conformitate cu reglementările privind accidentele din FS Sachsen. Distanțe de atenție la intervale de operare, versiune pentru aplicații bazate pe desktop (ArcGIS, QGIS etc.).

  5. a

    ALKIS

    • ni-lgln-opengeodata.hub.arcgis.com
    Updated May 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    LGLN Open Geodata (2024). ALKIS [Dataset]. https://ni-lgln-opengeodata.hub.arcgis.com/datasets/alkis
    Explore at:
    Dataset updated
    May 16, 2024
    Dataset authored and provided by
    LGLN Open Geodata
    Area covered
    Description

    Vektordaten sind raumbezogene Daten und stellen die Erdoberfläche in Punkte, Linien und Flächen dar.Katasterkarten-Online OpenDataindividuelle Anforderungen als DXF, Shape, NAS, TIF, geoPackage.OGC GeodatendiensteWMShttps://opendata.lgln.niedersachsen.de/doorman/noauth/alkis_wmsWFS simple featurehttps://opendata.lgln.niedersachsen.de/doorman/noauth/alkis_wfs_sfWFS NAShttps://opendata.lgln.niedersachsen.de/doorman/noauth/alkis_wfs_nasWFS vereinfachthttps://opendata.lgln.niedersachsen.de/doorman/noauth/alkis_wfs_einfachSTAC-APIKatalog URL:https://alkis.stac.lgln.niedersachsen.deOpenAPI Service Beschreibung:https://alkis.stac.lgln.niedersachsen.de/api.htmlMassendownloadGeoJSONKoordinatenreferenzsystemEPSG 25832 (ETRS89/UTM 32N)Metadatenhttps://ni-harvest-prod.geocat.live/DatenformatZIP-Ordner mit GeoPackage-DateienAktualitätwöchentlichHinweis zur GenauigkeitDownloadder Hinweise zu den Daten aus dem Amtlichen Liegenschaftskatasterinformationssystem (ALKIS).WMSzur Darstellung der Genauigkeitsstufen von Grenz- und Gebäudepunktenhttps://www.geobasisdaten.niedersachsen.de/doorman/noauth/nds_gst?SERVICE=WMS&VERSION=1.3.0&REQUEST=GetCapabilitiesBeschreibungVektordaten sind raumbezogene Daten und stellen die Erdoberfläche in Punkte, Linien und Flächen dar.Sie sind hier im Datenformat GeoPackage (GPKG) erhältlich.Die Daten werden im amtlichen Koordinatenreferenzsystem ETRS89 / UTM Zone 32N (EPSG:25832) bereitgestellt.Das GeoPackage wird landkreisweise abgegeben.InhaltFlurstückeGebäudeTatsächliche NutzungBodenschätzungAusführliche ProduktbeschreibungBrauchen Sie Unterstützung?Hierfinden Sie eine Anleitung, wie Sie einen WebMapService (WMS) in eine Software (hier in QGIS) einbinden und nutzen können.Hierfinden Sie eine Anleitung, wie Sie einen WebFeatureService (WFS) in eine Software (hier in QGIS) einbinden und nutzen können.In unseren Anleitungen finden Sie weitere Informationen, wie eine STAC-API verwendet werden kann. Für eine schnelle visuelle Darstellung des STAC kann derRadiant Earth STAC-Viewerverwendet werdenFür eine Nutzung der STAC-API in QGIS können Sie das QGIS-Plugin "QGIS STAC API-Browser" verwenden.In ArcGIS Pro können Sie ab der Version 3.2STAC API Verbindungenherstellen.Hierfinden Sie eine Anleitung für den Massendownload.Sind die Daten für Sie hilfreich?Feedback zum Produkt

  6. e

    Haller Vesthimmerland

    • data.europa.eu
    csv, geojson
    Updated May 9, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Vesthimmerlands Kommune (2021). Haller Vesthimmerland [Dataset]. https://data.europa.eu/data/datasets/haller-vesthimmerland?locale=no
    Explore at:
    csv, geojsonAvailable download formats
    Dataset updated
    May 9, 2021
    Dataset authored and provided by
    Vesthimmerlands Kommune
    License

    http://portal.opendata.dk/dataset/open-data-dk-licenshttp://portal.opendata.dk/dataset/open-data-dk-licens

    Area covered
    Vesthimmerland
    Description

    Datasættet indeholder Haller i Vesthimmerlands Kommune. Datasættet kan tilgås i CSV- og GeoJSON-format (ESPG: 25832, ETRS89/UTM Zone 32N) og kan indlæses direkte i QGIS.

  7. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Esri (2013). World UTM Grid [Dataset]. https://hub.arcgis.com/datasets/esri::world-utm-grid/about
Organization logo

World UTM Grid

Explore at:
6 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jun 30, 2013
Dataset authored and provided by
Esrihttp://esri.com/
Area covered
World,
Description

This layer presents the Universal Transverse Mercator (UTM) zones of the world. The layer symbolizes the 6-degree wide zones employed for UTM projection.To download the data for this layer as a layer package for use in ArcGIS desktop applications, refer to World UTM Zones Grid.

Search
Clear search
Close search
Google apps
Main menu