In this blog I’ll share the workflow and tools used in the GIS part of this analysis. To understand where crashes are occurring, first the dataset had to be mapped. The software of choice in this instance was ArcGIS, though most of the analysis could have been done using QGIS. Heat maps are all the rage, and if you want to make simple heat maps for free and you appreciate good documentation, I recommend the QGIS Heatmap plugin. There are also some great tools in the free open-source program GeoDa for spatial statistics.
The digital image data service "Kappazunder" displays the Vienna city area in three dimensions. Work processes in the city administration can thus be made more efficient.
This blog post analyzes the first public Kappazunder test dataset, describes the contents and shows the data in QGIS.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The digital image data service "Kappazunder" displays the Vienna city area in three dimensions. Work processes in the city administration can thus be made more efficient. This blog post analyzes the first public Kappazunder test dataset, describes the contents and shows the data in QGIS.
GIS reconstruction of the area surrounding the Grote or Zuidhollandse Waard near Dordrecht (Netherlands) prior to the St Elisabeth's Flood of 1421, which created a fresh water tidal area, the Biesbosch, which exists to this day. The GIS dataset accompanies a printed map and description, which is published in Tijdschrift Holland as part of the 600 year anniversary of the flood in 2021.
An explanation of how the reconstruction was made is available (in Dutch) in the above mentioned Tijdschrift Holland. A more substantial (English) data story or blog post is work in progress and can be found here. The GeoJSON files are available for wider use, and, in combination with the QGIS symbology files and/or the QGIS project file, are provided with build-in suggested visuals. For best results, store all files in one folder and open the project file in QGIS.
The reconstruction builds on the geographically more substantial dataset of local administrative boundaries in the Low Countries available here (version 7), which also provides the Codebook for this dataset.
Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
This dataset maps the location of anti-social graffiti around the University of Edinburgh's central campus. The data was collected over a 2 week period between the 19th May and the 2nd June 2014. The data was collected using a smartphone through an app called Fieldtrip GB (http://fieldtripgb.blogs.edina.ac.uk/). Multiple asset collectors were deployed to use a pre-defined data collection form which allowed users to log the following attributes: Date / Name of asset collector / Type of graffiti (image/tag/words/advert/.....) / What the graffiti was on (building/wall/lamppost/....) / What medium was used (paint/paper/chalk/....) / Density of graffiti / Photograph / Location. The data is by no means complete and realistically captured only around 50% of the graffiti in the study area. It is hoped that this dataset will be updated every 3 months to chart the distribution of graffiti over time. data was collected using the app Fieldtrip GB Once collected, data from multiple asset collectors was merged in FtGB's authoring tool and exported as a CSV file. This was then imported into QGIS and saved as a vector dataset in ESRI Shapefile format. GIS vector data. This dataset was first accessioned in the EDINA ShareGeo Open repository on 2014-06-06 and migrated to Edinburgh DataShare on 2017-02-22.
Le Calcul du NDVI (normalized difference vegetation index) a été réalisé sur des images Landsat 8 theia pour l'année 2014 sur la région Languedoc-Roussillon.
Les images Landsat 8 utilisées : Depuis le mois de mai 2014, le pôle thématique surfaces continentales Theia (https://www.theia-land.fr/) distribue des données LANDSAT 8 de grande qualité (http://spirit.cnes.fr/resto/Landsat/). Les images de réflectance Landsat (niveau 2A) sont traitées par le pôle Theia pour l'Agence Spatiale Française (CNES). L'atelier de production développé par le CNES utilise le prototype de chaîne de Niveau 2A, MACCS, développé et conçu au CESBIO. Les images au format geoTiff contiennent les réflectances de surface, corrigées des effets atmosphériques, y compris les effets d'environnement et avec une correction supplémentaire qui prend en compte les effets des pentes. D’une résolution de 30 mètres, les réflectances de surface sont codées en entiers 16 bits signés sur 7 bandes, dans l'ordre bleu 1 (Aérosols), bleu 2, vert, rouge, proche infra-rouge (PIR) et deux moyens infra-rouge (MIR1et MIR 2) (Erreur ! Source du renvoi introuvable.). De plus, les données sont fournies projetées en Lambert 93 et découpées en tuiles de de 110x110 km et décalées de 100km les unes par rapport aux autres (Figure 1) (blog, O. Hagolle, http://www.cesbio.ups-tlse.fr).
L’essentiel des dalles sont acquises à la date du 5 mai 2014 (Figure 2a): 05/05/2014 : D0006H0001, D0006H0002, D0006H0003, D0007H0001, D0007H0002, D0007H0003, D0007H0004, D0008H0002, D0008H0003. Cependant, quelques extraits de dalles complémentaires ont été ajoutées afin de pallier aux zones manquantes ou nuageuses dans le secteurs extrêmes Sud-ouest et le Nord-est du Languedoc Roussillon (Figure 2b): 10/04/2014 dalles D0005H0001, D0005H0002, D0006H0002, 05/14/2014 dalle : D0008H0003. Le décalage de 36 jours entre les images principales du 5 mai et ces images complémentaires du 10 avril entraine un artéfact dans la composition du NDVI du fait du décalage phénologique de la végétation.
L’ensemble des traitements a été réalisé à l’aide du logiciel libre QGIS. Un aperçu du résultat final est donnée en figure 3. Il a consisté en la réalisation des étapes ci-dessous : - Acquisition des données - Mosaïquage des dalles - Découpage de la mosaïque sur le Languedoc-Roussillon - Calcul du NDVI (NDVI = (?PIR-?Rouge)/(?PIR+?Rouge) - échantillonnage à 50 mètres
Not seeing a result you expected?
Learn how you can add new datasets to our index.
In this blog I’ll share the workflow and tools used in the GIS part of this analysis. To understand where crashes are occurring, first the dataset had to be mapped. The software of choice in this instance was ArcGIS, though most of the analysis could have been done using QGIS. Heat maps are all the rage, and if you want to make simple heat maps for free and you appreciate good documentation, I recommend the QGIS Heatmap plugin. There are also some great tools in the free open-source program GeoDa for spatial statistics.