Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This resource contains data inputs and a Jupyter Notebook that is used to introduce Hydrologic Analysis using Terrain Analysis Using Digital Elevation Models (TauDEM) and Python. TauDEM is a free and open-source set of Digital Elevation Model (DEM) tools developed at Utah State University for the extraction and analysis of hydrologic information from topography. This resource is part of a HydroLearn Physical Hydrology learning module available at https://edx.hydrolearn.org/courses/course-v1:Utah_State_University+CEE6400+2019_Fall/about
In this activity, the student learns how to (1) derive hydrologically useful information from Digital Elevation Models (DEMs); (2) describe the sequence of steps involved in mapping stream networks, catchments, and watersheds; and (3) compute an approximate water balance for a watershed-based on publicly available data.
Please note that this exercise is designed for the Logan River watershed, which drains to USGS streamflow gauge 10109000 located just east of Logan, Utah. However, this Jupyter Notebook and the analysis can readily be applied to other locations of interest. If running the terrain analysis for other study sites, you need to prepare a DEM TIF file, an outlet shapefile for the area of interest, and the average annual streamflow and precipitation data. - There are several sources to obtain DEM data. In the U.S., the DEM data (with different spatial resolutions) can be obtained from the National Elevation Dataset available from the national map (http://viewer.nationalmap.gov/viewer/). Another DEM data source is the Shuttle Radar Topography Mission (https://www2.jpl.nasa.gov/srtm/), an international research effort that obtained digital elevation models on a near-global scale (search for Digital Elevation at https://www.usgs.gov/centers/eros/science/usgs-eros-archive-products-overview?qt-science_center_objects=0#qt-science_center_objects). - If not already available, you can generate the outlet shapefile by applying basic terrain analysis steps in geospatial information system models such as ArcGIS or QGIS. - You also need to obtain average annual streamflow and precipitation data for the watershed of interest to assess the annual water balance and calculate the runoff ratio in this exercise. In the U.S., the streamflow data can be obtained from the USGS NWIS website (https://waterdata.usgs.gov/nwis) and the precipitation from PRISM (https://prism.oregonstate.edu/normals/). Note that using other datasets may require preprocessing steps to make data ready to use for this exercise.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
The High Resolution Digital Elevation Model (HRDEM) product is derived from airborne LiDAR data (mainly in the south) and satellite images in the north. The complete coverage of the Canadian territory is gradually being established. It includes a Digital Terrain Model (DTM), a Digital Surface Model (DSM) and other derived data. For DTM datasets, derived data available are slope, aspect, shaded relief, color relief and color shaded relief maps and for DSM datasets, derived data available are shaded relief, color relief and color shaded relief maps. The productive forest line is used to separate the northern and the southern parts of the country. This line is approximate and may change based on requirements. In the southern part of the country (south of the productive forest line), DTM and DSM datasets are generated from airborne LiDAR data. They are offered at a 1 m or 2 m resolution and projected to the UTM NAD83 (CSRS) coordinate system and the corresponding zones. The datasets at a 1 m resolution cover an area of 10 km x 10 km while datasets at a 2 m resolution cover an area of 20 km by 20 km. In the northern part of the country (north of the productive forest line), due to the low density of vegetation and infrastructure, only DSM datasets are generally generated. Most of these datasets have optical digital images as their source data. They are generated at a 2 m resolution using the Polar Stereographic North coordinate system referenced to WGS84 horizontal datum or UTM NAD83 (CSRS) coordinate system. Each dataset covers an area of 50 km by 50 km. For some locations in the north, DSM and DTM datasets can also be generated from airborne LiDAR data. In this case, these products will be generated with the same specifications as those generated from airborne LiDAR in the southern part of the country. The HRDEM product is referenced to the Canadian Geodetic Vertical Datum of 2013 (CGVD2013), which is now the reference standard for heights across Canada. Source data for HRDEM datasets is acquired through multiple projects with different partners. Since data is being acquired by project, there is no integration or edgematching done between projects. The tiles are aligned within each project. The product High Resolution Digital Elevation Model (HRDEM) is part of the CanElevation Series created in support to the National Elevation Data Strategy implemented by NRCan. Collaboration is a key factor to the success of the National Elevation Data Strategy. Refer to the “Supporting Document” section to access the list of the different partners including links to their respective data.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This is a tiled collection of the 3D Elevation Program (3DEP) and is one meter resolution. The 3DEP data holdings serve as the elevation layer of The National Map, and provide foundational elevation information for earth science studies and mapping applications in the United States. Scientists and resource managers use 3DEP data for hydrologic modeling, resource monitoring, mapping and visualization, and many other applications. The elevations in this DEM represent the topographic bare-earth surface. USGS standard one-meter DEMs are produced exclusively from high resolution light detection and ranging (lidar) source data of one-meter or higher resolution. One-meter DEM surfaces are seamless within collection projects, but, not necessarily seamless across projects. The spatial reference used for tiles of the one-meter DEM within the conterminous United States (CONUS) is Universal Transverse Mercator (UTM) in units of meters, and in conformance with the North American Datum of 1983 ...
This is a collection of all GPS- and computer-generated geospatial data specific to the Alpine Treeline Warming Experiment (ATWE), located on Niwot Ridge, Colorado, USA. The experiment ran between 2008 and 2016, and consisted of three sites spread across an elevation gradient. Geospatial data for all three experimental sites and cone/seed collection locations are included in this package. ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Geospatial files include cone collection, experimental site, seed trap, and other GPS location/terrain data. File types include ESRI shapefiles, ESRI grid files or Arc/Info binary grids, TIFFs (.tif), and keyhole markup language (.kml) files. Trimble-imported data include plain text files (.txt), Trimble COR (CorelDRAW) files, and Trimble SSF (Standard Storage Format) files. Microsoft Excel (.xlsx) and comma-separated values (.csv) files corresponding to the attribute tables of many files within this package are also included. A complete list of files can be found in this document in the “Data File Organization” section in the included Data User's Guide. Maps are also included in this data package for reference and use. These maps are separated into two categories, 2021 maps and legacy maps, which were made in 2010. Each 2021 map has one copy in portable network graphics (.png) format, and the other in .pdf format. All legacy maps are in .pdf format. .png image files can be opened with any compatible programs, such as Preview (Mac OS) and Photos (Windows). All GIS files were imported into geopackages (.gpkg) using QGIS, and double-checked for compatibility and data/attribute integrity using ESRI ArcGIS Pro. Note that files packaged within geopackages will open in ArcGIS Pro with “main.” preceding each file name, and an extra column named “geom” defining geometry type in the attribute table. The contents of each geospatial file remain intact, unless otherwise stated in “niwot_geospatial_data_list_07012021.pdf/.xlsx”. This list of files can be found as an .xlsx and a .pdf in this archive. As an open-source file format, files within gpkgs (TIFF, shapefiles, ESRI grid or “Arc/Info Binary”) can be read using both QGIS and ArcGIS Pro, and any other geospatial softwares. Text and .csv files can be read using TextEdit/Notepad/any simple text-editing software; .csv’s can also be opened using Microsoft Excel and R. .kml files can be opened using Google Maps or Google Earth, and Trimble files are most compatible with Trimble’s GPS Pathfinder Office software. .xlsx files can be opened using Microsoft Excel. PDFs can be opened using Adobe Acrobat Reader, and any other compatible programs. A selection of original shapefiles within this archive were generated using ArcMap with associated FGDC-standardized metadata (xml file format). We are including these original files because they contain metadata only accessible using ESRI programs at this time, and so that the relationship between shapefiles and xml files is maintained. Individual xml files can be opened (without a GIS-specific program) using TextEdit or Notepad. Since ESRI’s compatibility with FGDC metadata has changed since the generation of these files, many shapefiles will require upgrading to be compatible with ESRI’s latest versions of geospatial software. These details are also noted in the “niwot_geospatial_data_list_07012021” file.
The 5m DEM is derived from the LiDAR2019B dataset (consisting of the 2018, 2019A and 2019B datasets). The 5m DEM has a vertical accuracy of 30cm. The height reference used is the SA Land Levelling Datum and the SAGEOID2010 was employed.The City of Cape Town Ground Level Map 2019 is defined in the City of Cape Town Municipal Planning Amendment By-law, 2019 as: “‘City of Cape Town Ground Level Map’ means a map approved in terms of the development management scheme, indicating the existing ground level based on floating point raster’s and a contour dataset from LiDAR information available to the City”. The Ground Level Map was approved by the City Council on the 27th July 2023.All Raster Image Services (REST):https://cityimg.capetown.gov.za/erdas-iws/esri/GeoSpatial%20Datasets/rest/services/All Raster Image Services (WMS):Use URL below to add WMS Server Connection in ArcGIS Desktop, ArcPro, QGIS, AutoCAD, etc.https://cityimg.capetown.gov.za/erdas-iws/ogc/wms/GeoSpatial Datasets?service=WMS&request=getcapabilities&For a copy or subset of this dataset, please contact the City Maps Office: city.maps@capetown.gov.zaCCT Ground Level Map: ‘How to Access’ Guide – External Users: CCT Ground Level Map: ‘How to Access’ Guide – External Users | Open Data Portal (arcgis.com)Geomatics Ground Level Map Explainer: Geomatics Ground Level Map Explainer | Open Data Portal (arcgis.com)Land Use Management Ground Level Map Explainer: Land Use Management Ground Level Map Explainer | Open Data Portal (arcgis.com)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset is a 10 m-resolution DEM in grid format covering the whole Italian territory. The DEM is encoded as “ESRI ASCII Raster” obtained by interpolating the original DEM in Triangular Irregular Network (TIN) format. The TIN version benefited from the systematic application of the DEST algorithm. The projection is UTM, the World Geodetic System 1984 (WGS 84). To provide the dataset as a single seamless DEM, the sole zone 32 N was selected, although about half of Italy belongs to zone 33 N. The database is arranged in 193 square tiles having 50 km side. Data e Risorse Questo dataset non ha dati ambiente terremoti vulcani
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Science Case in the Caribbean region presents records on landslides, precipitation, maps used as inputs of hazard models and drone imagery over the region of interest.
For the Carribean study-case, an analysis of open and proprietary satellite based dataset was used to facilitate the setup and evaluation of physically-based multi-hazard models. These allow for qualification and quantification of spatio-temporal multi-hazard patterns. These form a crucial input into the general hazard and risk assessment workflow.
Presented here are the datasets employed for Case Study 4 in Deliverable D3.1 with a short description, produced and saved within the following folders:
Dominica_landslide: the landslides datasets mapped by ITC using high-resolution satellite imagery. It is intended to calibrate and validate the flood and landslide modelling. The folder contains four shapefiles:
· Landslide_Part.shp - Shapefile containing landslide extent, flash flood extents, and their attributes.
· Cloud.shp – Shapefile represents the cloud-filled areas in the satellite imagery where no mapping was possible.
· The other two shapefiles are self-explanatory.
GPM_Maria: NASA Global Precipitation Mission (GPM) precipitation maps processed for model input in LISEM. GPM is a hybrid fusion with satellite datasets for precipitation estimates. Mean as input data to represent precipitation in the landslide and flood modelling.
Maps_Models_Input : Soil and land use and channels, lots of custom work, SOILGRIDS, and SPOT image classification; all the datasets are ready for model input for OpenLISEM and LISEM Hazard or FastFlood. The dataset is meant to calibrate and validate the flood and landslide modelling.
The raster files are either in Geotiff format or PCraster map format. Both can be opened by GIS systems such as GDAL or QGIS. The projection of each file is in UTM20N.
Some key files are:
StakeholderQuestionnaire_Survey_ITC: The stakeholder questionnaires particularly relating to the tools developed partly by this project on rapid hazard modelling. Stakeholder Engagement survey and Stakeholder Survey Results prepared and implemented by Sruthie Rajendran as part of her MSc Thesis Twin Framework For Decision Support In Flood Risk Management supervised by Dr. M.N. Koeva (Mila) and Dr. B. van den Bout (Bastian) submitted in July 2024.
·Drone_Images_ 2024: Images captured using a DJI drone of part of the Study area in February 2024. The file comprises three different regions: Coulibistrie, Pichelin and Point Michel. The 3D models for Coulibistrie were generated from the nadir drone images using photogrammetric techniques employed by the software Pix4D. The image Coordinate System is WGS 84 (EGM 96 Geoid0), but the Output Coordinate System of the 3D model is WGS 84 / UTM zone 20N (EGM 96 Geoid). The other two folders contain only the drone images captured for that particular region's Pichelin and Point Michel. The dataset is used with other datasets to prepare and create the digital twin framework tailored for flood risk management in the study area.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This DEM is the result of merging the data, using QGIS, from 1472 tiles of 5-foot resolution lidar-derived DEMs downloaded from https://kygeonet.maps.arcgis.com/home/webmap/viewer.html?webmap=785e6040154e4050bda80049fc12d4a6.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Dataset for: Regional Correlations in the layered deposits of Arabia Terra, Mars
Overview:
This repository contains the map-projected HiRISE Digital Elevation Models (DEMs) and the map-projected HiRISE image for each DEM and for each site in the study. Also contained in the repository is a GeoPackage file (beds_2019_08_28_09_29.gpkg) that contains the dip corrected bed thickness measurements, longitude and latitude positions, and error information for each bed measured in the study. GeoPackage files supersede shapefiles as a standard geospatial data format and can be opened in a variety of open source tools including QGIS, and proprietary tools such as recent versions of ArcGIS. For more information about GeoPackage files, please use https://www.geopackage.org/ as a resource. A more detailed description of columns in the beds_2019_08_28_09_29.gpkg file is described below in a dedicated section. Table S1 from the supplementary is also included as an excel spreadsheet file (table_s1.xlsx).
HiRISE DEMs and Images:
Each HiRISE DEM, and corresponding map-projected image used in the study are included in this repository as GeoTiff files (ending with .tif). The file names correspond to the combination of the HiRISE Image IDs listed in Table 1 that were used to produce the DEM for the site, with the image with the smallest emission angle (most-nadir) listed first. Files ending with “_align_1-DEM-adj.tif” are the DEM files containing the 1 meter per pixel elevation values, and files ending with “_align_1-DRG.tif” are the corresponding map-projected HiRISE (left) image. Table 1 Image Pairs correspond to filenames in this repository in the following way: In Table 1, Sera Crater corresponds to HiRISE Image Pair: PSP_001902_1890/PSP_002047_1890, which corresponds to files: “PSP_001902_1890_PSP_002047_1890_align_1-DEM-adj.tif” for the DEM file and “PSP_001902_1890_PSP_002047_1890_align_1-DRG.tif” for the map-projected image file. Each site is listed below with the DEM and map-projected image filenames that correspond to the site as listed in Table 1. The DEM and Image files can be opened in a variety of open source tools including QGIS, and proprietary tools such as recent versions of ArcGIS.
· Sera
o DEM: PSP_001902_1890_PSP_002047_1890_align_1-DEM-adj.tif
o Image: PSP_001902_1890_PSP_002047_1890_align_1-DRG.tif
· Banes
o DEM: ESP_013611_1910_ESP_014033_1910_align_1-DEM-adj.tif
o Image: ESP_013611_1910_ESP_014033_1910_align_1-DRG.tif
· Wulai 1
o DEM: ESP_028129_1905_ESP_028195_1905_align_1-DEM-adj.tif
o Image: ESP_028129_1905_ESP_028195_1905_align_1-DRG.tif
· Wulai 2
o DEM: ESP_028129_1905_ESP_028195_1905_align_1-DEM-adj.tif
o Image: ESP_028129_1905_ESP_028195_1905_align_1-DRG.tif
· Jiji
o DEM: ESP_016657_1890_ESP_017013_1890_align_1-DEM-adj.tif
o Image: ESP_016657_1890_ESP_017013_1890_align_1-DRG.tif
· Alofi
o DEM: ESP_051825_1900_ESP_051970_1900_align_1-DEM-adj.tif
o Image: ESP_051825_1900_ESP_051970_1900_align_1-DRG.tif
· Yelapa
o DEM: ESP_015958_1835_ESP_016235_1835_align_1-DEM-adj.tif
o Image: ESP_015958_1835_ESP_016235_1835_align_1-DRG.tif
· Danielson 1
o DEM: PSP_002733_1880_PSP_002878_1880_align_1-DEM-adj.tif
o Image: PSP_002733_1880_PSP_002878_1880_align_1-DRG.tif
· Danielson 2
o DEM: PSP_008205_1880_PSP_008930_1880_align_1-DEM-adj.tif
o Image: PSP_008205_1880_PSP_008930_1880_align_1-DRG.tif
· Firsoff
o DEM: ESP_047184_1820_ESP_039404_1820_align_1-DEM-adj.tif
o Image: ESP_047184_1820_ESP_039404_1820_align_1-DRG.tif
· Kaporo
o DEM: PSP_002363_1800_PSP_002508_1800_align_1-DEM-adj.tif
o Image: PSP_002363_1800_PSP_002508_1800_align_1-DRG.tif
Description of beds_2019_08_28_09_29.gpkg:
The GeoPackage file “beds_2019_08_28_09_29.gpkg” contains the dip corrected bed thickness measurements among other columns described below. The file can be opened in a variety of open source tools including QGIS, and proprietary tools such as recent versions of ArcGIS.
(Column_Name: Description)
sitewkn: Site name corresponding to the bed (i.e. Danielson 1)
section: Section ID of the bed (sections contain multiple beds)
meansl: The mean slope (dip) in degrees for the section
meanaz: The mean azimuth (dip-direction) in degrees for the section
ang_error: Angular error for a section derived from individual azimuths in the section
B_1: Plane coefficient 1 for the section
B_2: Plane coefficient 2 for the section
lon: Longitude of the centroid of the Bed
lat: Latitude of the centroid of the Bed
thickness: Thickness of the bed BEFORE dip correction
dipcor_thick: Dip-corrected bed thickness
lon1: Longitude of the centroid of the lower layer for the bed (each bed has a lower and upper layer)
lon2: Longitude of the centroid of the upper layer for the bed
lat1: Latitude of the centroid of the lower layer for the bed
lat2: Latitude of the centroid of the upper layer for the bed
meanc1: Mean stratigraphic position of the lower layer for the bed
meanc2: Mean stratigraphic position of the upper layer for the bed
uuid1: Universally unique identifier of the lower layer for the bed
uuid2: Universally unique identifier of the upper layer for the bed
stdc1: Standard deviation of the stratigraphic position of the lower layer for the bed
stdc2: Standard deviation of the stratigraphic position of the upper layer for the bed
sl1: Individual Slope (dip) of the lower layer for the bed
sl2: Individual Slope (dip) of the upper layer for the bed
az1: Individual Azimuth (dip-direction) of the lower layer for the bed
az2: Individual Azimuth (dip-direction) of the upper layer for the bed
meanz: Mean elevation of the bed
meanz1: Mean elevation of the lower layer for the bed
meanz2: Mean elevation of the upper layer for the bed
rperr1: Regression error for the plane fit of the lower layer for the bed
rperr2: Regression error for the plane fit of the upper layer for the bed
rpstdr1: Standard deviation of the residuals for the plane fit of the lower layer for the bed
rpstdr2: Standard deviation of the residuals for the plane fit of the upper layer for the bed
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
A 2-meter height above ground map aka a normalized digital surface model (DSM) or canopy height model (CHM) of San Francisco, CA. The original LiDAR data and digital elevation models are provided by the United States Geological Survey at: https://rockyweb.usgs.gov/vdelivery/Datasets/.
Specifically, the 1 meter bare-Earth digital terrain model (DTM) is provided here.
The 2 meter highest LiDAR return aka digital surface model is provided here.
The 1 meter data was resampled to 2 meters with minimum pooling. The individual DTM and DSM rasters were mosaicked, and subsequently aligned in QGIS. The height above ground is calculated via: DSM - DTM.
http://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/noLimitationshttp://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/noLimitations
This is a cropped DTM version (with Frame2c) for providing topographic backgrouds on EEA maps. This is a hillshade of global digital elevation model (DEM) with a horizontal grid spacing of 30 arc seconds (approximately 1 kilometer).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Accurate coastal wave and hydrodynamic modelling relies on quality bathymetric input. Many national scale modelling studies, hindcast and forecast products, have, or are currently using a 2009 digital elevation model (DEM), which does not include recently available bathymetric surveys and is now out of date. There are immediate needs for an updated national product, preceding the delivery of the AusSeabed program’s Global Multi-Resolution Topography for Australian coastal and ocean models. There are also challenges in stitching coarse resolution DEMs, which are often too shallow where they meet high-resolution information (e.g. LiDAR surveys) and require supervised/manual modifications (e.g. NSW, Perth, and Portland VIC bathymetries). This report updates the 2009 topography and bathymetry with a selection of nearshore surveys and demonstrates where the 2009 dataset and nearshore bathymetries do not matchup. Lineage: All of the datasets listed in Table 1 (see supporting files) were used in previous CSIRO internal projects or download from online data portals and processed using QGIS and R’s ‘raster’ package. The Perth LiDAR surveys were provided as points and gridded in R using raster::rasterFromXYZ(). The Macquarie Harbour contour lines were regridded in QGIS using the TIN interpolator. Each dataset was mapped with an accompanying Type Identifier (TID) following the conventions of the GEBCO dataset. The mapping went through several iterations, at each iteration the blending was checked for inconstancy, i.e., where the GA250m DEM was too shallow when it met the high-resolution LiDAR surveys. QGIS v3.16.4 was used to draw masks over inconstant blending and GA250 values falling within the mask and between two depths were assigned NA (no-data). LiDAR datasets were projected to +proj=longlat +datum=WGS84 +no_defs using raster::projectRaster(), resampled to the GA250 grid using raster::resample() and then merged with raster::merge(). Nearest neighbour resampling was performed for all datasets except for GEBCO ~500m product, which used the bilinear method. The order of the mapping overlay is sequential from TID = 1 being the base, through to 107, where 0 is the gap filled values.
Permissions are required for all code and internal datasets (Contact Julian OGrady).
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The LIDAR Composite DTM (Digital Terrain Model) is a raster elevation model covering ~99% of England at 1m spatial resolution. The DTM (Digital Terrain Model) is produced from the last or only laser pulse returned to the sensor. We remove surface objects from the Digital Surface Model (DSM), using bespoke algorithms and manual editing of the data, to produce a terrain model of just the surface.
Produced by the Environment Agency in 2022, the DTM is derived from a combination of our Time Stamped archive and National LIDAR Programme surveys, which have been merged and re-sampled to give the best possible coverage. Where repeat surveys have been undertaken the newest, best resolution data is used. Where data was resampled a bilinear interpolation was used before being merged.
The 2022 LIDAR Composite contains surveys undertaken between 6th June 2000 and 2nd April 2022. Please refer to the metadata index catalgoues which show for any location which survey was used in the production of the LIDAR composite.
The data is available to download as GeoTiff rasters in 5km tiles aligned to the OS National grid. The data is presented in metres, referenced to Ordinance Survey Newlyn and using the OSTN’15 transformation method. All individual LIDAR surveys going into the production of the composite had a vertical accuracy of +/-15cm RMSE.
Aerial Imagery/Photography, Scanned Historical Maps, CCT DRAFT Ground Level Map (GLM), Infrared Imagery, Digital Elevation Models (DEM), etc. All Raster Image Services (WMS):Use URL below to add WMS Server Connection in ArcGIS Desktop, ArcPro, QGIS, AutoCAD, etc.https://cityimg.capetown.gov.za/erdas-iws/ogc/wms/GeoSpatial Datasets?service=WMS&request=getcapabilities&All Raster Image Services (REST):https://cityimg.capetown.gov.za/erdas-iws/esri/GeoSpatial%20Datasets/rest/services/Popular Image Services: 2021 Aerial Imagery , 2020 Aerial Imagery , 2019 Aerial Imagery , DRAFT CCT Ground Level Map (GLM) 2019_5m_ DEM
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
CanVec contains more than 60 topographic features classes organized into 8 themes: Transport Features, Administrative Features, Hydro Features, Land Features, Manmade Features, Elevation Features, Resource Management Features and Toponymic Features. This multiscale product originates from the best available geospatial data sources covering Canadian territory. It offers quality topographic information in vector format complying with international geomatics standards. CanVec can be used in Web Map Services (WMS) and geographic information systems (GIS) applications and used to produce thematic maps. Because of its many attributes, CanVec allows for extensive spatial analysis. Related Products: Constructions and Land Use in Canada - CanVec Series - Manmade Features Lakes, Rivers and Glaciers in Canada - CanVec Series - Hydrographic Features Administrative Boundaries in Canada - CanVec Series - Administrative Features Mines, Energy and Communication Networks in Canada - CanVec Series - Resources Management Features Wooded Areas, Saturated Soils and Landscape in Canada - CanVec Series - Land Features Transport Networks in Canada - CanVec Series - Transport Features Elevation in Canada - CanVec Series - Elevation Features Map Labels - CanVec Series - Toponymic Features
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Here are the results in a paper entitled "Characterization of the 2008 phreatomagmatic eruption of Okmok from ArcticDEM and InSAR: deposition, erosion, and deformation" submitted to JGR Solid Earth in 2020.
The main revision compared to version 1: This revision does not use one DEM (acquired on 15 May 2016) that was partly contaminated by clouds in the north flank of Ahmanilix. This revision mostly improves the result of the elevation change rate (rate.tif), but it also slightly changes the elevation change data and its corresponding uncertainties.
It includes the 2-m resolution surface elevation change of the 2008 Okmok eruption (Fig. 3a in the paper) and the 2-m resolution post-eruptive elevation change rate map (Fig. 4), as well as the corresponding uncertainties (Fig. S3). It also includes the boundary of the proximal deposit field classified using a minimum elevation increase of 2 m, the boundary of large slope failure, and the shorelines of two lakes (Fig. 3a and S5) at different acquisition times.
The GeoTIFF files can be viewed in free and open-source software QGIS, in Google Earth, or by Matlab using code https://github.com/ihowat/setsm_postprocessing/blob/master/readGeotiff.m. The shapefiles can be viewed in QGIS. Google Earth may not show some of the shapefiles well.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Dataset for: Bedding scale correlation on Mars in western Arabia Terra
A.M. Annex et al.
Data Product Overview
This repository contains all source data for the publication. Below is a description of each general data product type, software that can load the data, and a list of the file names along with the short description of the data product.
HiRISE Digital Elevation Models (DEMs).
HiRISE DEMs produced using the Ames Stereo Pipeline are in geotiff format ending with ‘*X_0_DEM-adj.tif’, the “X” prefix denotes the spatial resolution of the data product in meters. Geotiff files are able to be read by free GIS software like QGIS.
HiRISE map-projected imagery (DRGs).
Map-projected HiRISE images produced using the Ames Stereo Pipeline are in geotiff format ending with ‘*0_Y_DRG-cog.tif’, the “Y” prefix denotes the spatial resolution of the data product in centimeters. Geotiff files are able to be read by free GIS software like QGIS. The DRG files are formatted as COG-geotiffs for enhanced compression and ease of use.
3D Topography files (.ply).
Traingular Mesh versions of the HiRISE/CTX topography data used for 3D figures in “.ply” format. Meshes are greatly geometrically simplified from source files. Topography files can be loaded in a variety of open source tools like ParaView and Meshlab. Textures can be applied using embedded texture coordinates.
3D Geological Model outputs (.vtk)
VTK 3D file format files of model output over the spatial domain of each study site. VTK files can be loaded by ParaView open source software. The “block” files contain the model evaluation over a regular grid over the model extent. The “surfaces” files contain just the bedding surfaces as interpolated from the “block” files using the marching cubes algorithm.
Geological Model geologic maps (geologic_map.tif).
Geologic maps from geological models are standard geotiffs readable by conventional GIS software. The maximum value for each geologic map is the “no-data” value for the map. Geologic maps are calculated at a lower resolution than the topography data for storage efficiency.
Beds Geopackage File (.gpkg).
Geopackage vector data file containing all mapped layers and associated metadata including dip corrected bed thickness as well as WKB encoded 3D linestrings representing the sampled topography data to which the bedding orientations were fit. Geopackage files can be read using GIS software like QGIS and ArcGIS as well as the OGR/GDAL suite. A full description of each column in the file is provided below.
Column
Type
Description
uuid
String
unique identifier
stratum_order
Real
0-indexed bed order
section
Real
section number
layer_id
Real
bed number/index
layer_id_bk
Real
unused backup bed number/index
source_raster
String
dem file path used
raster
String
dem file name
gsd
Real
ground sampling distant for dem
wkn
String
well known name for dem
rtype
String
raster type
minx
Real
minimum x position of trace in dem crs
miny
Real
minimum y position of trace in dem crs
maxx
Real
maximum x position of trace in dem crs
maxy
Real
maximum y position of trace in dem crs
method
String
internal interpolation method
sl
Real
slope in degrees
az
Real
azimuth in degrees
error
Real
maximum error ellipse angle
stdr
Real
standard deviation of the residuals
semr
Real
standard error of the residuals
X
Real
mean x position in CRS
Y
Real
mean y position in CRS
Z
Real
mean z position in CRS
b1
Real
plane coefficient 1
b2
Real
plane coefficient 2
b3
Real
plane coefficient 3
b1_se
Real
standard error plane coefficient 1
b2_se
Real
standard error plane coefficient 2
b3_se
Real
standard error plane coefficient 3
b1_ci_low
Real
plane coefficient 1 95% confidence interval low
b1_ci_high
Real
plane coefficient 1 95% confidence interval high
b2_ci_low
Real
plane coefficient 2 95% confidence interval low
b2_ci_high
Real
plane coefficient 2 95% confidence interval high
b3_ci_low
Real
plane coefficient 3 95% confidence interval low
b3_ci_high
Real
plane coefficient 3 95% confidence interval high
pca_ev_1
Real
pca explained variance ratio pc 1
pca_ev_2
Real
pca explained variance ratio pc 2
pca_ev_3
Real
pca explained variance ratio pc 3
condition_number
Real
condition number for regression
n
Integer64
number of data points used in regression
rls
Integer(Boolean)
unused flag
demeaned_regressions
Integer(Boolean)
centering indicator
meansl
Real
mean section slope
meanaz
Real
mean section azimuth
angular_error
Real
angular error for section
mB_1
Real
mean plane coefficient 1 for section
mB_2
Real
mean plane coefficient 2 for section
mB_3
Real
mean plane coefficient 3 for section
R
Real
mean plane normal orientation vector magnitude
num_valid
Integer64
number of valid planes in section
meanc
Real
mean stratigraphic position
medianc
Real
median stratigraphic position
stdc
Real
standard deviation of stratigraphic index
stec
Real
standard error of stratigraphic index
was_monotonic_increasing_layer_id
Integer(Boolean)
monotonic layer_id after projection to stratigraphic index
was_monotonic_increasing_meanc
Integer(Boolean)
monotonic meanc after projection to stratigraphic index
was_monotonic_increasing_z
Integer(Boolean)
monotonic z increasing after projection to stratigraphic index
meanc_l3sigma_std
Real
lower 3-sigma meanc standard deviation
meanc_u3sigma_std
Real
upper 3-sigma meanc standard deviation
meanc_l2sigma_sem
Real
lower 3-sigma meanc standard error
meanc_u2sigma_sem
Real
upper 3-sigma meanc standard error
thickness
Real
difference in meanc
thickness_fromz
Real
difference in Z value
dip_cor
Real
dip correction
dc_thick
Real
thickness after dip correction
dc_thick_fromz
Real
z thickness after dip correction
dc_thick_dev
Integer(Boolean)
dc_thick <= total mean dc_thick
dc_thick_fromz_dev
Integer(Boolean)
dc_thick <= total mean dc_thick_fromz
thickness_fromz_dev
Integer(Boolean)
dc_thick <= total mean thickness_fromz
dc_thick_dev_bg
Integer(Boolean)
dc_thick <= section mean dc_thick
dc_thick_fromz_dev_bg
Integer(Boolean)
dc_thick <= section mean dc_thick_fromz
thickness_fromz_dev_bg
Integer(Boolean)
dc_thick <= section mean thickness_fromz
slr
Real
slope in radians
azr
Real
azimuth in radians
meanslr
Real
mean slope in radians
meanazr
Real
mean azimuth in radians
angular_error_r
Real
angular error of section in radians
pca_ev_1_ok
Integer(Boolean)
pca_ev_1 < 99.5%
pca_ev_2_3_ratio
Real
pca_ev_2/pca_ev_3
pca_ev_2_3_ratio_ok
Integer(Boolean)
pca_ev_2_3_ratio > 15
xyz_wkb_hex
String
hex encoded wkb geometry for all points used in regression
Geological Model input files (.gpkg).
Four geopackage (.gpkg) files represent the input dataset for the geological models, one per study site as specified in the name of the file. The files contain most of the columns described above in the Beds geopackage file, with the following additional columns. The final seven columns (azimuth, dip, polarity, formation, X, Y, Z) constituting the actual parameters used by the geological model (GemPy).
Column
Type
Description
azimuth_mean
String
Mean section dip azimuth
azimuth_indi
Real
Individual bed azimuth
azimuth
Real
Azimuth of trace used by the geological model
dip
Real
Dip for the trace used by the geological mode
polarity
Real
Polarity of the dip vector normal vector
formation
String
String representation of layer_id required for GemPy models
X
Real
X position in the CRS of the sampled point on the trace
Y
Real
Y position in the CRS of the sampled point on the trace
Z
Real
Z position in the CRS of the sampled point on the trace
Stratigraphic Column Files (.gpkg).
Stratigraphic columns computed from the Geological Models come in three kinds of Geopackage vector files indicated by the postfixes _sc, rbsc, and rbssc. File names include the wkn site name.
sc (_sc.gpkg).
Geopackage vector data file containing measured bed thicknesses from Geological Model joined with corresponding Beds Geopackage file, subsetted partially. The columns largely overlap with the the list above for the Beds Geopackage but with the following additions
Column
Type
Description
X
Real
X position of thickness measurement
Y
Real
Y position of thickness measurement
Z
Real
Z position of thickness measurement
formation
String
Model required string representation of bed index
bed thickness (m)
Real
difference of bed elevations
azimuths
Real
azimuth as measured from model in degrees
dip_degrees
Real
dip as measured from model in
Sensing the need to understand the reasons behind constant flooding of communities in the Ikoruumogbene basin, one of Bayelsa's (a state in southern Nigeria) largest drainage basins. I performed a hydrological analysis of the basin with a view to understand the impact of the terrain on the flooding history of these comminutes. Using remotely sensed DEM, to which I applied spatial analyst tools in ARCGIS, I was able to visualize the impact of the regions slope, elevation, drainage density and land use pattern on the flooding history of the region.This map depicts one of the largest drainage basins in Bayelsa State, Nigeria. Contained in this basin are towns such as Amassoma, Ikebiri, Pemobiri among others. The map can be used in analysis to understand flood patterns, flood detection and management among others. This map was produced using QGIS version 3.14 software. Workflow was inspired by Hans van der Kwast QGIS Hydro Webinars
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This resource contains data inputs and a Jupyter Notebook that is used to introduce Hydrologic Analysis using Terrain Analysis Using Digital Elevation Models (TauDEM) and Python. TauDEM is a free and open-source set of Digital Elevation Model (DEM) tools developed at Utah State University for the extraction and analysis of hydrologic information from topography. This resource is part of a HydroLearn Physical Hydrology learning module available at https://edx.hydrolearn.org/courses/course-v1:Utah_State_University+CEE6400+2019_Fall/about
In this activity, the student learns how to (1) derive hydrologically useful information from Digital Elevation Models (DEMs); (2) describe the sequence of steps involved in mapping stream networks, catchments, and watersheds; and (3) compute an approximate water balance for a watershed-based on publicly available data.
Please note that this exercise is designed for the Logan River watershed, which drains to USGS streamflow gauge 10109000 located just east of Logan, Utah. However, this Jupyter Notebook and the analysis can readily be applied to other locations of interest. If running the terrain analysis for other study sites, you need to prepare a DEM TIF file, an outlet shapefile for the area of interest, and the average annual streamflow and precipitation data. - There are several sources to obtain DEM data. In the U.S., the DEM data (with different spatial resolutions) can be obtained from the National Elevation Dataset available from the national map (http://viewer.nationalmap.gov/viewer/). Another DEM data source is the Shuttle Radar Topography Mission (https://www2.jpl.nasa.gov/srtm/), an international research effort that obtained digital elevation models on a near-global scale (search for Digital Elevation at https://www.usgs.gov/centers/eros/science/usgs-eros-archive-products-overview?qt-science_center_objects=0#qt-science_center_objects). - If not already available, you can generate the outlet shapefile by applying basic terrain analysis steps in geospatial information system models such as ArcGIS or QGIS. - You also need to obtain average annual streamflow and precipitation data for the watershed of interest to assess the annual water balance and calculate the runoff ratio in this exercise. In the U.S., the streamflow data can be obtained from the USGS NWIS website (https://waterdata.usgs.gov/nwis) and the precipitation from PRISM (https://prism.oregonstate.edu/normals/). Note that using other datasets may require preprocessing steps to make data ready to use for this exercise.