81 datasets found
  1. a

    QGIS - Open Source GIS Software

    • hub.arcgis.com
    • home-ecgis.hub.arcgis.com
    • +1more
    Updated Aug 9, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eaton County Michigan (2018). QGIS - Open Source GIS Software [Dataset]. https://hub.arcgis.com/documents/57198670f4234919bfab87fb64d40a82
    Explore at:
    Dataset updated
    Aug 9, 2018
    Dataset authored and provided by
    Eaton County Michigan
    Description

    This is a link to the QGIS website where you can download open-source GIS software for viewing, analyzing and manipulating geodata like our downloadable shapefiles.

  2. QGIS

    • samoa-data.sprep.org
    • pacificdata.org
    • +13more
    pdf, zip
    Updated Feb 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Secretariat of the Pacific Regional Environment Programme (2025). QGIS [Dataset]. https://samoa-data.sprep.org/dataset/qgis
    Explore at:
    pdf, pdf(179911), pdf(25618331), zipAvailable download formats
    Dataset updated
    Feb 20, 2025
    Dataset provided by
    Pacific Regional Environment Programmehttps://www.sprep.org/
    License

    Public Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
    License information was derived automatically

    Area covered
    Pacific Region
    Description

    QGIS is a Free and Open Source Geographic Information System. This dataset contains all the information to get you started.

  3. d

    Mapping the Census using Open-Source GIS

    • dataone.org
    Updated Dec 28, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Elizabeth Sutherland (2023). Mapping the Census using Open-Source GIS [Dataset]. http://doi.org/10.5683/SP3/SFCC3J
    Explore at:
    Dataset updated
    Dec 28, 2023
    Dataset provided by
    Borealis
    Authors
    Elizabeth Sutherland
    Description

    Maps have always been a powerful tool for visualizing data. Participants will learn how to link the static data of census tables to census geographies by using open-source GIS software. Participants will learn how to join data, calculate new attributes, symbolize geography and create maps. No prior GIS experience is necessary. QGIS will be required to be downloaded prior to the workshop, and laptops will be required. Download instructions https://qgis.org/en/site/forusers/download.html. Download data files https://drive.google.com/drive/folders/1xrAj_BrPtMDBgdi9MXWGcrcuVGfTsGgi?usp=sharing

  4. R

    Qgis Segmentacja 2 Dataset

    • universe.roboflow.com
    zip
    Updated Jan 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    QGISsegmentacja (2025). Qgis Segmentacja 2 Dataset [Dataset]. https://universe.roboflow.com/qgissegmentacja/qgis-segmentacja-2
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jan 15, 2025
    Dataset authored and provided by
    QGISsegmentacja
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Trawa Kostka 29XU Masks
    Description

    QGIS Segmentacja 2

    ## Overview
    
    QGIS Segmentacja 2 is a dataset for semantic segmentation tasks - it contains Trawa Kostka 29XU annotations for 200 images.
    
    ## Getting Started
    
    You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
    
      ## License
    
      This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
    
  5. GISF2E: ArcGIS, QGIS, and python tools and Tutorial

    • figshare.com
    • resodate.org
    pdf
    Updated Jun 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban Road Networks (2023). GISF2E: ArcGIS, QGIS, and python tools and Tutorial [Dataset]. http://doi.org/10.6084/m9.figshare.2065320.v3
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 2, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    figshare
    Authors
    Urban Road Networks
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    ArcGIS tool and tutorial to convert the shapefiles into network format. The latest version of the tool is available at http://csun.uic.edu/codes/GISF2E.htmlUpdate: we now have added QGIS and python tools. To download them and learn more, visit http://csun.uic.edu/codes/GISF2E.htmlPlease cite: Karduni,A., Kermanshah, A., and Derrible, S., 2016, "A protocol to convert spatial polyline data to network formats and applications to world urban road networks", Scientific Data, 3:160046, Available at http://www.nature.com/articles/sdata201646

  6. R

    Dataset Qgis Dataset

    • universe.roboflow.com
    zip
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    for test (2025). Dataset Qgis Dataset [Dataset]. https://universe.roboflow.com/for-test-z9rh0/dataset-qgis/dataset/1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset authored and provided by
    for test
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Rice Field Polygons
    Description

    Dataset Qgis

    ## Overview
    
    Dataset Qgis is a dataset for instance segmentation tasks - it contains Rice Field annotations for 401 images.
    
    ## Getting Started
    
    You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
    
      ## License
    
      This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
    
  7. g

    Sample Geodata and Software for Demonstrating Geospatial Preprocessing for...

    • gimi9.com
    • envidat.ch
    • +1more
    Updated Jun 12, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2019). Sample Geodata and Software for Demonstrating Geospatial Preprocessing for Forest Accessibility and Wood Harvesting at FOSS4G2019 [Dataset]. https://gimi9.com/dataset/eu_d28614a0-0825-4040-bc1b-e0455b1e4df6-envidat
    Explore at:
    Dataset updated
    Jun 12, 2019
    Description

    This dataset contains open vector data for railways, forests and power lines, as well an open digital elevation model (DEM) for a small area around a sample forest range in Europe (Germany, Upper Bavaria, Kochel Forest Range, some 70 km south of München, at the edge of Bavarian Alps). The purpose of this dataset is to provide a documented sample dataset in order to demonstrate geospatial preprocessing at FOSS4G2019 based on open data and software. This sample has been produced based on several existing open data sources (detailed below), therefore documenting the sources for obtaining some data needed for computations related to forest accessibility and wood harvesting. For example, they can be used with the open methodology and QGIS plugin Seilaplan for optimising the geometric layout cable roads or with additional open software for computing the forest accessibility for wood harvesting. The vector data (railways, forests and power lines) was extracted from OpenStreetMap (data copyrighted OpenStreetMap contributors and available from https://www.openstreetmap.org). The railways and forests were downloaded and extracted on 18.05.2019 using the open sources QGIS (https://www.qgis.org) with the QuickOSM plugin, while the power lines were downloaded a couple of days later on 23.05.2019. Additional notes for vector data: Please note that OpenStreeMap data extracts such as forests, roads and railways (except power lines) can also be downloaded in a GIS friendly format (Shapefile) from http://download.geofabrik.de/ or using the QGIS built-in download function for OpenStreetMap data. The most efficient way to retrieve specific OSM tags (such as power=line) is to use the QuickOSM plugin for QGIS (using the Overpass API - https://wiki.openstreetmap.org/wiki/Overpass_API) or directly using overpass turbo (https://overpass-turbo.eu/). Finally, the digitised perimeter of the sample forest range is also made available for reproducibility purposes, although any perimeter or area can be digitised freely using the QGIS editing toolbar. The DEM was originally adapted and modified also with QGIS (https://www.qgis.org) based on the elevation data available from two different sources, by reprojecting and downsampling datasets to 25m then selecting, for each individual raster cell, the elevation value that was closer to the average. These two different elevation sources are: - Copernicus Land Monitoring Service - EU-DEM v.1.1 (TILE ID E40N20, downloaded from https://land.copernicus.eu/imagery-in-situ/eu-dem/eu-dem-v1.1; this original DEM was produced by the Copernicus Land Monitoring Service “with funding by the European Union” based on SRTM and ASTER GDEM) - Digitales Geländemodell 50 m Gitterweite (https://opendata.bayern.de/detailansicht/datensatz/digitales-gelaendemodell-50-m-gitterweite/), produced by the Bayerische Vermessungsverwaltung – www.geodaten.bayern.de –and downloaded from http://www.geodaten.bayern.de/opendata/DGM50/dgm50_epsg4258.tif This methodology was chosen as a way of performing a basic quality check, by comparing the EU-DEM v.1.1 derived from globally available DEM data (such as SRTM) with more authoritative data for the randomly selected region, since using authoritative data is preferred (if open and available). For other sample regions, where authoritative open data is not available, such comparisons cannot longer be performed. Additional notes DEM: a very good DEM open data source for Germany is the open data set collected and resampled by Sonny (sonnyy7@gmail.com) and made available on the Austrian Open Data Portal http://data.opendataportal.at/dataset/dtm-germany. In order to simplify end-to-end reproducibility of the paper planned for FOSS4G2019, we use and distribute an adapted (reprojected and resampled to 25 meters) sample of the above mentioned dataset for the selected forest range. This sample dataset is accompanied by software in Python, as a Jupiter Notebook that generates harmonized output rasters with the same extent from the input data. The extent is given by the polygon vector dataset (Perimeter). These output rasters, such as obstacles, aspect, slope, forest cover, can serve as input data for later computations related to forest accessibility and wood harvesting questions. The obstacles output is obtained by transforming line vector datasets (railway lines, high voltage power lines) to raster. Aspect and slope are both derived from the sample digital elevation model.

  8. f

    Estimating Ephemeral Streams QGIS Layer Packages, Map Files, and Methods

    • figshare.com
    zip
    Updated Jan 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stream, Rivers and Estuaries Laboratory (STRIVE Lab) (2024). Estimating Ephemeral Streams QGIS Layer Packages, Map Files, and Methods [Dataset]. http://doi.org/10.6084/m9.figshare.24975744.v5
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jan 19, 2024
    Dataset provided by
    figshare
    Authors
    Stream, Rivers and Estuaries Laboratory (STRIVE Lab)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset was used to estimate total ephemeral stream length within the Coeur d'Alene, Fort Apache, and Menominee Reservations. It includes data that is publicly available through the USGS "The National Map" (USGS TNM Download v2.0), including NHDPlus High Resolution hydrography data, and Contour (1:24,000-scale) elevation data. It also includes geographic boundaries for the above mentioned Native American Reservations, as well as "eph5ha" raster data (Fesenmyer et al. 2021), which was used to approximate ephemeral stream locations. The remaining layers in the dataset include exported, site-specific NHDPlus hydrography data, and hand-digitized, estimated ephemeral streams, based on the eph5ha raster data. A map PNG of all three reservations is also included, as well as the map file used to create that map image. Lastly, a PDF of the methods used for this mapping project is also attached.

  9. Export Excel fieldbook to csv-file

    • figshare.com
    mp4
    Updated Jul 6, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wouter Marra (2016). Export Excel fieldbook to csv-file [Dataset]. http://doi.org/10.6084/m9.figshare.3472199.v1
    Explore at:
    mp4Available download formats
    Dataset updated
    Jul 6, 2016
    Dataset provided by
    Figsharehttp://figshare.com/
    figshare
    Authors
    Wouter Marra
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Screencast on how to export field observations with gps coordinates in Excel to a .csv file.

  10. Torres Strait Sentinel 2 Satellite Regional Maps and Imagery 2015 – 2021...

    • researchdata.edu.au
    Updated Oct 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lawrey, Eric (2022). Torres Strait Sentinel 2 Satellite Regional Maps and Imagery 2015 – 2021 (AIMS) [Dataset]. http://doi.org/10.26274/3CGE-NV85
    Explore at:
    Dataset updated
    Oct 1, 2022
    Dataset provided by
    Australian Institute Of Marine Sciencehttp://www.aims.gov.au/
    Australian Ocean Data Network
    Authors
    Lawrey, Eric
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Oct 1, 2015 - Mar 1, 2022
    Area covered
    Description

    This dataset contains both large (A0) printable maps of the Torres Strait broken into six overlapping regions, based on a clear sky, clear water composite Sentinel 2 composite imagery and the imagery used to create these maps. These maps show satellite imagery of the region, overlaid with reef and island boundaries and names. Not all features are named, just the more prominent features. This also includes a vector map of Ashmore Reef and Boot Reef in Coral Sea as these were used in the same discussions that these maps were developed for. The map of Ashmore Reef includes the atoll platform, reef boundaries and depth polygons for 5 m and 10 m.

    This dataset contains all working files used in the development of these maps. This includes all a copy of all the source datasets and all derived satellite image tiles and QGIS files used to create the maps. This includes cloud free Sentinel 2 composite imagery of the Torres Strait region with alpha blended edges to allow the creation of a smooth high resolution basemap of the region.

    The base imagery is similar to the older base imagery dataset: Torres Strait clear sky, clear water Landsat 5 satellite composite (NERP TE 13.1 eAtlas, AIMS, source: NASA).

    Most of the imagery in the composite imagery from 2017 - 2021.


    Method:
    The Sentinel 2 basemap was produced by processing imagery from the World_AIMS_Marine-satellite-imagery dataset (01-data/World_AIMS_Marine-satellite-imagery in the data download) for the Torres Strait region. The TrueColour imagery for the scenes covering the mapped area were downloaded. Both the reference 1 imagery (R1) and reference 2 imagery (R2) was copied for processing. R1 imagery contains the lowest noise, most cloud free imagery, while R2 contains the next best set of imagery. Both R1 and R2 are typically composite images from multiple dates.

    The R2 images were selectively blended using manually created masks with the R1 images. This was done to get the best combination of both images and typically resulted in a reduction in some of the cloud artefacts in the R1 images. The mask creation and previewing of the blending was performed in Photoshop. The created masks were saved in 01-data/R2-R1-masks. To help with the blending of neighbouring images a feathered alpha channel was added to the imagery. The processing of the merging (using the masks) and the creation of the feathered borders on the images was performed using a Python script (src/local/03-merge-R2-R1-images.py) using the Pillow library and GDAL. The neighbouring image blending mask was created by applying a blurring of the original hard image mask. This allowed neighbouring image tiles to merge together.

    The imagery and reference datasets (reef boundaries, EEZ) were loaded into QGIS for the creation of the printable maps.

    To optimise the matching of the resulting map slight brightness adjustments were applied to each scene tile to match its neighbours. This was done in the setup of each image in QGIS. This adjustment was imperfect as each tile was made from a different combinations of days (to remove clouds) resulting in each scene having a different tonal gradients across the scene then its neighbours. Additionally Sentinel 2 has slight stripes (at 13 degrees off the vertical) due to the swath of each sensor having a slight sensitivity difference. This effect was uncorrected in this imagery.


    Single merged composite GeoTiff:
    The image tiles with alpha blended edges work well in QGIS, but not in ArcGIS Pro. To allow this imagery to be used across tools that don't support the alpha blending we merged and flattened the tiles into a single large GeoTiff with no alpha channel. This was done by rendering the map created in QGIS into a single large image. This was done in multiple steps to make the process manageable.

    The rendered map was cut into twenty 1 x 1 degree georeferenced PNG images using the Atlas feature of QGIS. This process baked in the alpha blending across neighbouring Sentinel 2 scenes. The PNG images were then merged back into a large GeoTiff image using GDAL (via QGIS), removing the alpha channel. The brightness of the image was adjusted so that the darkest pixels in the image were 1, saving the value 0 for nodata masking and the boundary was clipped, using a polygon boundary, to trim off the outer feathering. The image was then optimised for performance by using internal tiling and adding overviews. A full breakdown of these steps is provided in the README.md in the 'Browse and download all data files' link.

    The merged final image is available in export\TS_AIMS_Torres Strait-Sentinel-2_Composite.tif.


    Source datasets:
    Complete Great Barrier Reef (GBR) Island and Reef Feature boundaries including Torres Strait Version 1b (NESP TWQ 3.13, AIMS, TSRA, GBRMPA), https://eatlas.org.au/data/uuid/d2396b2c-68d4-4f4b-aab0-52f7bc4a81f5

    Geoscience Australia (2014b), Seas and Submerged Lands Act 1973 - Australian Maritime Boundaries 2014a - Geodatabase [Dataset]. Canberra, Australia: Author. https://creativecommons.org/licenses/by/4.0/ [license]. Sourced on 12 July 2017, https://dx.doi.org/10.4225/25/5539DFE87D895

    Basemap/AU_GA_AMB_2014a/Exclusive_Economic_Zone_AMB2014a_Limit.shp
    The original data was obtained from GA (Geoscience Australia, 2014a). The Geodatabase was loaded in ArcMap. The Exclusive_Economic_Zone_AMB2014a_Limit layer was loaded and exported as a shapefile. Since this file was small no clipping was applied to the data.

    Geoscience Australia (2014a), Treaties - Australian Maritime Boundaries (AMB) 2014a [Dataset]. Canberra, Australia: Author. https://creativecommons.org/licenses/by/4.0/ [license]. Sourced on 12 July 2017, http://dx.doi.org/10.4225/25/5539E01878302
    Basemap/AU_GA_Treaties-AMB_2014a/Papua_New_Guinea_TSPZ_AMB2014a_Limit.shp
    The original data was obtained from GA (Geoscience Australia, 2014b). The Geodatabase was loaded in ArcMap. The Papua_New_Guinea_TSPZ_AMB2014a_Limit layer was loaded and exported as a shapefile. Since this file was small no clipping was applied to the data.

    AIMS Coral Sea Features (2022) - DRAFT
    This is a draft version of this dataset. The region for Ashmore and Boot reef was checked. The attributes in these datasets haven't been cleaned up. Note these files should not be considered finalised and are only suitable for maps around Ashmore Reef. Please source an updated version of this dataset for any other purpose.
    CS_AIMS_Coral-Sea-Features/CS_Names/Names.shp
    CS_AIMS_Coral-Sea-Features/CS_Platform_adj/CS_Platform.shp
    CS_AIMS_Coral-Sea-Features/CS_Reef_Boundaries_adj/CS_Reef_Boundaries.shp
    CS_AIMS_Coral-Sea-Features/CS_Depth/CS_AIMS_Coral-Sea-Features_Img_S2_R1_Depth5m_Coral-Sea.shp
    CS_AIMS_Coral-Sea-Features/CS_Depth/CS_AIMS_Coral-Sea-Features_Img_S2_R1_Depth10m_Coral-Sea.shp

    Murray Island 20 Sept 2011 15cm SISP aerial imagery, Queensland Spatial Imagery Services Program, Department of Resources, Queensland
    This is the high resolution imagery used to create the map of Mer.

    World_AIMS_Marine-satellite-imagery
    The base image composites used in this dataset were based on an early version of Lawrey, E., Hammerton, M. (2024). Marine satellite imagery test collections (AIMS) [Data set]. eAtlas. https://doi.org/10.26274/zq26-a956. A snapshot of the code at the time this dataset was developed is made available in the 01-data/World_AIMS_Marine-satellite-imagery folder of the download of this dataset.


    Data Location:
    This dataset is filed in the eAtlas enduring data repository at: data\custodian\2020-2029-AIMS\TS_AIMS_Torres-Strait-Sentinel-2-regional-maps. On the eAtlas server it is stored at eAtlas GeoServer\data\2020-2029-AIMS.


    Change Log:
    2025-05-12: Eric Lawrey
    Added Torres-Strait-Region-Map-Masig-Ugar-Erub-45k-A0 and Torres-Strait-Eastern-Region-Map-Landscape-A0. These maps have a brighten satellite imagery to allow easier reading of writing on the maps. They also include markers for geo-referencing the maps for digitisation.

    2025-02-04: Eric Lawrey
    Fixed up the reference to the World_AIMS_Marine-satellite-imagery dataset, clarifying where the source that was used in this dataset. Added ORCID and RORs to the record.

    2023-11-22: Eric Lawrey
    Added the data and maps for close up of Mer.
    - 01-data/TS_DNRM_Mer-aerial-imagery/
    - preview/Torres-Strait-Mer-Map-Landscape-A0.jpeg
    - exports/Torres-Strait-Mer-Map-Landscape-A0.pdf
    Updated 02-Torres-Strait-regional-maps.qgz to include the layout for the new map.

    2023-03-02: Eric Lawrey
    Created a merged version of the satellite imagery, with no alpha blending so that it can be used in ArcGIS Pro. It is now a single large GeoTiff image. The Google Earth Engine source code for the World_AIMS_Marine-satellite-imagery was included to improve the reproducibility and provenance of the dataset, along with a calculation of the distribution of image dates that went into the final composite image. A WMS service for the imagery was also setup and linked to from the metadata. A cross reference to the older Torres Strait clear sky clear water Landsat composite imagery was also added to the record.

  11. l

    Los Angeles Storm Drain System

    • data.lacounty.gov
    • geohub.lacity.org
    • +2more
    Updated Jun 7, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    County of Los Angeles (2021). Los Angeles Storm Drain System [Dataset]. https://data.lacounty.gov/datasets/los-angeles-storm-drain-system
    Explore at:
    Dataset updated
    Jun 7, 2021
    Dataset authored and provided by
    County of Los Angeles
    Area covered
    Los Angeles
    Description

    The Los Angeles County Storm Drain System is a geometric network model representing the storm drain infrastructure within Los Angeles County. The long term goal of this network is to seamlessly integrate the countywide drainage infrastructure, regardless of ownership or jurisdiction. Current uses by the Department of Public Works (DPW) include asset inventory, operational maintenance, and compliance with environmental regulations.

    GIS DATA DOWNLOADS: (More information is in the table below)

    File geodatabase: A limited set of feature classes comprise the majority of this geometric network. These nine feature classes are available in one file geodatabase (.gdb). ArcMap versions compatible with the .gdb are 10.1 and later. Read-only access is provided by the open-source software QGIS. Instructions on opening a .gdb file are available here, and a QGIS plugin can be downloaded here.

    Acronyms and Definitions (pdf) are provided to better understand terms used.

    ONLINE VIEWING: Use your PC’s browser to search for drains by street address or drain name and download engineering drawings. The Web Viewer link is: https://dpw.lacounty.gov/fcd/stormdrain/

    MOBILE GIS: This storm drain system can also be viewed on mobile devices as well as your PC via ArcGIS Online. (As-built plans are not available with this mobile option.)

    More About these Downloads All data added or updated by Public Works is contained in nine feature classes, with definitions listed below. The file geodatabase (.gdb) download contains these eleven feature classes without network connectivity. Feature classes include attributes with unabbreviated field names and domains.

    ArcMap versions compatible with the .gdb are 10.1 and later.

    Feature Class Download Description

    CatchBasin In .gdb Catch basins collect urban runoff from gutters

    Culvert In .gdb A relatively short conduit that conveys storm water runoff underneath a road or embankment. Typical materials include reinforced concrete pipe (RCP) and corrugated metal pipe (CMP). Typical shapes are circular, rectangular, elliptical, or arched.

    ForceMain In .gdb Force mains carry stormwater uphill from pump stations into gravity mains and open channels.

    GravityMain In .gdb Underground pipes and channels.

    LateralLine In .gdb Laterals connect catch basins to underground gravity mains or open channels.

    MaintenanceHole In .gdb The top opening to an underground gravity main used for inspection and maintenance.

    NaturalDrainage In .gdb Streams and rivers that flow through natural creek beds

    OpenChannel In .gdb Concrete lined stormwater channels.

    PumpStation In .gdb Where terrain causes accumulation, lift stations are used to pump stormwater to where it can once again flow towards the ocean

    Data Field Descriptions

    Most of the feature classes in this storm drain geometric network share the same GIS table schema. Only the most critical attributes are listed here per LACFCD operations.

    Attribute Description

    ASBDATE The date the design plans were approved “as-built” or accepted as “final records”.

    CROSS_SECTIN_SHAPE The cross-sectional shape of the pipe or channel. Examples include round, square, trapezoidal, arch, etc.

    DIAMETER_HEIGHT The diameter of a round pipe or the height of an underground box or open channel.

    DWGNO Drain Plan Drawing Number per LACFCD Nomenclature

    EQNUM Asset No. assigned by the Department of Public Works’ (in Maximo Database).

    MAINTAINED_BY Identifies, to the best of LAFCD’s knowledge, the agency responsible for maintaining the structure.

    MOD_DATE Date the GIS features were last modified.

    NAME Name of the individual drainage infrastructure.

    OWNER Agency that owns the drainage infrastructure in question.

    Q_DESIGN The peak storm water runoff used for the design of the drainage infrastructure.

    SOFT_BOTTOM For open channels, indicates whether the channel invert is in its natural state (not lined).

    SUBTYPE Most feature classes in this drainage geometric nature contain multiple subtypes.

    UPDATED_BY The person who last updated the GIS feature.

    WIDTH Width of a channel in feet.

  12. OpenStreetMap Data French Polynesia

    • tonga-data.sprep.org
    • americansamoa-data.sprep.org
    • +13more
    txt, zip
    Updated Feb 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Secretariat of the Pacific Regional Environment Programme (2025). OpenStreetMap Data French Polynesia [Dataset]. https://tonga-data.sprep.org/dataset/openstreetmap-data-french-polynesia
    Explore at:
    txt, zipAvailable download formats
    Dataset updated
    Feb 20, 2025
    Dataset provided by
    Pacific Regional Environment Programmehttps://www.sprep.org/
    License

    Public Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
    License information was derived automatically

    Area covered
    French Polynesia, Polynesia, Pacific Region
    Description

    OpenStreetMap (OSM) is a free, editable map & spatial database of the whole world. This dataset is an extract of OpenStreetMap data for French Polynesia in a GIS-friendly format.

    The OSM data has been split into separate layers based on themes (buildings, roads, points of interest, etc), and it comes bundled with a QGIS project and styles, to help you get started with using the data in your maps. This OSM product will be updated weekly.

    The goal is to increase awareness among Pacific GIS users of the richness of OpenStreetMap data in Pacific countries, as well as the gaps, so that they can take advantage of this free resource, become interested in contributing to OSM, and perhaps join the global OSM community.

    OpenStreetMap data is open data, with a very permissive licence. You can download it and use it for any purpose you like, as long as you credit OpenStreetMap and its contributors. You don't have to pay anyone, or ask anyone's permission. When you download and use the data, you're granted permission to do that under the Open Database Licence (ODbL). The only conditions are that you Attribute, Share-Alike, and Keep open.

    The required credit is “© OpenStreetMap contributors”. If you make a map, you should display this credit somewhere. If you provide the data to someone else, you should make sure the license accompanies the data

  13. B

    Residential Schools Locations Dataset (Geodatabase)

    • borealisdata.ca
    • search.dataone.org
    Updated May 31, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rosa Orlandini (2019). Residential Schools Locations Dataset (Geodatabase) [Dataset]. http://doi.org/10.5683/SP2/JFQ1SZ
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 31, 2019
    Dataset provided by
    Borealis
    Authors
    Rosa Orlandini
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1863 - Jun 30, 1998
    Area covered
    Canada
    Description

    The Residential Schools Locations Dataset in Geodatabase format (IRS_Locations.gbd) contains a feature layer "IRS_Locations" that contains the locations (latitude and longitude) of Residential Schools and student hostels operated by the federal government in Canada. All the residential schools and hostels that are listed in the Residential Schools Settlement Agreement are included in this dataset, as well as several Industrial schools and residential schools that were not part of the IRRSA. This version of the dataset doesn’t include the five schools under the Newfoundland and Labrador Residential Schools Settlement Agreement. The original school location data was created by the Truth and Reconciliation Commission, and was provided to the researcher (Rosa Orlandini) by the National Centre for Truth and Reconciliation in April 2017. The dataset was created by Rosa Orlandini, and builds upon and enhances the previous work of the Truth and Reconcilation Commission, Morgan Hite (creator of the Atlas of Indian Residential Schools in Canada that was produced for the Tk'emlups First Nation and Justice for Day Scholar's Initiative, and Stephanie Pyne (project lead for the Residential Schools Interactive Map). Each individual school location in this dataset is attributed either to RSIM, Morgan Hite, NCTR or Rosa Orlandini. Many schools/hostels had several locations throughout the history of the institution. If the school/hostel moved from its’ original location to another property, then the school is considered to have two unique locations in this dataset,the original location and the new location. For example, Lejac Indian Residential School had two locations while it was operating, Stuart Lake and Fraser Lake. If a new school building was constructed on the same property as the original school building, it isn't considered to be a new location, as is the case of Girouard Indian Residential School.When the precise location is known, the coordinates of the main building are provided, and when the precise location of the building isn’t known, an approximate location is provided. For each residential school institution location, the following information is provided: official names, alternative name, dates of operation, religious affiliation, latitude and longitude coordinates, community location, Indigenous community name, contributor (of the location coordinates), school/institution photo (when available), location point precision, type of school (hostel or residential school) and list of references used to determine the location of the main buildings or sites. Access Instructions: there are 47 files in this data package. Please download the entire data package by selecting all the 47 files and click on download. Two files will be downloaded, IRS_Locations.gbd.zip and IRS_LocFields.csv. Uncompress the IRS_Locations.gbd.zip. Use QGIS, ArcGIS Pro, and ArcMap to open the feature layer IRS_Locations that is contained within the IRS_Locations.gbd data package. The feature layer is in WGS 1984 coordinate system. There is also detailed file level metadata included in this feature layer file. The IRS_locations.csv provides the full description of the fields and codes used in this dataset.

  14. e

    Average local taxes by assets — Departmental Map 54 Meurthe and Moselle 2015...

    • data.europa.eu
    excel xls, jpeg, pdf +1
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DELETED DELETED, Average local taxes by assets — Departmental Map 54 Meurthe and Moselle 2015 [Dataset]. https://data.europa.eu/data/datasets/56ef07c6c751df0c9ad6e93b
    Explore at:
    zip(79478), pdf(3588797), excel xls(2660864), jpeg(1251950)Available download formats
    Dataset authored and provided by
    DELETED DELETED
    License

    Licence Ouverte / Open Licence 1.0https://www.etalab.gouv.fr/wp-content/uploads/2014/05/Open_Licence.pdf
    License information was derived automatically

    Description

    Here is an image of the global municipal tax (founcier bati + habitation). Average tax per asset Nancy 2014

    To do it again you will need: — QGIS software (Free: https://www.qgis.org/fr/site/forusers/download.html), — a qgs file of your department (http://www.actualitix.com/shapefiles-des-departements-de-france.html) — an export of tax rates (https://www.data.gouv.fr/fr/datasets/impots-locaux/ > Municipal and intercommunal data > Your Department > Local Direct Tax Data 2014 (XLS format)) — data (most days of INSEE here 2012 http://www.insee.fr/fr/themes/detail.asp?reg_id=99&ref_id=base-cc-emploi-pop-active-2012)

    Operating Mode: — process your data in your favorite spreadsheet (Excel or OpenOffice Calc) by integrating impot data, and INSEE to pull out the numbers that seem revealing to you — Install QGIS — Open the.qgs of your department

    Add columns — Right click property on the main layer — Go to the field menu (on the left) — Add (via pencil) the desired columns (here average housing tax per asset, average property tax per asset, and the sum of both) — These are reals of precision 2, and length 6 — Register

    Insert data: — Right-click on the “Open attribute table” layer — Select all — Copy — Paste in excel (or openOffice calcs) — Put the ad hoc formulas in excel (SOMME.SI.ENS to recover the rate) — Save the desired tab in CSV DOS with the new values — In QGIS > Menu > Layer > Add a delimited layer of text — Import the CSV

    Present the data: — To simplify I advise you to make a layer by rate, and layers sums. So rots you in three clicks out the image of the desired rate — For each layer (or rate) — Right click properties on the csv layer — Labels to add city name and desired rate — Style for fct coloring of a csv field

    Print the data in pdf: — To print, you need to define a print template — In the menu choose new printing dialer — choose the format (a department in A0 is rather readable) — Add vas legend, scale, and other — Print and here...

    NB: this method creates aberrations: — in the case where the INSEE does not have a number or numbers that have moved a lot since — it is assumed that only assets pay taxes (which is more fair, but not 100 %)

  15. C

    DSM2 Georeferenced Model Grid

    • data.cnra.ca.gov
    • data.ca.gov
    • +1more
    Updated Sep 12, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Water Resources (2025). DSM2 Georeferenced Model Grid [Dataset]. https://data.cnra.ca.gov/dataset/dsm2-georeferenced-model-grid
    Explore at:
    pdf(22679496), pdf(25962387), zip(158973), arcgis desktop map package(211110), zip(228604), pdf(22669649), zip(26881), arcgis pro map package(153901), zip(159621), pdf(20463896), arcgis desktop map package(300515), pdf(1443441), zip(140121), zip(149795)Available download formats
    Dataset updated
    Sep 12, 2025
    Dataset authored and provided by
    California Department of Water Resources
    Description

    ArcGIS and QGIS map packages, with ESRI shapefiles for the DSM2 Model Grid. These are not finalized products. Locations in these shapefiles are approximate.

    Monitoring Stations - shapefile with approximate locations of monitoring stations.

    DSM2 Grid 2025-05-28 Historical

    FC_2023.01

    DSM2 v8.2.0, calibrated version:

    • dsm2_8_2_grid_map_calibrated.mpkx - ArcGIS Pro map package containing all layers and symbology for the calibrated grid map.
    • dsm2_8_2_grid_map_calibrated.mpk - ArcGIS Desktop map package containing all layers and symbology for the calibrated grid map.
    • dsm2_8_2_0_calibrated_grid_map_qgis.zip - QGIS map package containing all layers and symbology for the calibrated grid map.
    • dsm2_8_2_0_calibrated_gridmap_shapefiles.zip - A zip file containing all the shapefiles used in the above map packages:
    • dsm2_8_2_0_calibrated_channels_centerlines - channel centerlines, follwing the path of CSDP centerlines
    • dsm2_8_2_0_calibrated_network_channels - channels represented by straight line segments which are connected the upstream and downstream nodes
    • dsm2_8_2_0_calibrated_nodes - DSM2 nodes
    • dsm2_8_2_0_calibrated_dcd_only_nodes - Nodes that are only used by DCD
    • dsm2_8_2_0_calibrated_and_dcd_nodes - Nodes that are shared by DSM2 and DCD
    • dsm2_8_2_0_calibrated_and_smcd_nodes - Nodes that are shared by DSM2 and SMCD
    • dsm2_8_2_0_calibrated_gates_actual_loc - The approximate actual locations of each gate in DSM2
    • dsm2_8_2_0_calibrated_gates_grid_loc - The locations of each gate in the DSM2 model grid
    • dsm2_8_2_0_calibrated_reservoirs - The approximate locations of the reservoirs in DSM2
    • dsm2_8_2_0_calibrated_reservoir_connections - Lines showing connections from reservoirs to nodes in DSM2

    DSM2 v8.2.1, historical version:

    • DSM2 v8.2.1, historical version grid map release notes (PDF), updated 7/12/2022
    • DSM2 v8.2.1, historical version grid map, single zoom level (PDF)
    • DSM2 v8.2.1, historical version grid map, multiple zoom levels (PDF) - PDF grid map designed to be printed on 3 foot wide plotter paper.
    • DSM2 v8.2.1, historical version map package for ArcGIS Desktop: A map package for ArcGIS Desktop containing the grid map layers with symbology.
    • DSM2 v8.2.1, historical version grid map shapefiles (zip): A zip file containing the shapefiles used in the grid map.

    Change Log

    7/12/2022: The document "DSM2 v8.2.1, historical version grid map release notes (PDF)" was corrected by removing section 4.4, which incorrectly stated that the grid included channels 710-714, representing the Toe Drain, and that the Yolo Flyway restoration area was included.

  16. gmap - qgis training material: Beagle Rupes (Mercury)

    • zenodo.org
    • data.europa.eu
    zip
    Updated Dec 12, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Valentina Galluzzi; Valentina Galluzzi (2022). gmap - qgis training material: Beagle Rupes (Mercury) [Dataset]. http://doi.org/10.5281/zenodo.6695546
    Explore at:
    zipAvailable download formats
    Dataset updated
    Dec 12, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Valentina Galluzzi; Valentina Galluzzi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset part of the Geology and Planetary Mapping Winter School 2022 featuring Beagle Rupes as a study area.
    Beagle Rupes is lobate scarp at Mercurys surface with a length of more than 600km cross-cutting an oval shaped crater.
    We compiled a beginners – intermediate level training package for the area. The package includes several basemaps such as Map Projected Basemap Reduced Data Record (BDR) (Hash 2013a), High-incidence East-illumination Basemap (HIE), Map-projected High-incidence West-illumination (HIW) (Hash 2015a), Map Projected Low-Incidence Angle Basemap Reduced Data Record (LOI) (Hash 2013b), Map Projected Multispectral Reduced Data Record (MDR) Hash 2015b) and digital terrain model (DTM) (Becker et al., 2016). The data is cut to the area of interest and a training project is set up for QGIS.

    The training package is designed as a group exercise with four adjacent tiles covering the Beagle Rupes area.

  17. e

    Seilaplan Tutorial: DTM download with SwissGeoDownloader

    • envidat.ch
    • data.europa.eu
    json, mp4 +2
    Updated May 29, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Laura Ramstein; Lioba Rath; Patricia Moll; Stephan Böhm; Pierre Simon; Christian Kanzian; Janine Schweier; Leo Gallus Bont (2025). Seilaplan Tutorial: DTM download with SwissGeoDownloader [Dataset]. http://doi.org/10.16904/envidat.342
    Explore at:
    mp4, not available, xml, jsonAvailable download formats
    Dataset updated
    May 29, 2025
    Dataset provided by
    Self-employed
    BOKU
    Swiss Federal Institute for Forest, Snow and Landscape Research WSL
    Authors
    Laura Ramstein; Lioba Rath; Patricia Moll; Stephan Böhm; Pierre Simon; Christian Kanzian; Janine Schweier; Leo Gallus Bont
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Area covered
    Switzerland
    Dataset funded by
    Bundesministerium für Landwirtschaft Regionen und Tourismus Österreich
    WSL
    Kooperationsplattform Forst Holz Papier
    Description

    In order to use the QGIS plugin ‘Seilaplan’ for digital cable line planning, a digital terrain model (DTM) is required. The plugin ‘Swiss Geo Downloader’, which is available for the open source geoinformation software QGIS, allows freely available Swiss geodata to be downloaded and displayed directly within QGIS. It was developed in 2021 by Patricia Moll in collaboration with the Swiss Federal Institute for Forest, Snow and Landscape Research WSL. In this tutorial we describe how to download the high accuracy elevation model ‘swissALTI3D’ with the help of the ‘Swiss Geo Downloader’ and how to use it for digital planning of a cable line with the plugin ‘Seilaplan’. Please note that the tutorial language is German! Link to the Swiss Geo Downloader: https://pimoll.github.io/swissgeodownloader Link to Seilaplan website: https://seilaplan.wsl.ch

    Für die Verwendung des QGIS Plugins Seilaplan zur digitalen Seillinienplanung ist ein digitales Höhenmodell (DHM) nötig. Das Plugin Swiss Geo Downloader, welches für das Open Source Geoinformationssystem QGIS zur Verfügung steht, ermöglicht frei verfügbare Schweizer Geodaten direkt innerhalb von QGIS herunterzuladen und anzuzeigen. Es wurde 2021 von Patricia Moll in Zusammenarbeit mit der eidgenössischen Forschungsanstalt Wald, Schnee und Landschaft WSL entwickelt. In diesem Tutorial beschreiben wir, wie man mit Hilfe des Swiss Geo Downloaders das hochgenaue Höhenmodell swissALTI3D herunterladen und für die Seillinienplanung mit dem Plugin Seilaplan verwenden kann. Link zum Swiss Geo Downloader: https://pimoll.github.io/swissgeodownloader Link zur Seilaplan-Webseite: https://seilaplan.wsl.ch

  18. e

    Base map

    • data.europa.eu
    json
    Updated Feb 20, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Helsingborgs stad (2022). Base map [Dataset]. https://data.europa.eu/data/datasets/https-datakatalog-helsingborg-se-store-3-resource-356/embed
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Feb 20, 2022
    Dataset authored and provided by
    Helsingborgs stad
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The base map consists of the city’s basic geographical information and has the highest level of detail used in the urban development area as a whole. The map is also used outside the city’s activities in areas such as planning and planning. By providing the base map as open data, the city opens up for wider use and the possibility of new innovative applications.ContentBasic map includes:

    BuildingsCommunicationMarket useAddressesRegistermap (property limits and rights, etc.) The information in the register map has no legal effect and may be poorly accurate. In case of exact information requirements, verification should be carried out on the basis of decision documents.AtkomstBaskartan is downloaded via http://kartor.helsingborg.se/oppnageodata/baskarta.phpFormat and object modelThe map is delivered as a zip file containing one GeoJSON file per object type. Coordinate system is SWEREF99 13 30. The files are a direct export from the Helsingborg City Planning Administration’s database and are named as follows:

    Object types sometimes have attributes that come from domains. Then a value can be represented in a digit instead of saving a string over and over again. During export we have exploded the domains with the suffix “_resolved” so that they can still be seen in plain text.“PURPOSE”:10, “PURPOSE_resolved”:“Småhus — detached”

    The tables in the theme “Registration map” have a specific title in two letters. Exempel:Registerkarta AQIn order to understand the contents of those tables, it may help to examine the attribute “dep” where a more readable description is given. Complete documentation on the registry map is currently missing. However, Lantmäteriet provides similar products where table names exist. Please see exempel:https://www.lantmateriet.se/globalassets/kartor-oc...MetadataEn mapping to translate table names into English can be found here. Structure:[{“Geo object class”:“Facility, point”, “Geo object class English”:“MAPCONSTRUCTIONP”},... ]

    Refresh rate The zip file is updated weekly, the night between Saturday and Sunday. In the zip file there is a folder metadata. In it is readme.txt which contains a date stamp that tells you when the actual export was made.

    FAQ base map

    How can I look at the map without any specific program? Download the zip file and unpack it. Search “GeoJSON viewer” in your browser. For example, http://www.mapshaper.org/. Drag in and drop a GeoJSON file to view it.

    Can I use the base map in my CAD system?Plugin/app is available to Autodesk. https://apps.autodesk.com/ACD/en/Detail/Index?id=5...

    Can I use the base map in my GIS? QGIS has good support for GeoJSON. ArcMap requires Data Interopability add-on. FME can read and convert.

    Can I convert GeoJSON to shape? Several free services are available to convert to shape. Among others, http://www.mapshaper.org/.

  19. a

    city

    • maps-cadoc.opendata.arcgis.com
    Updated Jun 17, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rio Hondo College (2021). city [Dataset]. https://maps-cadoc.opendata.arcgis.com/datasets/riohondo::assignment-003-004-for-qgis-users-california-county-layers?layer=0
    Explore at:
    Dataset updated
    Jun 17, 2021
    Dataset authored and provided by
    Rio Hondo College
    Area covered
    Description

    You will need to download this zipped file and extract to a folder. Again, the file must be extracted to a folder you can find. For me, I like to have a folder simply named GIS and I dump all the files I use in the GIS in this folder.

  20. e

    World - Diffuse Horizontal Irradiation (DIF) GIS Data, (Global Solar Atlas)...

    • energydata.info
    Updated Nov 28, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). World - Diffuse Horizontal Irradiation (DIF) GIS Data, (Global Solar Atlas) - Dataset - ENERGYDATA.INFO [Dataset]. https://energydata.info/dataset/world-diffuse-horizontal-irradiation-dif-gis-data-global-solar-atlas
    Explore at:
    Dataset updated
    Nov 28, 2023
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    World
    Description

    Developed by SOLARGIS and provided by the Global Solar Atlas (GSA), this data resource contains diffuse horizontal irradiation (DIF) in kWh/m² covering the globe. Data is provided in a geographic spatial reference (EPSG:4326). The resolution (pixel size) of solar resource data (GHI, DIF, GTI, DNI) is 9 arcsec (nominally 250 m), PVOUT and TEMP 30 arcsec (nominally 1 km) and OPTA 2 arcmin (nominally 4 km). The data is hyperlinked under 'resources' with the following characeristics: DIF LTAy_AvgDailyTotals (GeoTIFF) Data format: GEOTIFF File size : 198.94 MB There are two temporal representation of solar resource and PVOUT data available: • Longterm yearly/monthly average of daily totals (LTAym_AvgDailyTotals) • Longterm average of yearly/monthly totals (LTAym_YearlyMonthlyTotals) Both type of data are equivalent, you can select the summarization of your preference. The relation between datasets is described by simple equations: • LTAy_YearlyTotals = LTAy_DailyTotals * 365.25 • LTAy_MonthlyTotals = LTAy_DailyTotals * Number_of_Days_In_The_Month For individual country or regional data downloads please see: https://globalsolaratlas.info/download (use the drop-down menu to select country or region of interest) For data provided in AAIGrid please see: https://globalsolaratlas.info/download/world. For more information and terms of use, please, read metadata, provided in PDF and XML format for each data layer in a download file. For other data formats, resolution or time aggregation, please, visit Solargis website. Data can be used for visualization, further processing, and geo-analysis in all mainstream GIS software with raster data processing capabilities (such as open source QGIS, commercial ESRI ArcGIS products and others).

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Eaton County Michigan (2018). QGIS - Open Source GIS Software [Dataset]. https://hub.arcgis.com/documents/57198670f4234919bfab87fb64d40a82

QGIS - Open Source GIS Software

Explore at:
36 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Aug 9, 2018
Dataset authored and provided by
Eaton County Michigan
Description

This is a link to the QGIS website where you can download open-source GIS software for viewing, analyzing and manipulating geodata like our downloadable shapefiles.

Search
Clear search
Close search
Google apps
Main menu