Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
This upload contains two Geopackage files of raw data used for urban analysis in the outskirts of Lille and Nice, France.
The data include building footprints (layer "building"), roads (layer "road"), and administrative boundaries (layer "adm_boundaries")
extracted from version 3.3 of the French dataset BD TOPO®3 (IGN, 2023) for the municipalities of Santes, Hallennes-lez-Haubourdin,
Haubourdin, and Emmerin in northern France (Geopackage "DPC_59.gpkg") and Drap, Cantaron and La Trinité in southern France
(Geopackage "DPC_06.gpkg").
Metadata for these layers is available here: https://geoservices.ign.fr/sites/default/files/2023-01/DC_BDTOPO_3-3.pdf
Additionally, this upload contains the results of the following algorithms available in GitHub (https://github.com/perezjoan/emc2-WP2?tab=readme-ov-file)
1. Theidentification
of
main
streets using the QGIS plugin Morpheo (layers "road_morpheo" and "buffer_morpheo")
https://plugins.qgis.org/plugins/morpheo/
2.
Theidentification of main streets in local contexts – connectivity locally weighted
(layer "road_LocRelCon")
3.
Basic morphometryof
buildings
(layer "building_morpho")
4.
Evaluationof
the
number
of
dwellings
within
inhabited
buildings
(layer "building_dwellings")
5. Projectingpopulation
potential
accessible from
main
streets
(layer "road_pop_results")
Project website: http://emc2-dut.org/
Publications using this sample data:
Perez, J. and Fusco, G., 2024. Potential of the 15-Minute Peripheral City: Identifying Main Streets and Population Within Walking Distance. In: O. Gervasi, B. Murgante, C. Garau, D. Taniar, A.M.A.C. Rocha and M.N. Faginas Lago, eds. Computational Science and Its Applications – ICCSA 2024 Workshops. ICCSA 2024. Lecture Notes in Computer Science, vol 14817. Cham: Springer, pp.50-60. https://doi.org/10.1007/978-3-031-65238-7_4.
Acknowledgement. This work is part of the emc2 project, which received the grant ANR-23-DUTP-0003-01 from the French National Research Agency (ANR) within the DUT Partnership.
Licence Ouverte / Open Licence 1.0https://www.etalab.gouv.fr/wp-content/uploads/2014/05/Open_Licence.pdf
License information was derived automatically
Here is an image of the global municipal tax (founcier bati + habitation). Average tax per asset Nancy 2014
To do it again you will need: — QGIS software (Free: https://www.qgis.org/fr/site/forusers/download.html), — a qgs file of your department (http://www.actualitix.com/shapefiles-des-departements-de-france.html) — an export of tax rates (https://www.data.gouv.fr/fr/datasets/impots-locaux/ > Municipal and intercommunal data > Your Department > Local Direct Tax Data 2014 (XLS format)) — data (most days of INSEE here 2012 http://www.insee.fr/fr/themes/detail.asp?reg_id=99&ref_id=base-cc-emploi-pop-active-2012)
Operating Mode: — process your data in your favorite spreadsheet (Excel or OpenOffice Calc) by integrating impot data, and INSEE to pull out the numbers that seem revealing to you — Install QGIS — Open the.qgs of your department
Add columns — Right click property on the main layer — Go to the field menu (on the left) — Add (via pencil) the desired columns (here average housing tax per asset, average property tax per asset, and the sum of both) — These are reals of precision 2, and length 6 — Register
Insert data: — Right-click on the “Open attribute table” layer — Select all — Copy — Paste in excel (or openOffice calcs) — Put the ad hoc formulas in excel (SOMME.SI.ENS to recover the rate) — Save the desired tab in CSV DOS with the new values — In QGIS > Menu > Layer > Add a delimited layer of text — Import the CSV
Present the data: — To simplify I advise you to make a layer by rate, and layers sums. So rots you in three clicks out the image of the desired rate — For each layer (or rate) — Right click properties on the csv layer — Labels to add city name and desired rate — Style for fct coloring of a csv field
Print the data in pdf: — To print, you need to define a print template — In the menu choose new printing dialer — choose the format (a department in A0 is rather readable) — Add vas legend, scale, and other — Print and here...
NB: this method creates aberrations: — in the case where the INSEE does not have a number or numbers that have moved a lot since — it is assumed that only assets pay taxes (which is more fair, but not 100 %)
Licence Ouverte / Open Licence 1.0https://www.etalab.gouv.fr/wp-content/uploads/2014/05/Open_Licence.pdf
License information was derived automatically
Here is an image of the overall municipal tax rate (foncier bati + habitation, for municipalities and inter-municipalities).
http://physaphae.noip.me/Img/2015_Rate_54" alt="Local tax rate 54 of 2015" title="Local tax rate 54 of 2015">
Given that it is at the departmental mesh, it is not useful to include the departmental rate, and national... That would not be part of the comparison.
To do it again yourself you will need: - QQGIS software (Free: https://www.qgis.org/en/site/forusers/download.html), - a qgs file of your department (http://www.actualitix.com/shapefiles-des-departements-de-france.html) - an export of tax rates (https://www.data.gouv.fr/en/datasets/local taxes/)
Procedure: Install QGIS Open your department's .qgs
Add columns - Right click property on the main layer - Go to the fields menu (on the left) - Add (via the pencil) the desired columns (here municipal tax rate, intercommunal built land and housing) - These are reals of a precision 2, and a length 4 - Register
Insert data: - Right click on the layer "Open attribute table" - Select all - Copy - Paste into excel (or openOffice calcs) - Put the ad hoc formulas in excel (SUM.SI.ENS to recover the rate) - Save the desired tab in CSV DOS with the new values - In QGIS > Menu > Layer > Add a delimited text layer - Import the CSV
Present the data: - To simplify I advise you to make one layer per rate, and layers are. Thus rots you in three clicks take out the image of the desired rate - For each layer (or rate) - Right click properties on the csv layer - Labels to add the name of the city and the desired rate - Style for coloring in fct of a csv field
Print the data in pdf: - To print, you need to define a print template - In the menu choose new print dialler - choose the format (a department in A0 is rather readable) - Add vas legend, ladder, and other - Print and voila...
Level 1-4 administrative boundaries for Ethiopia
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
This upload contains two Geopackage files of raw data used for urban analysis in the outskirts of Lille and Nice, France.
The data include building footprints (layer "building"), roads (layer "road"), and administrative boundaries (layer "adm_boundaries")
extracted from version 3.3 of the French dataset BD TOPO®3 (IGN, 2023) for the municipalities of Santes, Hallennes-lez-Haubourdin,
Haubourdin, and Emmerin in northern France (Geopackage "DPC_59.gpkg") and Drap, Cantaron and La Trinité in southern France
(Geopackage "DPC_06.gpkg").
Metadata for these layers is available here: https://geoservices.ign.fr/sites/default/files/2023-01/DC_BDTOPO_3-3.pdf
Additionally, this upload contains the results of the following algorithms available in GitHub (https://github.com/perezjoan/emc2-WP2?tab=readme-ov-file)
1. Theidentification
of
main
streets using the QGIS plugin Morpheo (layers "road_morpheo" and "buffer_morpheo")
https://plugins.qgis.org/plugins/morpheo/
2.
Theidentification of main streets in local contexts – connectivity locally weighted
(layer "road_LocRelCon")
3.
Basic morphometryof
buildings
(layer "building_morpho")
4.
Evaluationof
the
number
of
dwellings
within
inhabited
buildings
(layer "building_dwellings")
5. Projectingpopulation
potential
accessible from
main
streets
(layer "road_pop_results")
Project website: http://emc2-dut.org/
Publications using this sample data:
Perez, J. and Fusco, G., 2024. Potential of the 15-Minute Peripheral City: Identifying Main Streets and Population Within Walking Distance. In: O. Gervasi, B. Murgante, C. Garau, D. Taniar, A.M.A.C. Rocha and M.N. Faginas Lago, eds. Computational Science and Its Applications – ICCSA 2024 Workshops. ICCSA 2024. Lecture Notes in Computer Science, vol 14817. Cham: Springer, pp.50-60. https://doi.org/10.1007/978-3-031-65238-7_4.
Acknowledgement. This work is part of the emc2 project, which received the grant ANR-23-DUTP-0003-01 from the French National Research Agency (ANR) within the DUT Partnership.