56 datasets found
  1. a

    Open Data QGIS Map

    • hub.arcgis.com
    • data-ecgis.opendata.arcgis.com
    Updated Jan 16, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eaton County Michigan (2019). Open Data QGIS Map [Dataset]. https://hub.arcgis.com/content/710eba02b62d4d7c9149671be23fa478
    Explore at:
    Dataset updated
    Jan 16, 2019
    Dataset authored and provided by
    Eaton County Michigan
    Description

    QGIS 3 map of Eaton County, Michigan, USA with:ParcelsBuilding FootprintsSite Address PointsPolling PlacesCounty DistrictsControl CornersTownshipsSectionsGeopolitical AreasRoadsFlowlinesCounty DrainsWaterbodiesCountyAerial 2015 map service * The data in the map is stored in a geopackage called "geodata.gpkg" which should be kept in the same folder as the map "OpenData.qgz" in order to maintain the map's connectivity to the data sources. You will need the free GIS software QGIS installed to view this map. It's available at https://qgis.org

  2. G

    QGIS Training Tutorials: Using Spatial Data in Geographic Information...

    • open.canada.ca
    • datasets.ai
    • +2more
    html
    Updated Oct 5, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics Canada (2021). QGIS Training Tutorials: Using Spatial Data in Geographic Information Systems [Dataset]. https://open.canada.ca/data/en/dataset/89be0c73-6f1f-40b7-b034-323cb40b8eff
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Oct 5, 2021
    Dataset provided by
    Statistics Canada
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    Have you ever wanted to create your own maps, or integrate and visualize spatial datasets to examine changes in trends between locations and over time? Follow along with these training tutorials on QGIS, an open source geographic information system (GIS) and learn key concepts, procedures and skills for performing common GIS tasks – such as creating maps, as well as joining, overlaying and visualizing spatial datasets. These tutorials are geared towards new GIS users. We’ll start with foundational concepts, and build towards more advanced topics throughout – demonstrating how with a few relatively easy steps you can get quite a lot out of GIS. You can then extend these skills to datasets of thematic relevance to you in addressing tasks faced in your day-to-day work.

  3. a

    QGIS - Open Source GIS Software

    • hub.arcgis.com
    • data-ecgis.opendata.arcgis.com
    Updated Aug 9, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eaton County Michigan (2018). QGIS - Open Source GIS Software [Dataset]. https://hub.arcgis.com/documents/57198670f4234919bfab87fb64d40a82
    Explore at:
    Dataset updated
    Aug 9, 2018
    Dataset authored and provided by
    Eaton County Michigan
    Description

    This is a link to the QGIS website where you can download open-source GIS software for viewing, analyzing and manipulating geodata like our downloadable shapefiles.

  4. Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter...

    • catalog.data.gov
    • datasets.ai
    • +1more
    Updated Jun 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter accuracy and 1-foot resolution 2006-2007 mapping), Mississippi and Florida (NPS, GRD, GRI, GUIS, GUIS_geomorphology digital map) adapted from U.S. Geological Survey Open File Report maps by Morton and Rogers (2009) and Morton and Montgomery (2010) [Dataset]. https://catalog.data.gov/dataset/digital-geomorphic-gis-map-of-gulf-islands-national-seashore-5-meter-accuracy-and-1-foot-r
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Guisguis Port Sariaya, Quezon
    Description

    The Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter accuracy and 1-foot resolution 2006-2007 mapping), Mississippi and Florida is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (guis_geomorphology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (guis_geomorphology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (guis_geomorphology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (guis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (guis_geomorphology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (guis_geomorphology_metadata_faq.pdf). Please read the guis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (guis_geomorphology_metadata.txt or guis_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:26,000 and United States National Map Accuracy Standards features are within (horizontally) 13.2 meters or 43.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  5. d

    Geospatial Data from the Alpine Treeline Warming Experiment (ATWE) on Niwot...

    • search.dataone.org
    • data.ess-dive.lbl.gov
    • +2more
    Updated Jul 7, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fabian Zuest; Cristina Castanha; Nicole Lau; Lara M. Kueppers (2021). Geospatial Data from the Alpine Treeline Warming Experiment (ATWE) on Niwot Ridge, Colorado, USA [Dataset]. http://doi.org/10.15485/1804896
    Explore at:
    Dataset updated
    Jul 7, 2021
    Dataset provided by
    ESS-DIVE
    Authors
    Fabian Zuest; Cristina Castanha; Nicole Lau; Lara M. Kueppers
    Time period covered
    Jan 1, 2008 - Jan 1, 2012
    Area covered
    Description

    This is a collection of all GPS- and computer-generated geospatial data specific to the Alpine Treeline Warming Experiment (ATWE), located on Niwot Ridge, Colorado, USA. The experiment ran between 2008 and 2016, and consisted of three sites spread across an elevation gradient. Geospatial data for all three experimental sites and cone/seed collection locations are included in this package. ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Geospatial files include cone collection, experimental site, seed trap, and other GPS location/terrain data. File types include ESRI shapefiles, ESRI grid files or Arc/Info binary grids, TIFFs (.tif), and keyhole markup language (.kml) files. Trimble-imported data include plain text files (.txt), Trimble COR (CorelDRAW) files, and Trimble SSF (Standard Storage Format) files. Microsoft Excel (.xlsx) and comma-separated values (.csv) files corresponding to the attribute tables of many files within this package are also included. A complete list of files can be found in this document in the “Data File Organization” section in the included Data User's Guide. Maps are also included in this data package for reference and use. These maps are separated into two categories, 2021 maps and legacy maps, which were made in 2010. Each 2021 map has one copy in portable network graphics (.png) format, and the other in .pdf format. All legacy maps are in .pdf format. .png image files can be opened with any compatible programs, such as Preview (Mac OS) and Photos (Windows). All GIS files were imported into geopackages (.gpkg) using QGIS, and double-checked for compatibility and data/attribute integrity using ESRI ArcGIS Pro. Note that files packaged within geopackages will open in ArcGIS Pro with “main.” preceding each file name, and an extra column named “geom” defining geometry type in the attribute table. The contents of each geospatial file remain intact, unless otherwise stated in “niwot_geospatial_data_list_07012021.pdf/.xlsx”. This list of files can be found as an .xlsx and a .pdf in this archive. As an open-source file format, files within gpkgs (TIFF, shapefiles, ESRI grid or “Arc/Info Binary”) can be read using both QGIS and ArcGIS Pro, and any other geospatial softwares. Text and .csv files can be read using TextEdit/Notepad/any simple text-editing software; .csv’s can also be opened using Microsoft Excel and R. .kml files can be opened using Google Maps or Google Earth, and Trimble files are most compatible with Trimble’s GPS Pathfinder Office software. .xlsx files can be opened using Microsoft Excel. PDFs can be opened using Adobe Acrobat Reader, and any other compatible programs. A selection of original shapefiles within this archive were generated using ArcMap with associated FGDC-standardized metadata (xml file format). We are including these original files because they contain metadata only accessible using ESRI programs at this time, and so that the relationship between shapefiles and xml files is maintained. Individual xml files can be opened (without a GIS-specific program) using TextEdit or Notepad. Since ESRI’s compatibility with FGDC metadata has changed since the generation of these files, many shapefiles will require upgrading to be compatible with ESRI’s latest versions of geospatial software. These details are also noted in the “niwot_geospatial_data_list_07012021” file.

  6. H

    Digital Elevation Models and GIS in Hydrology (M2)

    • hydroshare.org
    • beta.hydroshare.org
    • +1more
    zip
    Updated Jun 7, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Irene Garousi-Nejad; Belize Lane (2021). Digital Elevation Models and GIS in Hydrology (M2) [Dataset]. http://doi.org/10.4211/hs.9c4a6e2090924d97955a197fea67fd72
    Explore at:
    zip(88.2 MB)Available download formats
    Dataset updated
    Jun 7, 2021
    Dataset provided by
    HydroShare
    Authors
    Irene Garousi-Nejad; Belize Lane
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This resource contains data inputs and a Jupyter Notebook that is used to introduce Hydrologic Analysis using Terrain Analysis Using Digital Elevation Models (TauDEM) and Python. TauDEM is a free and open-source set of Digital Elevation Model (DEM) tools developed at Utah State University for the extraction and analysis of hydrologic information from topography. This resource is part of a HydroLearn Physical Hydrology learning module available at https://edx.hydrolearn.org/courses/course-v1:Utah_State_University+CEE6400+2019_Fall/about

    In this activity, the student learns how to (1) derive hydrologically useful information from Digital Elevation Models (DEMs); (2) describe the sequence of steps involved in mapping stream networks, catchments, and watersheds; and (3) compute an approximate water balance for a watershed-based on publicly available data.

    Please note that this exercise is designed for the Logan River watershed, which drains to USGS streamflow gauge 10109000 located just east of Logan, Utah. However, this Jupyter Notebook and the analysis can readily be applied to other locations of interest. If running the terrain analysis for other study sites, you need to prepare a DEM TIF file, an outlet shapefile for the area of interest, and the average annual streamflow and precipitation data. - There are several sources to obtain DEM data. In the U.S., the DEM data (with different spatial resolutions) can be obtained from the National Elevation Dataset available from the national map (http://viewer.nationalmap.gov/viewer/). Another DEM data source is the Shuttle Radar Topography Mission (https://www2.jpl.nasa.gov/srtm/), an international research effort that obtained digital elevation models on a near-global scale (search for Digital Elevation at https://www.usgs.gov/centers/eros/science/usgs-eros-archive-products-overview?qt-science_center_objects=0#qt-science_center_objects). - If not already available, you can generate the outlet shapefile by applying basic terrain analysis steps in geospatial information system models such as ArcGIS or QGIS. - You also need to obtain average annual streamflow and precipitation data for the watershed of interest to assess the annual water balance and calculate the runoff ratio in this exercise. In the U.S., the streamflow data can be obtained from the USGS NWIS website (https://waterdata.usgs.gov/nwis) and the precipitation from PRISM (https://prism.oregonstate.edu/normals/). Note that using other datasets may require preprocessing steps to make data ready to use for this exercise.

  7. d

    GeoServer Tutorials

    • search.dataone.org
    • hydroshare.org
    • +1more
    Updated Aug 5, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jacob Wise Calhoon (2022). GeoServer Tutorials [Dataset]. https://search.dataone.org/view/sha256%3Aa7a065a4b8c7c5cfc1620ba2a12b9669ba4079e7b98983aeae4319eb9269fa92
    Explore at:
    Dataset updated
    Aug 5, 2022
    Dataset provided by
    Hydroshare
    Authors
    Jacob Wise Calhoon
    Description

    This resources contains PDF files and Python notebook files that demonstrate how to create geospatial resources in HydroShare and how to use these resources through web services provided by the built-in HydroShare GeoServer instance. Geospatial resources can be consumed directly into ArcMap, ArcGIS, Story Maps, Quantum GIS (QGIS), Leaflet, and many other mapping environments. This provides HydroShare users with the ability to store data and retrieve it via services without needing to set up new data services. All tutorials cover how to add WMS and WFS connections. WCS connections are available for QGIS and are covered in the QGIS tutorial. The tutorials and examples provided here are intended to get the novice user up-to-speed with WMS and GeoServer, though we encourage users to read further on these topic using internet searches and other resources. Also included in this resource is a tutorial designed to that walk users through the process of creating a GeoServer connected resource.

    The current list of available tutorials: - Creating a Resource - ArcGIS Pro - ArcMap - ArcGIS Story Maps - QGIS - IpyLeaflet - Folium

  8. g

    QGIS Projects of Initiation Map Drawings | gimi9.com

    • gimi9.com
    Updated Jun 21, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). QGIS Projects of Initiation Map Drawings | gimi9.com [Dataset]. https://gimi9.com/dataset/eu_3622ef60-77bf-428f-872a-384d95aad8ac/
    Explore at:
    Dataset updated
    Jun 21, 2022
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Please note: for a correct view and use of this dataset it is advisable to consult it at original page on the Arezzo Portal. At the same address there are also, for the enabled datasets, additional access formats, the preview of the visualization via API call, the consultation of the fields in DCAT-AP IT format, the possibility to express an evaluation and comment on the dataset itself. All resource formats available for this dataset can be downloaded as ZIP packages: inside the package sarà available the resource in the chosen format, complete with all the information on the metadata and the license associated with it. The resource is the logical container of the projects of the cartographic works of the start of the procedure of the variant to the Structural Plan and the new Operational Plan, realized through the desktop application QGIS.

  9. a

    Enhancing Maps with Charts in QGIS

    • gulf-coast-geospatial-geo-project.hub.arcgis.com
    Updated Feb 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GEOproject_admin (2025). Enhancing Maps with Charts in QGIS [Dataset]. https://gulf-coast-geospatial-geo-project.hub.arcgis.com/documents/0f0241f7b4d84f2d98fa3ac12a60c364
    Explore at:
    Dataset updated
    Feb 5, 2025
    Dataset authored and provided by
    GEOproject_admin
    Description

    Raczynski, K., Grala, K., & Cartwright, J. H. (2025). Enhancing Maps with Charts in QGIS. Mississippi State University: Geosystems Research Institute. [View Document]GEO Tutorial Number of Pages: 7 Publication Date: 02/2025 This work was supported through funding by the National Oceanic and Atmospheric Administration Regional Geospatial Modeling Grant, Award # NA19NOS4730207.

  10. Open Source GIS Training for Improved Protected Area Planning and Management...

    • pacific-data.sprep.org
    • solomonislands-data.sprep.org
    pdf, zip
    Updated Feb 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Secretariat of the Pacific Regional Environment Programme (2025). Open Source GIS Training for Improved Protected Area Planning and Management in the Solomon Islands [Dataset]. https://pacific-data.sprep.org/dataset/open-source-gis-training-improved-protected-area-planning-and-management-solomon-islands
    Explore at:
    pdf(5434848), pdf(969719), zip, pdf(3669473)Available download formats
    Dataset updated
    Feb 8, 2025
    Dataset provided by
    Pacific Regional Environment Programmehttps://www.sprep.org/
    License

    Public Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
    License information was derived automatically

    Area covered
    168.10043334961 -4.0464671937446, 168.10043334961 -12.561265715616)), POLYGON ((155.35629272461 -12.561265715616, 155.35629272461 -4.0464671937446, Solomon Islands
    Description

    Dataset contains training material on using open source Geographic Information Systems (GIS) to improve protected area planning and management from a workshop that was conducted on October 19-23, 2020. Specifically, the dataset contains lectures on GIS fundamentals, QGIS 3.x, and global positioning system (GPS), as well as country-specific datasets and a workbook containing exercises for viewing data, editing/creating datasets, and creating map products in QGIS. Supplemental videos that narrate a step-by-step recap and overview of these processes are found in the Related Content section of this dataset.

    Funding for this workshop and material was funded by the Biodiversity and Protected Areas Management (BIOPAMA) programme. The BIOPAMA programme is an initiative of the Organisation of African, Caribbean and Pacific (ACP) Group of States financed by the European Union's 11th European Development Fund. BIOPAMA is jointly implemented by the International Union for Conservation of Nature {IUCN) and the Joint Research Centre of the European Commission (EC-JRC). In the Pacific region, BIOPAMA is implemented by IUCN's Oceania Regional Office (IUCN ORO) in partnership with the Secretariat of the Pacific Regional Environment Programme (SPREP). The overall objective of the BIOPAMA programme is to contribute to improving the long-term conservation and sustainable use of biodiversity and natural resources in the Pacific ACP region in protected areas and surrounding communities through better use and monitoring of information and capacity development on management and governance.

  11. e

    Bright Earth eAtlas Basemap (NERP TE 13.1 eAtlas, AIMS)

    • catalogue.eatlas.org.au
    Updated Jan 25, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Australian Institute of Marine Science (2025). Bright Earth eAtlas Basemap (NERP TE 13.1 eAtlas, AIMS) [Dataset]. https://catalogue.eatlas.org.au/geonetwork/srv/api/records/ac57aa5a-233b-4c2c-bd52-1fb40a31f639
    Explore at:
    ogc:wms-1.1.1-http-get-map, www:link-1.0-http--downloaddata, www:download-1.0-http--download, www:link-1.0-http--related, www:link-1.0-http--linkAvailable download formats
    Dataset updated
    Jan 25, 2025
    Dataset provided by
    Australian Institute of Marine Science
    License

    Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
    License information was derived automatically

    Area covered
    Earth
    Description

    The Bright Earth eAtlas Basemap dataset collection is a satellite-derived global map of the world at a 1:1M scale for most of the world and 1:200k scale for Australia. This map was inspired by Natural Earth II (NEII) and NASA's Blue Marble Next Generation (BMNG) imagery.

    Its aim was to provide a basemap similar to NEII but with a higher resolution (~10x).

    This basemap is derived from the following datasets: Blue Marble Next Generation 2004-04 (NASA), VMap0 coastline, Coast100k 2004 Australian coastline (GeoScience Australia), SRTM30 Plus v8.0 (UCSD) hillshading, Natural Earth Vector 10m bathymetry and coastline v2.0 (NE), gbr100 hillshading (JCU).

    This dataset (World_Bright-Earth-e-Atlas-basemap) contains all the files required to setup the Bright Earth eAtlas basemap in a GeoServer. All the data files are stored in GeoTiffs or shapefiles and so can also be loaded into ArcMap, however no styling has been included for this purpose.

    This basemap is small enough (~900 MB) that can be readily used locally or deployed to a GeoServer.

    Base map aesthetics (added 28 Jan 2025)

    The Bright Earth e-Atlas Basemap is a high-resolution representation of the Earth's surface, designed to depict global geography with clarity, natural aesthetics with bright and soft color tones that enhance data overlays without overwhelming the viewer. The land areas are based on NASA's Blue Marble imagery, with modifications to lighten the tone and apply noise reduction filtering to soften the overall coloring. The original Blue Marble imagery was based on composite satellite imagery resulting in a visually appealing and clean map that highlights natural features while maintaining clarity and readability. Hillshading has been applied across the landmasses to enhance detail and texture, bringing out the relief of mountainous regions, plateaus, and other landforms.

    The oceans feature three distinct depth bands to illustrate shallow continental areas, deeper open ocean zones, and the very deep trenches and basins. The colors transition from light blue in shallow areas to darker shades in deeper regions, giving a clear sense of bathymetric variation. Hillshading has also been applied to the oceans to highlight finer structures on the seafloor, such as ridges, trenches, and other geological features, adding depth and dimensionality to the depiction of underwater topography.

    At higher zoom levels prominent cities are shown and the large scale roads are shown for Australia.

    Rendered Raster Version (added 28 Jan 2025)

    A low resolution version of the dataset is available as a raster file (PNG, JPG and GeoTiff) at ~2 km and 4 km resolutions. These rasters are useful for applications where GeoServer is not available to render the data dynamically. While the rasters are large they represent a small fraction of the full detail of the dataset. The rastered version was produced using the layout manager in QGIS to render maps of the whole world, pulling the imagery from the eAtlas GeoServer. This imagery from converted to the various formats using GDAL. More detail is provided in 'Rendered-bright-earth-processing.txt' in the download and browse section.

    Change Log 2025-01-28: Added two rendered raster versions of the dataset at 21600x10800 and 10400x5400 pixels in size in PNG, JPG and GeoTiff format. Added

  12. Digital Geologic-GIS Map of Fayette County, Pennsylvania (NPS, GRD, GRI,...

    • catalog.data.gov
    • s.cnmilf.com
    • +1more
    Updated Jun 5, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geologic-GIS Map of Fayette County, Pennsylvania (NPS, GRD, GRI, FONE, FRHI, FACO digital map) adapted from a Pennsylvania Geological Survey Water Resource Report map by McElroy (1988) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-fayette-county-pennsylvania-nps-grd-gri-fone-frhi-faco-digital
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Fayette County, Pennsylvania
    Description

    The Digital Geologic-GIS Map of Fayette County, Pennsylvania is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (faco_geology.gdb), and a 2.) Open Geospatial Consortium (OGC) geopackage. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (faco_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (faco_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (fone_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (fone_frhi_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (faco_geology_metadata_faq.pdf). Please read the fone_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. QGIS software is available for free at: https://www.qgis.org/en/site/. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Pennsylvania Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (faco_geology_metadata.txt or faco_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:50,000 and United States National Map Accuracy Standards features are within (horizontally) 25.4 meters or 83.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  13. d

    Landgate Basemap - Datasets - data.wa.gov.au

    • catalogue.data.wa.gov.au
    Updated Dec 1, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2019). Landgate Basemap - Datasets - data.wa.gov.au [Dataset]. https://catalogue.data.wa.gov.au/dataset/landgate-basemap
    Explore at:
    Dataset updated
    Dec 1, 2019
    Area covered
    Western Australia
    Description

    Updated quarterly, the Landgate Basemap is comprised of simplified cadastre, topographic and road centreline information, and is the perfect backdrop to provide context for projects that require commonly used underlying WA centric location information. The Landgate Basemap provides a stylized (familiar ‘StreetSmart’ style ) layout, current, geo-referenced and view only map base. This is a view only service (i.e no data download capability) and can be viewed in combination with Landgate’s other subscription datasets, SLIP public datasets and other geo-referenced data. Designed for use within GIS and online mapping applications, the tile cached Basemap service introduces faster panning and redrawing of location information commonly used across many sectors. Key information • WA centric basemap comprising commonly used Landgate location information • cached map tiles • ESRI cache map service and WMTS (web map tile service) - publishes in WGS84 only • Update cycle: quarterly • Coverage: whole of state (includes Christmas and Cocos Keeling Islands) • QGIS 2.18 minimum required for WMTS usage. © Western Australian Land Information Authority (Landgate). Use of Landgate data is subject to Personal Use License terms and conditions unless otherwise authorised under approved License terms and conditions. For more information and access to Subscription Services contact Landgate's Business Sales and Service team. Email: BusinessSolutions@landgate.wa.gov.au Services Note, the following services require 3rd party software that supports OGC Standards and Esri services.

  14. Z

    Data from: 3DHD CityScenes: High-Definition Maps in High-Density Point...

    • data.niaid.nih.gov
    • zenodo.org
    • +1more
    Updated Jul 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fingscheidt, Tim (2024). 3DHD CityScenes: High-Definition Maps in High-Density Point Clouds [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_7085089
    Explore at:
    Dataset updated
    Jul 16, 2024
    Dataset provided by
    Sertolli, Benjamin
    Klingner, Marvin
    Plachetka, Christopher
    Fricke, Jenny
    Fingscheidt, Tim
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Overview

    3DHD CityScenes is the most comprehensive, large-scale high-definition (HD) map dataset to date, annotated in the three spatial dimensions of globally referenced, high-density LiDAR point clouds collected in urban domains. Our HD map covers 127 km of road sections of the inner city of Hamburg, Germany including 467 km of individual lanes. In total, our map comprises 266,762 individual items.

    Our corresponding paper (published at ITSC 2022) is available here. Further, we have applied 3DHD CityScenes to map deviation detection here.

    Moreover, we release code to facilitate the application of our dataset and the reproducibility of our research. Specifically, our 3DHD_DevKit comprises:

    Python tools to read, generate, and visualize the dataset,

    3DHDNet deep learning pipeline (training, inference, evaluation) for map deviation detection and 3D object detection.

    The DevKit is available here:

    https://github.com/volkswagen/3DHD_devkit.

    The dataset and DevKit have been created by Christopher Plachetka as project lead during his PhD period at Volkswagen Group, Germany.

    When using our dataset, you are welcome to cite:

    @INPROCEEDINGS{9921866, author={Plachetka, Christopher and Sertolli, Benjamin and Fricke, Jenny and Klingner, Marvin and Fingscheidt, Tim}, booktitle={2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC)}, title={3DHD CityScenes: High-Definition Maps in High-Density Point Clouds}, year={2022}, pages={627-634}}

    Acknowledgements

    We thank the following interns for their exceptional contributions to our work.

    Benjamin Sertolli: Major contributions to our DevKit during his master thesis

    Niels Maier: Measurement campaign for data collection and data preparation

    The European large-scale project Hi-Drive (www.Hi-Drive.eu) supports the publication of 3DHD CityScenes and encourages the general publication of information and databases facilitating the development of automated driving technologies.

    The Dataset

    After downloading, the 3DHD_CityScenes folder provides five subdirectories, which are explained briefly in the following.

    1. Dataset

    This directory contains the training, validation, and test set definition (train.json, val.json, test.json) used in our publications. Respective files contain samples that define a geolocation and the orientation of the ego vehicle in global coordinates on the map.

    During dataset generation (done by our DevKit), samples are used to take crops from the larger point cloud. Also, map elements in reach of a sample are collected. Both modalities can then be used, e.g., as input to a neural network such as our 3DHDNet.

    To read any JSON-encoded data provided by 3DHD CityScenes in Python, you can use the following code snipped as an example.

    import json

    json_path = r"E:\3DHD_CityScenes\Dataset\train.json" with open(json_path) as jf: data = json.load(jf) print(data)

    1. HD_Map

    Map items are stored as lists of items in JSON format. In particular, we provide:

    traffic signs,

    traffic lights,

    pole-like objects,

    construction site locations,

    construction site obstacles (point-like such as cones, and line-like such as fences),

    line-shaped markings (solid, dashed, etc.),

    polygon-shaped markings (arrows, stop lines, symbols, etc.),

    lanes (ordinary and temporary),

    relations between elements (only for construction sites, e.g., sign to lane association).

    1. HD_Map_MetaData

    Our high-density point cloud used as basis for annotating the HD map is split in 648 tiles. This directory contains the geolocation for each tile as polygon on the map. You can view the respective tile definition using QGIS. Alternatively, we also provide respective polygons as lists of UTM coordinates in JSON.

    Files with the ending .dbf, .prj, .qpj, .shp, and .shx belong to the tile definition as “shape file” (commonly used in geodesy) that can be viewed using QGIS. The JSON file contains the same information provided in a different format used in our Python API.

    1. HD_PointCloud_Tiles

    The high-density point cloud tiles are provided in global UTM32N coordinates and are encoded in a proprietary binary format. The first 4 bytes (integer) encode the number of points contained in that file. Subsequently, all point cloud values are provided as arrays. First all x-values, then all y-values, and so on. Specifically, the arrays are encoded as follows.

    x-coordinates: 4 byte integer

    y-coordinates: 4 byte integer

    z-coordinates: 4 byte integer

    intensity of reflected beams: 2 byte unsigned integer

    ground classification flag: 1 byte unsigned integer

    After reading, respective values have to be unnormalized. As an example, you can use the following code snipped to read the point cloud data. For visualization, you can use the pptk package, for instance.

    import numpy as np import pptk

    file_path = r"E:\3DHD_CityScenes\HD_PointCloud_Tiles\HH_001.bin" pc_dict = {} key_list = ['x', 'y', 'z', 'intensity', 'is_ground'] type_list = ['

  15. Open Source GIS Training for Improved Protected Area Planning and Management...

    • pacific-data.sprep.org
    • samoa-data.sprep.org
    pdf, zip
    Updated Feb 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Secretariat of the Pacific Regional Environment Programme (2025). Open Source GIS Training for Improved Protected Area Planning and Management in Samoa [Dataset]. https://pacific-data.sprep.org/dataset/open-source-gis-training-improved-protected-area-planning-and-management-samoa
    Explore at:
    pdf(1016525), zip, pdf(3655929), pdf(4922394)Available download formats
    Dataset updated
    Feb 8, 2025
    Dataset provided by
    Pacific Regional Environment Programmehttps://www.sprep.org/
    License

    Public Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
    License information was derived automatically

    Area covered
    Samoa, 188.90562057495 -14.517952072974)), 186.75230026245 -13.120440826626, POLYGON ((186.75230026245 -14.517952072974, 188.90562057495 -13.120440826626
    Description

    Dataset contains training material on using open source Geographic Information Systems (GIS) to improve protected area planning and management from workshops that were conducted on February 19-21 and October 6-7, 2020. Specifically, the dataset contains lectures on GIS fundamentals, QGIS 3.x, and global positioning system (GPS), as well as country-specific datasets and a workbook containing exercises for viewing data, editing/creating datasets, and creating map products in QGIS. Supplemental videos that narrate a step-by-step recap and overview of these processes are found in the Related Content section of this dataset.

    Funding for this workshop and material was funded by the Biodiversity and Protected Areas Management (BIOPAMA) programme. The BIOPAMA programme is an initiative of the Organisation of African, Caribbean and Pacific (ACP) Group of States financed by the European Union's 11th European Development Fund. BIOPAMA is jointly implemented by the International Union for Conservation of Nature {IUCN) and the Joint Research Centre of the European Commission (EC-JRC). In the Pacific region, BIOPAMA is implemented by IUCN's Oceania Regional Office (IUCN ORO) in partnership with the Secretariat of the Pacific Regional Environment Programme (SPREP). The overall objective of the BIOPAMA programme is to contribute to improving the long-term conservation and sustainable use of biodiversity and natural resources in the Pacific ACP region in protected areas and surrounding communities through better use and monitoring of information and capacity development on management and governance.

  16. d

    Test Resource for OGC Web Services

    • dataone.org
    • hydroshare.org
    • +2more
    Updated Apr 15, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jacob Wise Calhoon (2022). Test Resource for OGC Web Services [Dataset]. https://dataone.org/datasets/sha256%3A59bae29350865fc2ca6d4c4d3f5995a2a51b7b0ebb9cc8414122cf46a63846c0
    Explore at:
    Dataset updated
    Apr 15, 2022
    Dataset provided by
    Hydroshare
    Authors
    Jacob Wise Calhoon
    Time period covered
    Aug 6, 2020
    Area covered
    Description

    This resource contains the test data for the GeoServer OGC Web Services tutorials for various GIS applications including ArcGIS Pro, ArcMap, ArcGIS Story Maps, and QGIS. The contents of the data include a polygon shapefile, a polyline shapefile, a point shapefile, and a raster dataset; all of which pertain to the state of Utah, USA. The polygon shapefile is of every county in the state of Utah. The polyline is of every trail in the state of Utah. The point shapefile is the current list of GNIS place names in the state of Utah. The raster dataset covers a region in the center of the state of Utah. All datasets are projected to NAD 1983 Zone 12N.

  17. h

    Heat Severity - USA 2021

    • heat.gov
    Updated Jan 6, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Trust for Public Land (2022). Heat Severity - USA 2021 [Dataset]. https://www.heat.gov/datasets/cdd2ffd5a2fc414ca1a5e676f5fce3e3
    Explore at:
    Dataset updated
    Jan 6, 2022
    Dataset authored and provided by
    The Trust for Public Land
    Area covered
    Description

    Notice: this is not the latest Heat Island Severity image service. For 2023 data, visit https://tpl.maps.arcgis.com/home/item.html?id=db5bdb0f0c8c4b85b8270ec67448a0b6. This layer contains the relative heat severity for every pixel for every city in the contiguous United States. This 30-meter raster was derived from Landsat 8 imagery band 10 (ground-level thermal sensor) from the summer of 2021, patched with data from 2020 where necessary.Federal statistics over a 30-year period show extreme heat is the leading cause of weather-related deaths in the United States. Extreme heat exacerbated by urban heat islands can lead to increased respiratory difficulties, heat exhaustion, and heat stroke. These heat impacts significantly affect the most vulnerable—children, the elderly, and those with preexisting conditions.The purpose of this layer is to show where certain areas of cities are hotter than the average temperature for that same city as a whole. Severity is measured on a scale of 1 to 5, with 1 being a relatively mild heat area (slightly above the mean for the city), and 5 being a severe heat area (significantly above the mean for the city). The absolute heat above mean values are classified into these 5 classes using the Jenks Natural Breaks classification method, which seeks to reduce the variance within classes and maximize the variance between classes. Knowing where areas of high heat are located can help a city government plan for mitigation strategies.This dataset represents a snapshot in time. It will be updated yearly, but is static between updates. It does not take into account changes in heat during a single day, for example, from building shadows moving. The thermal readings detected by the Landsat 8 sensor are surface-level, whether that surface is the ground or the top of a building. Although there is strong correlation between surface temperature and air temperature, they are not the same. We believe that this is useful at the national level, and for cities that don’t have the ability to conduct their own hyper local temperature survey. Where local data is available, it may be more accurate than this dataset. Dataset SummaryThis dataset was developed using proprietary Python code developed at The Trust for Public Land, running on the Descartes Labs platform through the Descartes Labs API for Python. The Descartes Labs platform allows for extremely fast retrieval and processing of imagery, which makes it possible to produce heat island data for all cities in the United States in a relatively short amount of time.What can you do with this layer?This layer has query, identify, and export image services available. Since it is served as an image service, it is not necessary to download the data; the service itself is data that can be used directly in any Esri geoprocessing tool that accepts raster data as input.In order to click on the image service and see the raw pixel values in a map viewer, you must be signed in to ArcGIS Online, then Enable Pop-Ups and Configure Pop-Ups.Using the Urban Heat Island (UHI) Image ServicesThe data is made available as an image service. There is a processing template applied that supplies the yellow-to-red or blue-to-red color ramp, but once this processing template is removed (you can do this in ArcGIS Pro or ArcGIS Desktop, or in QGIS), the actual data values come through the service and can be used directly in a geoprocessing tool (for example, to extract an area of interest). Following are instructions for doing this in Pro.In ArcGIS Pro, in a Map view, in the Catalog window, click on Portal. In the Portal window, click on the far-right icon representing Living Atlas. Search on the acronyms “tpl” and “uhi”. The results returned will be the UHI image services. Right click on a result and select “Add to current map” from the context menu. When the image service is added to the map, right-click on it in the map view, and select Properties. In the Properties window, select Processing Templates. On the drop-down menu at the top of the window, the default Processing Template is either a yellow-to-red ramp or a blue-to-red ramp. Click the drop-down, and select “None”, then “OK”. Now you will have the actual pixel values displayed in the map, and available to any geoprocessing tool that takes a raster as input. Below is a screenshot of ArcGIS Pro with a UHI image service loaded, color ramp removed, and symbology changed back to a yellow-to-red ramp (a classified renderer can also be used): Other Sources of Heat Island InformationPlease see these websites for valuable information on heat islands and to learn about exciting new heat island research being led by scientists across the country:EPA’s Heat Island Resource CenterDr. Ladd Keith, University of ArizonaDr. Ben McMahan, University of Arizona Dr. Jeremy Hoffman, Science Museum of Virginia Dr. Hunter Jones, NOAA Daphne Lundi, Senior Policy Advisor, NYC Mayor's Office of Recovery and ResiliencyDisclaimer/FeedbackWith nearly 14,000 cities represented, checking each city's heat island raster for quality assurance would be prohibitively time-consuming, so The Trust for Public Land checked a statistically significant sample size for data quality. The sample passed all quality checks, with about 98.5% of the output cities error-free, but there could be instances where the user finds errors in the data. These errors will most likely take the form of a line of discontinuity where there is no city boundary; this type of error is caused by large temperature differences in two adjacent Landsat scenes, so the discontinuity occurs along scene boundaries (see figure below). The Trust for Public Land would appreciate feedback on these errors so that version 2 of the national UHI dataset can be improved. Contact Dale.Watt@tpl.org with feedback.

  18. d

    GIS Data | Global Geospatial data | Postal/Administrative boundaries |...

    • datarade.ai
    .json, .xml
    Updated Oct 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GeoPostcodes (2024). GIS Data | Global Geospatial data | Postal/Administrative boundaries | Countries, Regions, Cities, Suburbs, and more [Dataset]. https://datarade.ai/data-products/geopostcodes-gis-data-gesopatial-data-postal-administrati-geopostcodes
    Explore at:
    .json, .xmlAvailable download formats
    Dataset updated
    Oct 18, 2024
    Dataset authored and provided by
    GeoPostcodes
    Area covered
    United States
    Description

    Overview

    Empower your location data visualizations with our edge-matched polygons, even in difficult geographies.

    Our self-hosted GIS data cover administrative and postal divisions with up to 6 precision levels: a zip code layer and up to 5 administrative levels. All levels follow a seamless hierarchical structure with no gaps or overlaps.

    The geospatial data shapes are offered in high-precision and visualization resolution and are easily customized on-premise.

    Use cases for the Global Boundaries Database (GIS data, Geospatial data)

    • In-depth spatial analysis

    • Clustering

    • Geofencing

    • Reverse Geocoding

    • Reporting and Business Intelligence (BI)

    Product Features

    • Coherence and precision at every level

    • Edge-matched polygons

    • High-precision shapes for spatial analysis

    • Fast-loading polygons for reporting and BI

    • Multi-language support

    For additional insights, you can combine the GIS data with:

    • Population data: Historical and future trends

    • UNLOCODE and IATA codes

    • Time zones and Daylight Saving Time (DST)

    Data export methodology

    Our geospatial data packages are offered in variable formats, including - .shp - .gpkg - .kml - .shp - .gpkg - .kml - .geojson

    All GIS data are optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more.

    Why companies choose our map data

    • Precision at every level

    • Coverage of difficult geographies

    • No gaps, nor overlaps

    Note: Custom geospatial data packages are available. Please submit a request via the above contact button for more details.

  19. OpenStreetMap Data Papua New Guinea

    • png-data.sprep.org
    • pacific-data.sprep.org
    zip
    Updated Nov 2, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SPREP Environmental Monitoring and Governance (EMG) (2022). OpenStreetMap Data Papua New Guinea [Dataset]. https://png-data.sprep.org/dataset/openstreetmap-data-papua-new-guinea
    Explore at:
    zipAvailable download formats
    Dataset updated
    Nov 2, 2022
    Dataset provided by
    Pacific Regional Environment Programmehttps://www.sprep.org/
    License

    Public Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
    License information was derived automatically

    Area covered
    Papua New Guinea
    Description

    OpenStreetMap (OSM) is a free, editable map & spatial database of the whole world. This dataset is an extract of OpenStreetMap data for Papua New Guinea in a GIS-friendly format.

    The OSM data has been split into separate layers based on themes (buildings, roads, points of interest, etc), and it comes bundled with a QGIS project and styles, to help you get started with using the data in your maps. This OSM product will be updated weekly.

    The goal is to increase awareness among Pacific GIS users of the richness of OpenStreetMap data in Pacific countries, as well as the gaps, so that they can take advantage of this free resource, become interested in contributing to OSM, and perhaps join the global OSM community.

  20. a

    Dark Gray Canvas

    • hub.arcgis.com
    Updated Jun 1, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Iowa Department of Transportation (2015). Dark Gray Canvas [Dataset]. https://hub.arcgis.com/maps/IowaDOT::dark-gray-canvas/about
    Explore at:
    Dataset updated
    Jun 1, 2015
    Dataset authored and provided by
    Iowa Department of Transportation
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This web map draws attention to your thematic content by providing a dark, neutral background with minimal colors, labels, and features. Only key information is represented to provide geographic context, allowing your data to come to the foreground. Open this web map and choose the "Add" button at the top to add your thematic content, or drag and drop your GIS-ready data to the map.This web map uses the World Dark Gray Base map service as its basemap. This web map also contains the World Dark Gray Reference map service to provide labels for selected cities and towns.This dark gray web map supports bright colors and labels for your theme, creating a visually compelling map graphic which helps your reader see the patterns intended. See this blog post for more information on how to use this map.The map shows populated places, water, roads, urban areas, parks, building footprints, and administrative boundaries. Alignment of boundaries is a presentation of the feature provided by our data vendors and does not imply endorsement by Esri or any governing authority. This map was compiled by Esri using HERE data, DeLorme basemap layers, MapmyIndia data, and Esri basemap data. The basemap includes boundaries, administrative labels, and major roads worldwide from 1:591M scale to 1:577k scale. More detailed nationwide coverage is included in North America, Africa, South America and Central America, the Middle East, India, Australia, and New Zealand down to the 1:9k scale. Data for select areas of Africa and Pacific Island nations from ~1:288k to ~1:9k was sourced from OpenStreetMap contributors. Specific country list and documentation of Esri's process for including OSM data is available to view.In addition, some of the data in the World Dark Gray Base map service has been contributed by the GIS community. You can contribute your data to this service and have it served by Esri. For details, see the Community Maps Program. For details on data sources in this map service, view the list of Contributors for the World Dark Gray Base map. Note: The light gray basemap is not supported in ArcGIS for Desktop 9.3 or 9.3.1 because it uses the mixed cache format (both JPEG and PNG).

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Eaton County Michigan (2019). Open Data QGIS Map [Dataset]. https://hub.arcgis.com/content/710eba02b62d4d7c9149671be23fa478

Open Data QGIS Map

Explore at:
Dataset updated
Jan 16, 2019
Dataset authored and provided by
Eaton County Michigan
Description

QGIS 3 map of Eaton County, Michigan, USA with:ParcelsBuilding FootprintsSite Address PointsPolling PlacesCounty DistrictsControl CornersTownshipsSectionsGeopolitical AreasRoadsFlowlinesCounty DrainsWaterbodiesCountyAerial 2015 map service * The data in the map is stored in a geopackage called "geodata.gpkg" which should be kept in the same folder as the map "OpenData.qgz" in order to maintain the map's connectivity to the data sources. You will need the free GIS software QGIS installed to view this map. It's available at https://qgis.org

Search
Clear search
Close search
Google apps
Main menu