100+ datasets found
  1. U

    Introduction to QGIS

    • dataverse.ucla.edu
    Updated Aug 21, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ZHIYUAN YAO; Jamie Jamison; Leigh Phan; ZHIYUAN YAO; Jamie Jamison; Leigh Phan (2020). Introduction to QGIS [Dataset]. http://doi.org/10.25346/S6/LOZHYJ
    Explore at:
    mp4(302508743), application/zipped-shapefile(3245), application/zipped-shapefile(132968), tsv(2941), pptx(7792220), application/zipped-shapefile(258186)Available download formats
    Dataset updated
    Aug 21, 2020
    Dataset provided by
    UCLA Dataverse
    Authors
    ZHIYUAN YAO; Jamie Jamison; Leigh Phan; ZHIYUAN YAO; Jamie Jamison; Leigh Phan
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Quantum Geographic Information Systems (QGIS) is a user friendly open source GIS software. This workshop will introduce the interface and exhibit a small portion of spatial analysis techniques QGIS offers to familiarize you with some of the basis, and to illustrate the fundamentals of GIS. The workshop is targeted for beginners.The attendees will have a hands-on practice to apply the spatial analysis tools and create a map as as a final output.

  2. Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter...

    • catalog.data.gov
    • datasets.ai
    Updated Jun 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter accuracy and 1-foot resolution 2006-2007 mapping), Mississippi and Florida (NPS, GRD, GRI, GUIS, GUIS_geomorphology digital map) adapted from U.S. Geological Survey Open File Report maps by Morton and Rogers (2009) and Morton and Montgomery (2010) [Dataset]. https://catalog.data.gov/dataset/digital-geomorphic-gis-map-of-gulf-islands-national-seashore-5-meter-accuracy-and-1-foot-r
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Guisguis Port Sariaya, Quezon, United States
    Description

    The Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter accuracy and 1-foot resolution 2006-2007 mapping), Mississippi and Florida is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (guis_geomorphology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (guis_geomorphology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (guis_geomorphology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (guis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (guis_geomorphology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (guis_geomorphology_metadata_faq.pdf). Please read the guis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (guis_geomorphology_metadata.txt or guis_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:26,000 and United States National Map Accuracy Standards features are within (horizontally) 13.2 meters or 43.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  3. a

    QGIS - Open Source GIS Software

    • hub.arcgis.com
    Updated Aug 9, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eaton County Michigan (2018). QGIS - Open Source GIS Software [Dataset]. https://hub.arcgis.com/documents/57198670f4234919bfab87fb64d40a82
    Explore at:
    Dataset updated
    Aug 9, 2018
    Dataset authored and provided by
    Eaton County Michigan
    Description

    This is a link to the QGIS website where you can download open-source GIS software for viewing, analyzing and manipulating geodata like our downloadable shapefiles.

  4. f

    Data from: Mapping of equipotential surfaces using the free Quantum...

    • scielo.figshare.com
    • figshare.com
    jpeg
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    H. Finatto; G. H. M. Voigt; B. C. Carvalho; L. B. Reyna Zegarra; L. E. G. Armas (2023). Mapping of equipotential surfaces using the free Quantum Geographic Information System software [Dataset]. http://doi.org/10.6084/m9.figshare.8292695.v1
    Explore at:
    jpegAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    SciELO journals
    Authors
    H. Finatto; G. H. M. Voigt; B. C. Carvalho; L. B. Reyna Zegarra; L. E. G. Armas
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Abstract In this work, we report the mapping of electrical equipotential lines (1D) and equipotential surfaces (3D) using the free Quantum Geographic information system (QGIS) software. For this purpose, experiments taking into account, four different electrical configurations were performed on physics classes of undergraduate students, using two conductors of opposite electrical charges for each experiment. For the first experiment two copper parallel linear conductors; for the second, a copper parallel linear conductor with a small circular ring acting as a point charge; for the third, two concentric circular ring and for the fourth one a semicircular ring with a small circular ring acting as point charge. The experimental data were treated and interpolated in the, open source, QGIS software, used in geoprocessing, to map the electrical equipotential planes and surfaces.

  5. Digital Geologic-GIS Map of Santa Rosa Island, California (NPS, GRD, GRI,...

    • catalog.data.gov
    Updated Jun 4, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geologic-GIS Map of Santa Rosa Island, California (NPS, GRD, GRI, CHIS, SRIS digital map) adapted from a American Association of Petroleum Geologists Field Trip Guidebook map by Sonneman, as modified and extend by Weaver, Doerner, Avila and others (1969) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-santa-rosa-island-california-nps-grd-gri-chis-sris-digital-map
    Explore at:
    Dataset updated
    Jun 4, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Santa Rosa Island, California
    Description

    The Digital Geologic-GIS Map of Santa Rosa Island, California is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (sris_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (sris_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (sris_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (chis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (chis_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (sris_geology_metadata_faq.pdf). Please read the chis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: American Association of Petroleum Geologists. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (sris_geology_metadata.txt or sris_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  6. Digital Geomorphic-GIS Map of the Kitty Hawk to Whalebone Junction Area...

    • catalog.data.gov
    • s.cnmilf.com
    Updated Jun 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geomorphic-GIS Map of the Kitty Hawk to Whalebone Junction Area (1:10,000 scale 2006 mapping), North Carolina (NPS, GRD, GRI, CAHA, KHWJ_geomorphology digital map) adapted from a East Carolina University unpublished digital data map by Ames and Riggs (2006) [Dataset]. https://catalog.data.gov/dataset/digital-geomorphic-gis-map-of-the-kitty-hawk-to-whalebone-junction-area-1-10000-scale-2006
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Kitty Hawk, North Carolina
    Description

    The Digital Geomorphic-GIS Map of the Kitty Hawk to Whalebone Junction Area (1:10,000 scale 2006 mapping), North Carolina is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (khwj_geomorphology.gdb), and a 2.) Open Geospatial Consortium (OGC) geopackage. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (khwj_geomorphology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (khwj_geomorphology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (caha_fora_wrbr_geomorphology.pdf), 2.) the GRI ancillary map information document (.pdf) file (caha_fora_wrbr_geomorphology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (khwj_geomorphology_metadata_faq.pdf). Please read the caha_fora_wrbr_geomorphology.pdf for information pertaining to the proper extraction of the GIS data and other map files. QGIS software is available for free at: https://www.qgis.org/en/site/. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: East Carolina University. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (khwj_geomorphology_metadata.txt or khwj_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:10,000 and United States National Map Accuracy Standards features are within (horizontally) 8.5 meters or 27.8 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  7. Training: 3. GIS Concepts, Applications, and Software

    • sudan-uneplive.hub.arcgis.com
    Updated Jun 25, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UN Environment, Early Warning &Data Analytics (2020). Training: 3. GIS Concepts, Applications, and Software [Dataset]. https://sudan-uneplive.hub.arcgis.com/documents/642a61631daf44e0b91991fbd774e3e8
    Explore at:
    Dataset updated
    Jun 25, 2020
    Dataset provided by
    United Nations Environment Programmehttp://www.unep.org/
    Authors
    UN Environment, Early Warning &Data Analytics
    Description

    This is a full-day training, developed by UNEP CMB, to introduce participants to the basics of GIS, how to import points from Excel to a GIS, and how to make maps with QGIS, MapX and Tableau. It prioritizes the use of free and open software.

  8. S

    Two residential districts datasets from Kielce, Poland for building semantic...

    • scidb.cn
    Updated Sep 29, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Agnieszka Łysak (2022). Two residential districts datasets from Kielce, Poland for building semantic segmentation task [Dataset]. http://doi.org/10.57760/sciencedb.02955
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 29, 2022
    Dataset provided by
    Science Data Bank
    Authors
    Agnieszka Łysak
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Area covered
    Poland, Kielce
    Description

    Today, deep neural networks are widely used in many computer vision problems, also for geographic information systems (GIS) data. This type of data is commonly used for urban analyzes and spatial planning. We used orthophotographic images of two residential districts from Kielce, Poland for research including urban sprawl automatic analysis with Transformer-based neural network application.Orthophotomaps were obtained from Kielce GIS portal. Then, the map was manually masked into building and building surroundings classes. Finally, the ortophotomap and corresponding classification mask were simultaneously divided into small tiles. This approach is common in image data preprocessing for machine learning algorithms learning phase. Data contains two original orthophotomaps from Wietrznia and Pod Telegrafem residential districts with corresponding masks and also their tiled version, ready to provide as a training data for machine learning models.Transformed-based neural network has undergone a training process on the Wietrznia dataset, targeted for semantic segmentation of the tiles into buildings and surroundings classes. After that, inference of the models was used to test model's generalization ability on the Pod Telegrafem dataset. The efficiency of the model was satisfying, so it can be used in automatic semantic building segmentation. Then, the process of dividing the images can be reversed and complete classification mask retrieved. This mask can be used for area of the buildings calculations and urban sprawl monitoring, if the research would be repeated for GIS data from wider time horizon.Since the dataset was collected from Kielce GIS portal, as the part of the Polish Main Office of Geodesy and Cartography data resource, it may be used only for non-profit and non-commertial purposes, in private or scientific applications, under the law "Ustawa z dnia 4 lutego 1994 r. o prawie autorskim i prawach pokrewnych (Dz.U. z 2006 r. nr 90 poz 631 z późn. zm.)". There are no other legal or ethical considerations in reuse potential.Data information is presented below.wietrznia_2019.jpg - orthophotomap of Wietrznia districtmodel's - used for training, as an explanatory imagewietrznia_2019.png - classification mask of Wietrznia district - used for model's training, as a target imagewietrznia_2019_validation.jpg - one image from Wietrznia district - used for model's validation during training phasepod_telegrafem_2019.jpg - orthophotomap of Pod Telegrafem district - used for model's evaluation after training phasewietrznia_2019 - folder with wietrznia_2019.jpg (image) and wietrznia_2019.png (annotation) images, divided into 810 tiles (512 x 512 pixels each), tiles with no information were manually removed, so the training data would contain only informative tilestiles presented - used for the model during training (images and annotations for fitting the model to the data)wietrznia_2019_vaidation - folder with wietrznia_2019_validation.jpg image divided into 16 tiles (256 x 256 pixels each) - tiles were presented to the model during training (images for validation model's efficiency); it was not the part of the training datapod_telegrafem_2019 - folder with pod_telegrafem.jpg image divided into 196 tiles (256 x 265 pixels each) - tiles were presented to the model during inference (images for evaluation model's robustness)Dataset was created as described below.Firstly, the orthophotomaps were collected from Kielce Geoportal (https://gis.kielce.eu). Kielce Geoportal offers a .pst recent map from April 2019. It is an orthophotomap with a resolution of 5 x 5 pixels, constructed from a plane flight at 700 meters over ground height, taken with a camera for vertical photos. Downloading was done by WMS in open-source QGIS software (https://www.qgis.org), as a 1:500 scale map, then converted to a 1200 dpi PNG image.Secondly, the map from Wietrznia residential district was manually labelled, also in QGIS, in the same scope, as the orthophotomap. Annotation based on land cover map information was also obtained from Kielce Geoportal. There are two classes - residential building and surrounding. Second map, from Pod Telegrafem district was not annotated, since it was used in the testing phase and imitates situation, where there is no annotation for the new data presented to the model.Next, the images was converted to an RGB JPG images, and the annotation map was converted to 8-bit GRAY PNG image.Finally, Wietrznia data files were tiled to 512 x 512 pixels tiles, in Python PIL library. Tiles with no information or a relatively small amount of information (only white background or mostly white background) were manually removed. So, from the 29113 x 15938 pixels orthophotomap, only 810 tiles with corresponding annotations were left, ready to train the machine learning model for the semantic segmentation task. Pod Telegrafem orthophotomap was tiled with no manual removing, so from the 7168 x 7168 pixels ortophotomap were created 197 tiles with 256 x 256 pixels resolution. There was also image of one residential building, used for model's validation during training phase, it was not the part of the training data, but was a part of Wietrznia residential area. It was 2048 x 2048 pixel ortophotomap, tiled to 16 tiles 256 x 265 pixels each.

  9. f

    Socio-Economic Development of Asian Russia - datasets for Khabarovsk and...

    • figshare.com
    txt
    Updated Aug 2, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Igor Musikhin; Alexander P. Karpik (2022). Socio-Economic Development of Asian Russia - datasets for Khabarovsk and Primorsky Krais [Dataset]. http://doi.org/10.6084/m9.figshare.20416599.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Aug 2, 2022
    Dataset provided by
    figshare
    Authors
    Igor Musikhin; Alexander P. Karpik
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Primorsky Krai, Khabarovsk, Asia, Russia
    Description

    The datasets represent topographic description (cost and accessibility maps) of Khabarovsk and Primorsky Krais of the Russian Far East divided into unit areas with a 10x10 km grid in WGS84. The datasets are in MID/MIF formats to be processed in QGIS with use of self-written open source software. The datasets are used to model single or multiple socio-economic scenarios of regional spatial development and inter-regional economic cooperation.

  10. d

    Geospatial Data from the Alpine Treeline Warming Experiment (ATWE) on Niwot...

    • search.dataone.org
    • data.ess-dive.lbl.gov
    • +2more
    Updated Jul 7, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fabian Zuest; Cristina Castanha; Nicole Lau; Lara M. Kueppers (2021). Geospatial Data from the Alpine Treeline Warming Experiment (ATWE) on Niwot Ridge, Colorado, USA [Dataset]. http://doi.org/10.15485/1804896
    Explore at:
    Dataset updated
    Jul 7, 2021
    Dataset provided by
    ESS-DIVE
    Authors
    Fabian Zuest; Cristina Castanha; Nicole Lau; Lara M. Kueppers
    Time period covered
    Jan 1, 2008 - Jan 1, 2012
    Area covered
    Description

    This is a collection of all GPS- and computer-generated geospatial data specific to the Alpine Treeline Warming Experiment (ATWE), located on Niwot Ridge, Colorado, USA. The experiment ran between 2008 and 2016, and consisted of three sites spread across an elevation gradient. Geospatial data for all three experimental sites and cone/seed collection locations are included in this package. ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Geospatial files include cone collection, experimental site, seed trap, and other GPS location/terrain data. File types include ESRI shapefiles, ESRI grid files or Arc/Info binary grids, TIFFs (.tif), and keyhole markup language (.kml) files. Trimble-imported data include plain text files (.txt), Trimble COR (CorelDRAW) files, and Trimble SSF (Standard Storage Format) files. Microsoft Excel (.xlsx) and comma-separated values (.csv) files corresponding to the attribute tables of many files within this package are also included. A complete list of files can be found in this document in the “Data File Organization” section in the included Data User's Guide. Maps are also included in this data package for reference and use. These maps are separated into two categories, 2021 maps and legacy maps, which were made in 2010. Each 2021 map has one copy in portable network graphics (.png) format, and the other in .pdf format. All legacy maps are in .pdf format. .png image files can be opened with any compatible programs, such as Preview (Mac OS) and Photos (Windows). All GIS files were imported into geopackages (.gpkg) using QGIS, and double-checked for compatibility and data/attribute integrity using ESRI ArcGIS Pro. Note that files packaged within geopackages will open in ArcGIS Pro with “main.” preceding each file name, and an extra column named “geom” defining geometry type in the attribute table. The contents of each geospatial file remain intact, unless otherwise stated in “niwot_geospatial_data_list_07012021.pdf/.xlsx”. This list of files can be found as an .xlsx and a .pdf in this archive. As an open-source file format, files within gpkgs (TIFF, shapefiles, ESRI grid or “Arc/Info Binary”) can be read using both QGIS and ArcGIS Pro, and any other geospatial softwares. Text and .csv files can be read using TextEdit/Notepad/any simple text-editing software; .csv’s can also be opened using Microsoft Excel and R. .kml files can be opened using Google Maps or Google Earth, and Trimble files are most compatible with Trimble’s GPS Pathfinder Office software. .xlsx files can be opened using Microsoft Excel. PDFs can be opened using Adobe Acrobat Reader, and any other compatible programs. A selection of original shapefiles within this archive were generated using ArcMap with associated FGDC-standardized metadata (xml file format). We are including these original files because they contain metadata only accessible using ESRI programs at this time, and so that the relationship between shapefiles and xml files is maintained. Individual xml files can be opened (without a GIS-specific program) using TextEdit or Notepad. Since ESRI’s compatibility with FGDC metadata has changed since the generation of these files, many shapefiles will require upgrading to be compatible with ESRI’s latest versions of geospatial software. These details are also noted in the “niwot_geospatial_data_list_07012021” file.

  11. Estimating Ephemeral Streams QGIS Layer Packages, Map Files, and Methods

    • figshare.com
    zip
    Updated Jan 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stream, Rivers and Estuaries Laboratory (STRIVE Lab) (2024). Estimating Ephemeral Streams QGIS Layer Packages, Map Files, and Methods [Dataset]. http://doi.org/10.6084/m9.figshare.24975744.v5
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jan 19, 2024
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Stream, Rivers and Estuaries Laboratory (STRIVE Lab)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset was used to estimate total ephemeral stream length within the Coeur d'Alene, Fort Apache, and Menominee Reservations. It includes data that is publicly available through the USGS "The National Map" (USGS TNM Download v2.0), including NHDPlus High Resolution hydrography data, and Contour (1:24,000-scale) elevation data. It also includes geographic boundaries for the above mentioned Native American Reservations, as well as "eph5ha" raster data (Fesenmyer et al. 2021), which was used to approximate ephemeral stream locations. The remaining layers in the dataset include exported, site-specific NHDPlus hydrography data, and hand-digitized, estimated ephemeral streams, based on the eph5ha raster data. A map PNG of all three reservations is also included, as well as the map file used to create that map image. Lastly, a PDF of the methods used for this mapping project is also attached.

  12. Digital Geologic-GIS Map of Sagamore Hill National Historic Site and...

    • catalog.data.gov
    • s.cnmilf.com
    Updated Jun 5, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geologic-GIS Map of Sagamore Hill National Historic Site and Vicinity, New York (NPS, GRD, GRI, SAHI, SAHI digital map) adapted from U.S. Geological Survey Water-Supply Paper maps by Isbister (1966) and Lubke (1964) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-sagamore-hill-national-historic-site-and-vicinity-new-york-nps
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    New York
    Description

    The Digital Geologic-GIS Map of Sagamore Hill National Historic Site and Vicinity, New York is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (sahi_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (sahi_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (sahi_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (sahi_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (sahi_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (sahi_geology_metadata_faq.pdf). Please read the sahi_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (sahi_geology_metadata.txt or sahi_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:62,500 and United States National Map Accuracy Standards features are within (horizontally) 31.8 meters or 104.2 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  13. w

    GIS methods for hydrogeology mapping in Timor-Leste, QGIS version (free...

    • data.wu.ac.at
    • cinergi.sdsc.edu
    pdf
    Updated Jun 26, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2018). GIS methods for hydrogeology mapping in Timor-Leste, QGIS version (free software): Vulnerability assessment of climate change impacts on groundwater resources in Timor-Leste [Dataset]. https://data.wu.ac.at/schema/data_gov_au/ZTNhMTkxNjItODgwMi00M2U5LTk0MzgtOWVmYTcxMDhhYTUy
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 26, 2018
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This document outlines some of the methods used by Geoscience Australia (GA) to symbolise the Geology and Hydrogeology map of Timor-Leste. It is designed to be used as a knowledge-sharing and educational tool by water resource management and geology technicians from Timor-Leste government agencies.

  14. d

    Digital Geologic-GIS Map of Mount Rainier National Park, Washington (NPS,...

    • datasets.ai
    • s.cnmilf.com
    • +1more
    33, 57
    Updated Mar 27, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of the Interior (2020). Digital Geologic-GIS Map of Mount Rainier National Park, Washington (NPS, GRD, GRI, MORA, MORA_geology digital map) adapted from a U.S. Geological Survey Miscellaneous Geologic Investigations Map by Fiske, Hopson and Waters (1964) [Dataset]. https://datasets.ai/datasets/digital-geologic-gis-map-of-mount-rainier-national-park-washington-nps-grd-gri-mora-mora-g
    Explore at:
    57, 33Available download formats
    Dataset updated
    Mar 27, 2020
    Dataset authored and provided by
    Department of the Interior
    Description

    The Digital Geologic-GIS Map of Mount Rainier National Park, Washington is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (mora_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (mora_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (mora_geology.gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (mora_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (mora_geology_metadata_faq.pdf). Please read the mora_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: http://www.google.com/earth/index.html. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (mora_geology_metadata.txt or mora_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:62,500 and United States National Map Accuracy Standards features are within (horizontally) 31.8 meters or 104.2 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm). The GIS data projection is NAD83, UTM Zone 10N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth.

  15. w

    Landslide susceptibility mapping: A remote sensing based approach using QGIS...

    • data.wu.ac.at
    pdf
    Updated Jun 26, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CSEMD (2018). Landslide susceptibility mapping: A remote sensing based approach using QGIS 2.2 (Valmiera) [Dataset]. https://data.wu.ac.at/schema/data_gov_au/M2RmOTllNjktOTllOC00ODc2LTlhNDAtZjUxYTI5YjRmY2Yx
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 26, 2018
    Dataset provided by
    CSEMD
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Landslides are a complex geological hazard triggered by a combination of factors depending on their magnitude and type (Figure 1). There are a number of methodologies employed for landslide susceptibility mapping around the world. The method adopted should vary according to the individual characteristics of the landslide being considered. The method of landslide susceptibility mapping adopted here was developed using an existing method, the InfoVal method (van Westen 1997), adapting it for use with the open source software QGIS. QGIS was chosen as the GIS system due to its use by other natural hazard scientists in Papua New Guinea and in the region, and because it is free and open source.

  16. Open-Source GIScience Online Course

    • ckan.americaview.org
    Updated Nov 2, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.americaview.org (2021). Open-Source GIScience Online Course [Dataset]. https://ckan.americaview.org/dataset/open-source-giscience-online-course
    Explore at:
    Dataset updated
    Nov 2, 2021
    Dataset provided by
    CKANhttps://ckan.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    In this course, you will explore a variety of open-source technologies for working with geosptial data, performing spatial analysis, and undertaking general data science. The first component of the class focuses on the use of QGIS and associated technologies (GDAL, PROJ, GRASS, SAGA, and Orfeo Toolbox). The second component of the class introduces Python and associated open-source libraries and modules (NumPy, Pandas, Matplotlib, Seaborn, GeoPandas, Rasterio, WhiteboxTools, and Scikit-Learn) used by geospatial scientists and data scientists. We also provide an introduction to Structured Query Language (SQL) for performing table and spatial queries. This course is designed for individuals that have a background in GIS, such as working in the ArcGIS environment, but no prior experience using open-source software and/or coding. You will be asked to work through a series of lecture modules and videos broken into several topic areas, as outlined below. Fourteen assignments and the required data have been provided as hands-on opportunites to work with data and the discussed technologies and methods. If you have any questions or suggestions, feel free to contact us. We hope to continue to update and improve this course. This course was produced by West Virginia View (http://www.wvview.org/) with support from AmericaView (https://americaview.org/). This material is based upon work supported by the U.S. Geological Survey under Grant/Cooperative Agreement No. G18AP00077. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the U.S. Geological Survey. Mention of trade names or commercial products does not constitute their endorsement by the U.S. Geological Survey. After completing this course you will be able to: apply QGIS to visualize, query, and analyze vector and raster spatial data. use available resources to further expand your knowledge of open-source technologies. describe and use a variety of open data formats. code in Python at an intermediate-level. read, summarize, visualize, and analyze data using open Python libraries. create spatial predictive models using Python and associated libraries. use SQL to perform table and spatial queries at an intermediate-level.

  17. a

    Medium resolution vector polygons of the Antarctic coastline

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • hub.arcgis.com
    Updated May 13, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    British Antarctic Survey (2022). Medium resolution vector polygons of the Antarctic coastline [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/maps/BAS::medium-resolution-vector-polygons-of-the-antarctic-coastline-1
    Explore at:
    Dataset updated
    May 13, 2022
    Dataset authored and provided by
    British Antarctic Survey
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Antarctica,
    Description

    AbstractCoastline for Antarctica created from various mapping and remote sensing sources, provided as polygons with ‘land’, ‘ice shelf’, ‘ice tongue’ or ‘rumple’ attribute. Covering all land and ice shelves south of 60°S. Suitable for topographic mapping and analysis. This dataset has been generalised from the high resolution vector polygons. Medium resolution versions of ADD data are suitable for scales smaller than 1:1,000,000, although certain regions will appear more detailed than others due to variable data availability and coastline characteristics.Changes in v7.10 include updates to the coastline of Alexander Island and surrounding islands, and the ice shelf fronts of the Wilkins and Brunt ice shelves.Data compiled, managed and distributed by the Mapping and Geographic Information Centre and the UK Polar Data Centre, British Antarctic Survey on behalf of the Scientific Committee on Antarctic Research.Further information and useful linksMap projection: WGS84 Antarctic Polar Stereographic, EPSG 3031. Note: by default, opening this layer in the Map Viewer will display the data in Web Mercator. To display this layer in its native projection use an Antarctic basemap.The currency of this dataset is November 2024 and will be reviewed every 6 months. This feature layer will always reflect the most recent version.For more information on, and access to other Antarctic Digital Database (ADD) datasets, refer to the SCAR ADD data catalogue.A related high resolution dataset is also published via Living Atlas, as well medium and high resolution line datasets.For background information on the ADD project, please see the British Antarctic Survey ADD project page.LineageDataset compiled from a variety of Antarctic map and satellite image sources. The dataset was created using ArcGIS and QGIS GIS software programmes and has been checked for basic topography and geometry checks, but does not contain strict topology. Quality varies across the dataset and certain areas where high resolution source data were available are suitable for large scale maps whereas other areas are only suitable for smaller scales. Each polygon contains a ‘surface’ attribute with either ‘land’, ‘ice shelf’, ‘ice tongue’ or ‘rumple’. Details of when and how each line was created can be found in the attributes of the high or medium resolution polyline coastline dataset. Data sources range in time from 1990s-2024 - individual lines contain exact source dates. This medium resolution version has been generalised from the high resolution version. All polygons <0.1km² not intersecting anything else were deleted and the ‘simplify’ tool was used in ArcGIS with the ‘retain critical points’ algorithm and a smoothing tolerance of 50 m.CitationGerrish, L., Ireland, L., Fretwell, P., & Cooper, P. (2024). Medium resolution vector polygons of the Antarctic coastline (Version 7.10) [Data set]. NERC EDS UK Polar Data Centre. https://doi.org/10.5285/93ac35af-9ec7-4594-9aaa-0760a2b289d5If using for a graphic or if short on space, please cite as 'data from the SCAR Antarctic Digital Database, 2024'

  18. g

    Sample Geodata and Software for Demonstrating Geospatial Preprocessing for...

    • gimi9.com
    • envidat.ch
    • +1more
    Updated Jun 12, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2019). Sample Geodata and Software for Demonstrating Geospatial Preprocessing for Forest Accessibility and Wood Harvesting at FOSS4G2019 [Dataset]. https://gimi9.com/dataset/eu_d28614a0-0825-4040-bc1b-e0455b1e4df6-envidat
    Explore at:
    Dataset updated
    Jun 12, 2019
    Description

    This dataset contains open vector data for railways, forests and power lines, as well an open digital elevation model (DEM) for a small area around a sample forest range in Europe (Germany, Upper Bavaria, Kochel Forest Range, some 70 km south of München, at the edge of Bavarian Alps). The purpose of this dataset is to provide a documented sample dataset in order to demonstrate geospatial preprocessing at FOSS4G2019 based on open data and software. This sample has been produced based on several existing open data sources (detailed below), therefore documenting the sources for obtaining some data needed for computations related to forest accessibility and wood harvesting. For example, they can be used with the open methodology and QGIS plugin Seilaplan for optimising the geometric layout cable roads or with additional open software for computing the forest accessibility for wood harvesting. The vector data (railways, forests and power lines) was extracted from OpenStreetMap (data copyrighted OpenStreetMap contributors and available from https://www.openstreetmap.org). The railways and forests were downloaded and extracted on 18.05.2019 using the open sources QGIS (https://www.qgis.org) with the QuickOSM plugin, while the power lines were downloaded a couple of days later on 23.05.2019. Additional notes for vector data: Please note that OpenStreeMap data extracts such as forests, roads and railways (except power lines) can also be downloaded in a GIS friendly format (Shapefile) from http://download.geofabrik.de/ or using the QGIS built-in download function for OpenStreetMap data. The most efficient way to retrieve specific OSM tags (such as power=line) is to use the QuickOSM plugin for QGIS (using the Overpass API - https://wiki.openstreetmap.org/wiki/Overpass_API) or directly using overpass turbo (https://overpass-turbo.eu/). Finally, the digitised perimeter of the sample forest range is also made available for reproducibility purposes, although any perimeter or area can be digitised freely using the QGIS editing toolbar. The DEM was originally adapted and modified also with QGIS (https://www.qgis.org) based on the elevation data available from two different sources, by reprojecting and downsampling datasets to 25m then selecting, for each individual raster cell, the elevation value that was closer to the average. These two different elevation sources are: - Copernicus Land Monitoring Service - EU-DEM v.1.1 (TILE ID E40N20, downloaded from https://land.copernicus.eu/imagery-in-situ/eu-dem/eu-dem-v1.1; this original DEM was produced by the Copernicus Land Monitoring Service “with funding by the European Union” based on SRTM and ASTER GDEM) - Digitales Geländemodell 50 m Gitterweite (https://opendata.bayern.de/detailansicht/datensatz/digitales-gelaendemodell-50-m-gitterweite/), produced by the Bayerische Vermessungsverwaltung – www.geodaten.bayern.de –and downloaded from http://www.geodaten.bayern.de/opendata/DGM50/dgm50_epsg4258.tif This methodology was chosen as a way of performing a basic quality check, by comparing the EU-DEM v.1.1 derived from globally available DEM data (such as SRTM) with more authoritative data for the randomly selected region, since using authoritative data is preferred (if open and available). For other sample regions, where authoritative open data is not available, such comparisons cannot longer be performed. Additional notes DEM: a very good DEM open data source for Germany is the open data set collected and resampled by Sonny (sonnyy7@gmail.com) and made available on the Austrian Open Data Portal http://data.opendataportal.at/dataset/dtm-germany. In order to simplify end-to-end reproducibility of the paper planned for FOSS4G2019, we use and distribute an adapted (reprojected and resampled to 25 meters) sample of the above mentioned dataset for the selected forest range. This sample dataset is accompanied by software in Python, as a Jupiter Notebook that generates harmonized output rasters with the same extent from the input data. The extent is given by the polygon vector dataset (Perimeter). These output rasters, such as obstacles, aspect, slope, forest cover, can serve as input data for later computations related to forest accessibility and wood harvesting questions. The obstacles output is obtained by transforming line vector datasets (railway lines, high voltage power lines) to raster. Aspect and slope are both derived from the sample digital elevation model.

  19. o

    Data from: Application of GIS and Remote sensing to identify changes in...

    • openicpsr.org
    Updated Apr 13, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Benjamin Amoako-Attah; Benjamin Amoako-Attah (2023). Application of GIS and Remote sensing to identify changes in surface water bodies and wetland depletion in the Kumasi Metropolis, Ghana [Dataset]. http://doi.org/10.3886/E188801V1
    Explore at:
    Dataset updated
    Apr 13, 2023
    Dataset provided by
    Catholic University, Fiapre Ghana
    Catholic University, Fiapre-Snyani
    Authors
    Benjamin Amoako-Attah; Benjamin Amoako-Attah
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2002 - Jan 1, 2022
    Area covered
    Kumasi Metropolitan, Ghana, Kumasi
    Description

    This study aimed to use remote sensing and GIS to detect changes in surface water and wetlands in the Kumasi Metropolis over a period of 20 years (2002-2022). Landsat images were processed using the QGIS software, and the Maximum Likelihood Algorithm was used to perform super-vised classification of land use land cover, while raster calculator aided in detecting wetlands by calculation for NDWI, MNDWI, and AWEI. The results showed that the majority of the landscape in the Kumasi metropolis was made up of built-up areas (79.4%), followed by agricultural lands (13.3%) and wetlands (7.3%). Over the 20-year period, built-up areas had gained 20.7% of the total landscape, while agricultural lands and wetlands had lost 16.7% and 4.0%, respectively. All water index methods recorded an increase in non-water cover and a loss of water cover over the period, with surface water decreasing by 5% and non-water land cover increasing by 5%. The study concludes that there have been significant changes in wetlands and surface water land use and land cover within the Kumasi Metropolis over the past 20 years, and recommends the enforce-ment of legislation on surface water protection in the area to protect wetlands

  20. Digital Geologic-GIS Map of Yosemite Valley Glacial and Postglacial...

    • catalog.data.gov
    • data.amerigeoss.org
    Updated Jun 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geologic-GIS Map of Yosemite Valley Glacial and Postglacial Deposits, California (NPS, GRD, GRI, YOSE, YOVA_glacial_and_surficial digital map) adapted from a U.S. Geological Survey Professional Paper map by Matthes (1930) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-yosemite-valley-glacial-and-postglacial-deposits-california-np
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    California, Yosemite Valley
    Description

    The Digital Geologic-GIS Map of Yosemite Valley Glacial and Postglacial Deposits, California is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (yova_glacial_and_surficial_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (yova_glacial_and_surficial_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (yova_glacial_and_surficial_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (yose_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (yova_glacial_and_surficial_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (yova_glacial_and_surficial_geology_metadata_faq.pdf). Please read the yose_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (yova_glacial_and_surficial_geology_metadata.txt or yova_glacial_and_surficial_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
ZHIYUAN YAO; Jamie Jamison; Leigh Phan; ZHIYUAN YAO; Jamie Jamison; Leigh Phan (2020). Introduction to QGIS [Dataset]. http://doi.org/10.25346/S6/LOZHYJ

Introduction to QGIS

Explore at:
mp4(302508743), application/zipped-shapefile(3245), application/zipped-shapefile(132968), tsv(2941), pptx(7792220), application/zipped-shapefile(258186)Available download formats
Dataset updated
Aug 21, 2020
Dataset provided by
UCLA Dataverse
Authors
ZHIYUAN YAO; Jamie Jamison; Leigh Phan; ZHIYUAN YAO; Jamie Jamison; Leigh Phan
License

CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically

Description

Quantum Geographic Information Systems (QGIS) is a user friendly open source GIS software. This workshop will introduce the interface and exhibit a small portion of spatial analysis techniques QGIS offers to familiarize you with some of the basis, and to illustrate the fundamentals of GIS. The workshop is targeted for beginners.The attendees will have a hands-on practice to apply the spatial analysis tools and create a map as as a final output.

Search
Clear search
Close search
Google apps
Main menu