16 datasets found
  1. a

    QGIS Training Tutorials: Using Spatial Data in Geographic Information...

    • catalogue.arctic-sdi.org
    • datasets.ai
    • +2more
    Updated Oct 28, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    QGIS Training Tutorials: Using Spatial Data in Geographic Information Systems [Dataset]. https://catalogue.arctic-sdi.org/geonetwork/srv/search?format=MOV
    Explore at:
    Dataset updated
    Oct 28, 2019
    Description

    Have you ever wanted to create your own maps, or integrate and visualize spatial datasets to examine changes in trends between locations and over time? Follow along with these training tutorials on QGIS, an open source geographic information system (GIS) and learn key concepts, procedures and skills for performing common GIS tasks – such as creating maps, as well as joining, overlaying and visualizing spatial datasets. These tutorials are geared towards new GIS users. We’ll start with foundational concepts, and build towards more advanced topics throughout – demonstrating how with a few relatively easy steps you can get quite a lot out of GIS. You can then extend these skills to datasets of thematic relevance to you in addressing tasks faced in your day-to-day work.

  2. GISF2E: ArcGIS, QGIS, and python tools and Tutorial

    • figshare.com
    pdf
    Updated Jun 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban Road Networks (2023). GISF2E: ArcGIS, QGIS, and python tools and Tutorial [Dataset]. http://doi.org/10.6084/m9.figshare.2065320.v3
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 2, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Urban Road Networks
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    ArcGIS tool and tutorial to convert the shapefiles into network format. The latest version of the tool is available at http://csun.uic.edu/codes/GISF2E.htmlUpdate: we now have added QGIS and python tools. To download them and learn more, visit http://csun.uic.edu/codes/GISF2E.htmlPlease cite: Karduni,A., Kermanshah, A., and Derrible, S., 2016, "A protocol to convert spatial polyline data to network formats and applications to world urban road networks", Scientific Data, 3:160046, Available at http://www.nature.com/articles/sdata201646

  3. a

    Using Unsupervised Machine Learning For Land Use Land Cover Classification

    • gulf-coast-geospatial-geo-project.hub.arcgis.com
    Updated Feb 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GEOproject_admin (2025). Using Unsupervised Machine Learning For Land Use Land Cover Classification [Dataset]. https://gulf-coast-geospatial-geo-project.hub.arcgis.com/items/9b48d400cc77474e89f2e804e7dd4f4d
    Explore at:
    Dataset updated
    Feb 6, 2025
    Dataset authored and provided by
    GEOproject_admin
    Description

    Raczynski, K., Xavier, F., & Cartwright, J. H. (2025). GEO Tutorial: Dealing with Coastal Flooding series, part 3A: Using Unsupervised Machine Learning For Land Use Land Cover Classification. Mississippi State University: Geosystems Research Institute. [View Document] GEO TutorialNumber of Pages: 5Publication Date: 06/2025This work was supported through funding by the National Oceanic and Atmospheric Administration Regional Geospatial Modeling Grant, Award # NA19NOS4730207.

  4. H

    GeoServer Tutorials

    • hydroshare.org
    • beta.hydroshare.org
    zip
    Updated Aug 4, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jacob Wise Calhoon (2022). GeoServer Tutorials [Dataset]. https://www.hydroshare.org/resource/753127b14dd443a1a4f2cf9634835d7a
    Explore at:
    zip(14.4 MB)Available download formats
    Dataset updated
    Aug 4, 2022
    Dataset provided by
    HydroShare
    Authors
    Jacob Wise Calhoon
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This resources contains PDF files and Python notebook files that demonstrate how to create geospatial resources in HydroShare and how to use these resources through web services provided by the built-in HydroShare GeoServer instance. Geospatial resources can be consumed directly into ArcMap, ArcGIS, Story Maps, Quantum GIS (QGIS), Leaflet, and many other mapping environments. This provides HydroShare users with the ability to store data and retrieve it via services without needing to set up new data services. All tutorials cover how to add WMS and WFS connections. WCS connections are available for QGIS and are covered in the QGIS tutorial. The tutorials and examples provided here are intended to get the novice user up-to-speed with WMS and GeoServer, though we encourage users to read further on these topic using internet searches and other resources. Also included in this resource is a tutorial designed to that walk users through the process of creating a GeoServer connected resource.

    The current list of available tutorials: - Creating a Resource - ArcGIS Pro - ArcMap - ArcGIS Story Maps - QGIS - IpyLeaflet - Folium

  5. a

    Spatial Predicates: Preparing Residential Dataset

    • gulf-coast-geospatial-geo-project.hub.arcgis.com
    Updated Feb 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GEOproject_admin (2025). Spatial Predicates: Preparing Residential Dataset [Dataset]. https://gulf-coast-geospatial-geo-project.hub.arcgis.com/documents/d90ca56fa70a4f42a4039ea67b6db26c
    Explore at:
    Dataset updated
    Feb 6, 2025
    Dataset authored and provided by
    GEOproject_admin
    Description

    Raczynski, K., Grala, K., & Cartwright, J. H. (2025). GEO Tutorial: Dealing with Coastal Flooding series, part 2: Spatial Predicates: Preparing Residential Dataset. Mississippi State University: Geosystems Research Institute. [View Document] GEO TutorialNumber of Pages: 7Publication Date: 06/2025This work was supported through funding by the National Oceanic and Atmospheric Administration Regional Geospatial Modeling Grant, Award # NA19NOS4730207.

  6. d

    Test Resource for OGC Web Services

    • search.dataone.org
    • hydroshare.org
    • +1more
    Updated Apr 15, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jacob Wise Calhoon (2022). Test Resource for OGC Web Services [Dataset]. https://search.dataone.org/view/sha256%3A59bae29350865fc2ca6d4c4d3f5995a2a51b7b0ebb9cc8414122cf46a63846c0
    Explore at:
    Dataset updated
    Apr 15, 2022
    Dataset provided by
    Hydroshare
    Authors
    Jacob Wise Calhoon
    Time period covered
    Aug 6, 2020
    Area covered
    Description

    This resource contains the test data for the GeoServer OGC Web Services tutorials for various GIS applications including ArcGIS Pro, ArcMap, ArcGIS Story Maps, and QGIS. The contents of the data include a polygon shapefile, a polyline shapefile, a point shapefile, and a raster dataset; all of which pertain to the state of Utah, USA. The polygon shapefile is of every county in the state of Utah. The polyline is of every trail in the state of Utah. The point shapefile is the current list of GNIS place names in the state of Utah. The raster dataset covers a region in the center of the state of Utah. All datasets are projected to NAD 1983 Zone 12N.

  7. g

    Seilaplan Tutorial: Merge DTM tiles | gimi9.com

    • gimi9.com
    Updated Aug 30, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Seilaplan Tutorial: Merge DTM tiles | gimi9.com [Dataset]. https://gimi9.com/dataset/eu_15cd0733-843f-4491-9998-f437b4cc1df4-envidat
    Explore at:
    Dataset updated
    Aug 30, 2022
    Description

    In order to use the QGIS plugin ‘Seilaplan’ for digital cable line planning, a digital terrain model (DTM) is required. In this tutorial video, we show how to merge multiple DTM raster tiles into one file, using the QGIS tool ‘Virtual Raster’. This simplifies the digital planning of a cable line using the QGIS plugin ‘Seilaplan’. Please note that the tutorial language is German! Link to Seilaplan website: https://seilaplan.wsl.ch *************************** Für die Verwendung des QGIS Plugins Seilaplan zur digitalen Seillinienplanung ist ein digitales Höhenmodell (DHM) nötig. In diesem Tutorialvideo zeigen wir, wie man mit dem QGIS-Plugin Virtuelles Raster mehrere DHM-Kacheln zu einem einzigen Rasterfile zusammenfügen und abspeichern kann. Für die Seillinienplanung mit Seilaplan muss nun nur noch eine Datei, mein neues virtuelles Raster, ausgewählt werden. Link zur Seilaplan-Website: https://seilaplan.wsl.ch

  8. Orthophotos and DSMs derived from RPAS flights over the nature reserve...

    • zenodo.org
    • explore.openaire.eu
    • +1more
    tiff, tsv, zip
    Updated Jul 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jeroen Vanden Borre; Jeroen Vanden Borre; Klaas Pauly; Klaas Pauly; Stijn Van Hoey; Stijn Van Hoey; Jeroen De Reu; Jeroen De Reu; Peter Desmet; Peter Desmet (2024). Orthophotos and DSMs derived from RPAS flights over the nature reserve Kalmthoutse Heide in Flanders, Belgium [Dataset]. http://doi.org/10.5281/zenodo.3057592
    Explore at:
    tiff, zip, tsvAvailable download formats
    Dataset updated
    Jul 23, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Jeroen Vanden Borre; Jeroen Vanden Borre; Klaas Pauly; Klaas Pauly; Stijn Van Hoey; Stijn Van Hoey; Jeroen De Reu; Jeroen De Reu; Peter Desmet; Peter Desmet
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Belgium, Kalmthout Heath, Flanders
    Description

    Study area

    The Kalmthoutse Heide is a nature reserve situated north of Kalmthout, in the province of Antwerp, Flanders, Belgium. It is part of the Cross-Border Nature Park De Zoom - Kalmthoutse Heide in the Netherlands and Belgium. The Kalmthoutse Heide is managed by the Flemish Agency for Nature and Forest and consists of wet and dry heathlands, inland dunes, forests and moorland pools. In this area, there is particular interest in monitoring the encroachment of the heathlands by Molinia caerulea and Campylopus introflexus.

    Data collection

    Data were collected by the Research Institute for Nature and Forest (INBO) with a fixed wing drone Gatewing X100 in 2015 and 2016 (8 flights). RGB data were acquired using an off-the-shelf Ricoh GR Digital IV camera, with the following image bands: 1: red, 2: green, 3: blue, 4: alpha channel.

    Data processing

    The raw data were processed to Digital Surface Models and orthophotos by the Flemish Institute for Technological Research (VITO) in 2017. Images with coarse GPS coordinates were imported and processed in Agisoft PhotoScan Pro 1.4.x, a structure-from-motion (SfM) based photogrammetry software program. After extraction and matching of tie points, a bundle adjustment leads to a sparse point cloud and a refined set of camera position and orientation values. Ground control points (either artificially installed markers on the terrain, or other photo-identifiable points, measured on the ground with RTK GNSS) were used to further refine the camera calibration and obtain a pixel-level georeferencing accuracy. From there, a point cloud densification and classification into ground and non-ground points was performed, leading to a rasterized digital surface model (DSM) and digital terrain model (DTM). Finally, a true orthomosaic was projected onto the DTM.

    Coordinate reference system

    All geospatial data have the coordinate reference system EPSG:31370 - Belgian Lambert 72.

    Files

    • Raw flight data: images and logs collected by the drone during flight. These files are zipped per flight, with the date (yyyymmdd) and flight number (x) indicated in the file name (flight_yyyymmdd_KH_x.zip).
    • Processed data: Digital Surface Models (filename_DSM.tif) and orthophotos (filename_Ortho.tif) stitched together from the raw data. The included flights are indicated in the file name (e.g. 3 flights for 20150717_KH_1-3_DSM.tif).
    • Ground control points: temporary ground control points were placed for the first flights on 2015-07-17 (visible in 20150717_KH_1-3_Ortho.tif). Coordinates for these are available in GCP_20150717_KH.tsv.

    Cloud Optimized GeoTIFF

    The most efficient way to explore the processed data is by loading the Cloud Optimized GeoTIFFs we created for each processed file. Copy one of the file URLs below and follow e.g. the QGIS tutorial to load this type of file.

    See this page for an overview of public INBO RPAS data.

  9. Orthophotos and DSMs derived from RPAS flights over wild boar damaged fields...

    • zenodo.org
    • data.niaid.nih.gov
    tiff, zip
    Updated Jul 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jeroen Vanden Borre; Jeroen Vanden Borre; Stijn Van Hoey; Stijn Van Hoey; Jeroen De Reu; Jeroen De Reu; Peter Desmet; Peter Desmet (2024). Orthophotos and DSMs derived from RPAS flights over wild boar damaged fields in Eigenbilzen in Flanders, Belgium [Dataset]. http://doi.org/10.5281/zenodo.3095763
    Explore at:
    tiff, zipAvailable download formats
    Dataset updated
    Jul 23, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Jeroen Vanden Borre; Jeroen Vanden Borre; Stijn Van Hoey; Stijn Van Hoey; Jeroen De Reu; Jeroen De Reu; Peter Desmet; Peter Desmet
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Eigenbilzen, Belgium, Flanders
    Description

    Study area

    The study area in Eigenbilzen is situated in the agricultural zone east of the locality of Eigenbilzen, in the province of Limburg, Flanders, Belgium. The flights picture a wheat field where damage by wild boar is apparent.

    Data collection

    Data were collected by the Research Institute for Nature and Forest (INBO) with a fixed wing drone Gatewing X100 in 2015 (2 flights). RGB data were acquired using an off-the-shelf Ricoh GR Digital IV camera, with the following image bands: 1: red, 2: green, 3: blue, 4: alpha channel. CIR (color-infrared) data were acquired using a NIR-enabled Ricoh GR Digital IV camera, with the following info bands: 1: NIR, 2: red, 3: green, 4: alpha channel.

    Data processing

    The raw data were processed to Digital Surface Models and orthophotos by INBO in 2015 using Agisoft PhotoScan Pro 1.0.4, a structure-from-motion (SfM) based photogrammetry software program.

    Coordinate reference system

    All geospatial data have the coordinate reference system EPSG:31370 - Belgian Lambert 72.

    Files

    • Raw flight data: images and logs collected by the drone during flight. These files are zipped per flight, with the date (yyyymmdd) and flight number (x) indicated in the file name (flight_yyyymmdd_Bilzen_x.zip).
    • Processed data: Digital Surface Models (filename_DSM.tif) and orthophotos (filename_Ortho.tif) stitched together from the raw data. The included flight is indicated in the file name (e.g. 20150728_Bilzen_1_DSM.tif).
    • Ground control points: not applicable for this dataset.

    Cloud Optimized GeoTIFF

    The most efficient way to explore the processed data is by loading the Cloud Optimized GeoTIFFs we created for each processed file. Copy one of the file URLs below and follow e.g. the QGIS tutorial to load this type of file.

    See this page for an overview of public INBO RPAS data.

  10. Z

    Orthophotos and DSMs derived from RPAS flights over the nature reserve...

    • data.niaid.nih.gov
    Updated Jul 24, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Van Hoey, Stijn (2024). Orthophotos and DSMs derived from RPAS flights over the nature reserve Averbode Bos & Heide in Flanders, Belgium [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_2654619
    Explore at:
    Dataset updated
    Jul 24, 2024
    Dataset provided by
    Desmet, Peter
    Van Hoey, Stijn
    De Reu, Jeroen
    Klaas Pauly
    Vanden Borre, Jeroen
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Belgium, Flanders
    Description

    Study area

    Averbode Bos & Heide is a nature reserve situated near the locality of Averbode, in the province of Flemish-Brabant, Flanders, Belgium. The area is managed by the nature conservation NGO Natuurpunt and consists of wet and dry heathlands, inland dunes, forests and moorland pools. In the years prior to the drone flights, large stands of mostly coniferous trees were cut to enable ecological restoration of heathlands and moorland pools. The drone flight was triggered by a particular interest to monitor the effects of this restoration.

    Data collection

    Data were collected by the Research Institute for Nature and Forest (INBO) with a fixed wing drone Gatewing X100 in 2015 and 2016 (6 flights). RGB data were acquired using an off-the-shelf Ricoh GR Digital IV camera, with the following image bands: 1: red, 2: green, 3: blue, 4: alpha channel. CIR (color-infrared) data were acquired using a NIR-enabled Ricoh GR Digital IV camera, with the following info bands: 1: NIR, 2: red, 3: green, 4: alpha channel.

    Data processing

    The raw data were processed to Digital Surface Models and orthophotos by the Flemish Institute for Technological Research (VITO) in 2017. Images with coarse GPS coordinates were imported and processed in Agisoft PhotoScan Pro 1.4.x, a structure-from-motion (SfM) based photogrammetry software program. After extraction and matching of tie points, a bundle adjustment leads to a sparse point cloud and a refined set of camera position and orientation values. From there, a point cloud densification and classification into ground and non-ground points was performed, leading to a rasterized digital surface model (DSM) and digital terrain model (DTM). Finally, a true orthomosaic was projected onto the DTM.

    Coordinate reference system

    All geospatial data have the coordinate reference system EPSG:31370 - Belgian Lambert 72.

    Files

    Raw flight data: images and logs collected by the drone during flight. These files are zipped per flight, with the date (yyyymmdd) and flight number (x) indicated in the file name (flight_yyyymmdd_ABH_x.zip).

    Processed data: Digital Surface Models (filename_DSM.tif) and orthophotos (filename_Ortho.tif) stitched together from the raw data. The included flights are indicated in the file name (e.g. 3 flights for 20150928_ABH_1-2_20151001_ABH_1_DSM.tif).

    Ground control points: not applicable for this dataset.

    Cloud Optimized GeoTIFF

    The most efficient way to explore the processed data is by loading the Cloud Optimized GeoTIFFs we created for each processed file. Copy one of the file URLs below and follow e.g. the QGIS tutorial to load this type of file.

    http://s3-eu-west-1.amazonaws.com/lw-remote-sensing/cogeo/20150928_ABH_1-2_20151001_ABH_1_DSM.tif

    http://s3-eu-west-1.amazonaws.com/lw-remote-sensing/cogeo/20150928_ABH_1-2_20151001_ABH_1_Ortho.tif RGB

    http://s3-eu-west-1.amazonaws.com/lw-remote-sensing/cogeo/20151001_ABH_2_DSM.tif

    http://s3-eu-west-1.amazonaws.com/lw-remote-sensing/cogeo/20151001_ABH_2_Ortho.tif RGB

    http://s3-eu-west-1.amazonaws.com/lw-remote-sensing/cogeo/20160401_ABH_1_DSM.tif

    http://s3-eu-west-1.amazonaws.com/lw-remote-sensing/cogeo/20160401_ABH_1_Ortho.tif RGB

    http://s3-eu-west-1.amazonaws.com/lw-remote-sensing/cogeo/20160401_ABH_2_DSM.tif

    http://s3-eu-west-1.amazonaws.com/lw-remote-sensing/cogeo/20160401_ABH_2_Ortho.tif CIR

    See this page for an overview of public INBO RPAS data.

  11. g

    Seilaplan Tutorial: DTM download from swisstopo website | gimi9.com

    • gimi9.com
    Updated Sep 8, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Seilaplan Tutorial: DTM download from swisstopo website | gimi9.com [Dataset]. https://gimi9.com/dataset/eu_ed0aaf2e-e5dc-4149-85f2-3bb848a30ffe-envidat/
    Explore at:
    Dataset updated
    Sep 8, 2022
    Description

    In order to use the QGIS plugin ‘Seilaplan’ for digital cable line planning, a digital terrain model (DTM) is required. As an alternative to using the ‘Swiss Geo Downloader’ plugin, the DTM can be obtained directly from Swisstopo. In this tutorial we explain step by step how to download the necessary DTM from the Swisstopo Website, and how to use it in QGIS for the digital planning of a cable line using the plugin ‘Seilaplan’. Please note that the tutorial language is German! Link to the elevation model on the swisstopo website: https://www.swisstopo.admin.ch/de/geodata/height/alti3d.html#technische_details Link to the rope map website: https://seilaplan.wsl.ch ******************** Für die Verwendung des QGIS Plugins Seilaplan zur digitalen Seillinienplanung ist ein digitales Höhenmodell (DHM) nötig. Als Alternative zum Swiss Geo Downloader erklären wir in diesem Tutorial Schritt für Schritt, wie man das nötige Höhenmodell von der Swisstopo Webseite herunterladen und in QGIS zur Seillinienplanung verwenden kann. Link zum Höhenmodell auf der swisstopo Webseite: https://www.swisstopo.admin.ch/de/geodata/height/alti3d.html#technische_details Link zur Seilaplan-Website: https://seilaplan.wsl.ch

  12. d

    Habitat Sampling Initiative - Datasets - data.wa.gov.au

    • catalogue.data.wa.gov.au
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Habitat Sampling Initiative - Datasets - data.wa.gov.au [Dataset]. https://catalogue.data.wa.gov.au/dataset/habitat-sampling-initiative
    Explore at:
    Area covered
    Western Australia
    Description

    An overview of benthic habitat surveys in Western Australia, combining surveys from multiple State Government agencies, research institutions and Universities. Disclaimer: The map is in development and does not show real or comprehensive survey data until this message disappears. Contributing data Attendees of the Managing Coastal Vulnerability workshop can: Register your account and contact us. We will give you write permission by making you admin or editor of your organisation, and member of the Habitat Sampling Initiative Group. Add metadata for your data by creating a dataset, attach a GeoJSON (QGIS video tutorial, save as CRS EPSG 4326/WGS84) or KML file of your surveyed transects (including survey date or period in site attributes if possible) as resources, and add the dataset to the group Habitat Sampling Initiative. Add the link to your access-restricted data on Pawsey as another resource to the dataset. Add any other public data resource here if and when appropriate. Use the CKAN API to upload metadata from your existing catalogues following these examples. Discovering data The following resources give an interactive overview of all Habitat Sampling Initiative datasets:

  13. d

    Habitat Sampling Initiative

    • data.gov.au
    html
    Updated May 25, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Biodiversity, Conservation and Attractions (2022). Habitat Sampling Initiative [Dataset]. https://data.gov.au/dataset/ds-wa-f299f8c6-5913-4628-9dfb-514a46725204
    Explore at:
    htmlAvailable download formats
    Dataset updated
    May 25, 2022
    Dataset provided by
    Department of Biodiversity, Conservation and Attractions
    Description

    An overview of benthic habitat surveys in Western Australia, combining surveys from multiple State Government agencies, research institutions and Universities. Disclaimer: The map is in development …Show full descriptionAn overview of benthic habitat surveys in Western Australia, combining surveys from multiple State Government agencies, research institutions and Universities. Disclaimer: The map is in development and does not show real or comprehensive survey data until this message disappears. Contributing data Attendees of the Managing Coastal Vulnerability workshop can: Register your account and contact us. We will give you write permission by making you admin or editor of your organisation, and member of the Habitat Sampling Initiative Group. Add metadata for your data by creating a dataset, attach a GeoJSON (QGIS video tutorial, save as CRS EPSG 4326/WGS84) or KML file of your surveyed transects (including survey date or period in site attributes if possible) as resources, and add the dataset to the group Habitat Sampling Initiative. Add the link to your access-restricted data on Pawsey as another resource to the dataset. Add any other public data resource here if and when appropriate. Use the CKAN API to upload metadata from your existing catalogues following these examples. Discovering data The following resources give an interactive overview of all Habitat Sampling Initiative datasets:

  14. e

    Elenco dei tutorial — TutorielGeo

    • data.europa.eu
    csv, ods
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Geowebservice, Elenco dei tutorial — TutorielGeo [Dataset]. https://data.europa.eu/data/datasets/5b070761c751df45f3f335f6?locale=it
    Explore at:
    csv(13806), ods(23579)Available download formats
    Dataset authored and provided by
    Geowebservice
    License

    Licence Ouverte / Open Licence 1.0https://www.etalab.gouv.fr/wp-content/uploads/2014/05/Open_Licence.pdf
    License information was derived automatically

    Description

    Elenco di 144 tutorial del canale Youtube TutorielGeo: https://www.youtube.com/user/tutorielgeo/featured Più di 200 video tutorial gratuiti su Qgis, Postgis, Geoserver, Pentaho, Talend, Google Earth Pro... così come le tecnologie di webmapping e la gestione dei database: Oracle, Mysql, SQL Server. Ecco il link al negozio: https://play.google.com/store/apps/details?id=com.tutorielgeo.mobileapps

    Ecco il link al sito: https://tutorielgeo.com

    Ecco il link di Youtube channel:https://www.youtube.com/user/tutorielgeo

    Ecco il link alla pagina facebook: https://www.facebook.com/Tutorielgeo-Geomatic-Tutorial-GIS-Tutorial-Webmapping-Tutorial-325658277554574/

    Ecco il link all'account Twitter: https://twitter.com/TutorielGeo

    Ecco il link alla pagina Google Plus: https://plus.google.com/b/117203987416263637144/+tutorielgeo/posts

  15. e

    Seilaplan Tutorial: DTM download with SwissGeoDownloader

    • data.europa.eu
    unknown
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    EnviDat, Seilaplan Tutorial: DTM download with SwissGeoDownloader [Dataset]. https://data.europa.eu/data/datasets/659dc637-e0ca-4393-9f07-13b04290d6ec-envidat?locale=mt
    Explore at:
    unknown(429428137), unknownAvailable download formats
    Dataset authored and provided by
    EnviDat
    License

    http://dcat-ap.ch/vocabulary/licenses/terms_byhttp://dcat-ap.ch/vocabulary/licenses/terms_by

    Description

    In order to use the QGIS plugin ‘Seilaplan’ for digital cable line planning, a digital terrain model (DTM) is required. The plugin ‘Swiss Geo Downloader’, which is available for the open source geoinformation software QGIS, allows freely available Swiss geodata to be downloaded and displayed directly within QGIS. It was developed in 2021 by Patricia Moll in collaboration with the Swiss Federal Institute for Forest, Snow and Landscape Research WSL. In this tutorial we describe how to download the high accuracy elevation model ‘swissALTI3D’ with the help of the ‘Swiss Geo Downloader’ and how to use it for digital planning of a cable line with the plugin ‘Seilaplan’. Please note that the tutorial language is German!

    Link to the Swiss Geo Downloader: https://pimoll.github.io/swissgeodownloader

    Link to Seilaplan website: https://seilaplan.wsl.ch

    Für die Verwendung des QGIS Plugins Seilaplan zur digitalen Seillinienplanung ist ein digitales Höhenmodell (DHM) nötig. Das Plugin Swiss Geo Downloader, welches für das Open Source Geoinformationssystem QGIS zur Verfügung steht, ermöglicht frei verfügbare Schweizer Geodaten direkt innerhalb von QGIS herunterzuladen und anzuzeigen. Es wurde 2021 von Patricia Moll in Zusammenarbeit mit der eidgenössischen Forschungsanstalt Wald, Schnee und Landschaft WSL entwickelt. In diesem Tutorial beschreiben wir, wie man mit Hilfe des Swiss Geo Downloaders das hochgenaue Höhenmodell swissALTI3D herunterladen und für die Seillinienplanung mit dem Plugin Seilaplan verwenden kann.

    Link zum Swiss Geo Downloader: https://pimoll.github.io/swissgeodownloader

    Link zur Seilaplan-Webseite: https://seilaplan.wsl.ch

  16. e

    Seilaplan Tutorial: Συγχώνευση πλακιδίων DTM

    • data.europa.eu
    unknown
    Updated Oct 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    EnviDat (2024). Seilaplan Tutorial: Συγχώνευση πλακιδίων DTM [Dataset]. https://data.europa.eu/data/datasets/15cd0733-843f-4491-9998-f437b4cc1df4-envidat?locale=el
    Explore at:
    unknown(292363579), unknownAvailable download formats
    Dataset updated
    Oct 3, 2024
    Dataset authored and provided by
    EnviDat
    License

    http://dcat-ap.ch/vocabulary/licenses/terms_byhttp://dcat-ap.ch/vocabulary/licenses/terms_by

    Description

    Προκειμένου να χρησιμοποιηθεί το πρόσθετο QGIS «Seilaplan» για τον ψηφιακό σχεδιασμό καλωδίων, απαιτείται ένα ψηφιακό μοντέλο εδάφους (DTM). Σε αυτό το βίντεο εκμάθησης, δείχνουμε πώς να συγχωνεύσουμε πολλαπλά πλακίδια DTM raster σε ένα αρχείο, χρησιμοποιώντας το εργαλείο QGIS «Virtual Raster». Αυτό απλοποιεί τον ψηφιακό σχεδιασμό μιας καλωδιακής γραμμής χρησιμοποιώντας το πρόσθετο QGIS «Seilaplan». Παρακαλείστε να σημειώσετε ότι η γλώσσα διδασκαλίας είναι η γερμανική! Σύνδεσμος προς την ιστοσελίδα της Seilaplan: https://seilaplan.wsl.ch

    ***************************** Für die Verwendung des QGIS Plugins Seilaplan zur digitalen Seillinienplanung ist ein digitales Höhenmodell (DHM) nötig. In diesem Tutorialvideo zeigen wir, wie man mit dem QGIS-Plugin Virtuelles Raster mehrere DHM-Kacheln zu einzigen Rasterfile zusammenfügen und abspeichern kann. Θα ήθελα να σας πω ότι δεν μπορώ να κάνω κάτι τέτοιο, αλλά δεν μπορώ να το κάνω αυτό. Σύνδεσμος zur Seilaplan-Ιστοσελίδα: https://seilaplan.wsl.ch Παρακαλείστε να σημειώσετε ότι η γλώσσα διδασκαλίας είναι η γερμανική!

    Σύνδεσμος προς την ιστοσελίδα της Seilaplan: https://seilaplan.wsl.ch

    Für die Verwendung des QGIS Plugins Seilaplan zur digitalen Seillinienplanung ist ein digitales Höhenmodell (DHM) nötig. In diesem Tutorialvideo zeigen wir, wie man mit dem QGIS-Plugin Virtuelles Raster mehrere DHM-Kacheln zu einzigen Rasterfile zusammenfügen und abspeichern kann. Θα ήθελα να σας πω ότι δεν μπορώ να κάνω κάτι τέτοιο, αλλά δεν μπορώ να το κάνω αυτό.

    Σύνδεσμος zur Seilaplan-Ιστοσελίδα: https://seilaplan.wsl.ch

  17. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
QGIS Training Tutorials: Using Spatial Data in Geographic Information Systems [Dataset]. https://catalogue.arctic-sdi.org/geonetwork/srv/search?format=MOV

QGIS Training Tutorials: Using Spatial Data in Geographic Information Systems

Explore at:
Dataset updated
Oct 28, 2019
Description

Have you ever wanted to create your own maps, or integrate and visualize spatial datasets to examine changes in trends between locations and over time? Follow along with these training tutorials on QGIS, an open source geographic information system (GIS) and learn key concepts, procedures and skills for performing common GIS tasks – such as creating maps, as well as joining, overlaying and visualizing spatial datasets. These tutorials are geared towards new GIS users. We’ll start with foundational concepts, and build towards more advanced topics throughout – demonstrating how with a few relatively easy steps you can get quite a lot out of GIS. You can then extend these skills to datasets of thematic relevance to you in addressing tasks faced in your day-to-day work.

Search
Clear search
Close search
Google apps
Main menu