The interactive GIS mapping tool provides the estimated geographic extent of each existing flow requirement represented by a polygon layer. Clicking on a polygon will open a pop-up window that provides an overview of the flow requirement for the applicable stream reach. More detail on an existing instream flow requirement is also available by clicking on the link to the source document within the same pop-up window. Stakeholders can request the State Water Board update the existing flow requirements in the mapping tool to modify the flow requirement conditions, as applicable; clarify the geographic scope of the flow requirement; or add any existing flow requirements that are not identified. If you have any comments, corrections, or additional information to provide, you are encouraged to contact the State Water Board via email at WRCannabis@waterboards.ca.gov.
Qualified Opportunity ZonesThis feature layer, utilizing data from the U.S. Department of the Treasury, depicts all Qualified Opportunity Zones in the United States. Per IRS, "Opportunity Zones are an economic development tool that allows people to invest in distressed areas in the United States. Their purpose is to spur economic growth and job creation in low-income communities while providing tax benefits to investors.Opportunity Zones were created under the Tax Cuts and Jobs Act of 2017 (Public Law No. 115-97). Thousands of low-income communities in all 50 states, the District of Columbia and five U.S. territories are designated as Qualified Opportunity Zones. Taxpayers can invest in these zones through Qualified Opportunity Funds." Chicago, Illinois Opportunity ZonesData currency: December 14, 2018Data source: Opportunity Zones ResourcesData modification: NoneFor more information: Opportunity NowFor feedback, please contact: ArcGIScomNationalMaps@esri.comCommunity Development Financial InstitutionsPer CDFI, "The CDFI Fund was created for the purpose of promoting economic revitalization and community development through investment in and assistance to Community Development Financial Institutions (CDFIs)."
HEPGIS is a web-based interactive geographic map server that allows users to navigate and view geo-spatial data, print maps, and obtain data on specific features using only a web browser. It includes geo-spatial data used for transportation planning. HEPGIS previously received ARRA funding for development of Economically distressed Area maps. It is also being used to demonstrate emerging trends to address MPO and statewide planning regulations/requirements , enhanced National Highway System, Primary Freight Networks, commodity flows and safety data . HEPGIS has been used to help implement MAP-21 regulations and will help implement the Grow America Act, particularly related to Ladder of Opportunities and MPO reforms.
This service provides spatial data for all U.S. Decennial Census tracts designated as Qualified Opportunity Zones (QOZs) for purposes of §§ 1400Z–1 and 1400Z–2 of the Internal Revenue Code (the Code). Revenue Procedure 2018–16, 2018–9 I.R.B. 383, provided guidance to State CEOs on the eligibility criteria and procedure for making these nominations. Section 1400Z–1(b)(1)(B) of the Code provides that after the Secretary receives notice of the nominations, the Secretary may certify the nominations and designate the nominated tracts as Zones. Section 1400Z–2 of the Code allows the temporary deferral of inclusion in gross income for certain realized gains to the extent that corresponding amounts are timely invested in a qualified opportunity fund. Investments in a qualified opportunity fund may also be eligible for additional tax benefits.
NOTE: The IRWM polygons overlap each other. This polygon Feature Class includes IRWM planning regions participating in the State of California Department of Water Resources IRWM grant program. The data will be included as a component of the DWR Atlas of GIS data and be utilized as the feature data set for GIS projects requiring location of IRWM planning regions. This dataset is not to be utilized for survey purpose and is not designed to that accuracy level. Size of initial data set is 622 KB. Including additional attributes, the dataset is not expected to exceed 700 KB in size. Updates to this data will be once a year or as needed in conjunction with the IRWM Regional Boundaries dataset updates. Some IRWM Regions may decide not to participate in the grant program and will be in the attribute table with no spatial reference. An attribute called “Status” may be added to the feature class table. The data steward will be in charge of updating the dataset and responsible for any versioning. The associated data are considered DWR enterprise GIS data, which meet all appropriate requirements of the DWR GIS Spatial Data Standards. DWR makes no warranties or guarantees, either expressed or implied, as to the completeness, accuracy or correctness of the data, nor accepts or assumes any liability arising from or for any incorrect, incomplete or misleading subject data. Comments, problems improvements, updates or suggestions should be forwarded to the official GIS Data Steward as available and appropriate. The Region Acceptance Process (RAP) is a component of the Integrated Regional Water Management (IRWM) Program Guidelines and is used to evaluate and accept an IRWM region into the IRWM grant program. The RAP is not a grant funding application; however, acceptance of the composition of an IRWM region (including the IRWM region’s boundary) is required for DWR IRWM grant funding eligibility. This dataset includes:-the boundaries of the most current IRWM Regions (as submitted to DWR by the respective IRWM planning region)-their RAP status (Accepted or Conditional) as conferred by DWR the year each entity participated in the RAP-a descriptive field noting the date of any subsequent IRWM boundary changes submitted and accepted by DWR.
Areas that have been determined to be eligible for support for broadband and voice service from the FCC’s final Alternative-Connect America Cost Model (A-CAM version 2.3). A-CAM calculates costs per location in all rate-of-return carrier census blocks for the entire country.For more information, see https://www.fcc.gov/maps/a-cam-offer-map/
HEPGIS is a web-based interactive geographic map server that allows users to navigate and view geo-spatial data, print maps, and obtain data on specific features using only a web browser. It includes geo-spatial data used for transportation planning. HEPGIS previously received ARRA funding for development of Economically distressed Area maps. It is also being used to demonstrate emerging trends to address MPO and statewide planning regulations/requirements , enhanced National Highway System, Primary Freight Networks, commodity flows and safety data . HEPGIS has been used to help implement MAP-21 regulations and will help implement the Grow America Act, particularly related to Ladder of Opportunities and MPO reforms.
The Human Geography Map (World Edition) web map provides a detailed vector basemap with a monochromatic style and content adjusted to support Human Geography information. Where possible, the map content has been adjusted so that it observes WCAG contrast criteria.This basemap, included in the ArcGIS Living Atlas of the World, uses 3 vector tile layers:Human Geography Label, a label reference layer including cities and communities, countries, administrative units, and at larger scales street names.Human Geography Detail, a detail reference layer including administrative boundaries, roads and highways, and larger bodies of water. This layer is designed to be used with a high degree of transparency so that the detail does not compete with your information. It is set at approximately 50% in this web map, but can be adjusted.Human Geography Base, a simple basemap consisting of land areas in a very light gray only.The vector tile layers in this web map are built using the same data sources used for other Esri Vector Basemaps. For details on data sources contributed by the GIS community, view the map of Community Maps Basemap Contributors. Esri Vector Basemaps are updated monthly.Learn more about this basemap from the cartographic designer in Introducing a Human Geography Basemap.Use this MapThis map is designed to be used as a basemap for overlaying other layers of information or as a stand-alone reference map. You can add layers to this web map and save as your own map. If you like, you can add this web map to a custom basemap gallery for others in your organization to use in creating web maps. If you would like to add this map as a layer in other maps you are creating, you may use the tile layer item referenced in this map.
Raw 1/10th Degree Wind Force Probability data for all wind speeds.
The Alternative GWPC layer is to be used when evaluating the Alternative GWPC provision, section 22a-133k-3(d)(2) of the RSRs, amended on February 16, 2021. This layer represents the GA groundwater classification area where an Alternative GWPC could be eligible if a groundwater plume is located in the designated Alternative Groundwater Protection Criteria area and all other requirements of 22a-133k-3(d)(2) have been satisfied. The layer provides more flexibility in achieving groundwater compliance in areas with no current or future drinking water use.
https://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/
Cloud GIS Market size was valued at USD 890.81 Million in 2023 and is projected to reach USD 2298.38 Million by 2031, growing at a CAGR of 14.5% from 2024 to 2031.
Key Market Drivers
• Increased Adoption of Cloud Computing: Cloud computing provides scalable resources that can be adjusted based on demand, making it easier for organizations to manage and process large GIS datasets. The pay-as-you-go pricing models of cloud services reduce the need for significant upfront investments in hardware and software, making GIS more accessible to small and medium-sized enterprises.
• Growing Need for Spatial Data Integration: The ability to integrate and analyze large volumes of spatial and non-spatial data helps organizations make more informed decisions. The proliferation of Internet of Things (IoT) devices generates massive amounts of spatial data that can be processed and analyzed using Cloud GIS.
• Advancements in GIS Technology: User-friendly interfaces and visualization tools make it easier for non-experts to use GIS applications. Advanced analytical tools and machine learning algorithms available in cloud platforms enhance the capabilities of traditional GIS.
• Increased Demand for Real-Time Data: Industries like disaster management, transportation, and logistics require real-time data processing and analysis, which is facilitated by Cloud GIS. The need for up-to-date maps and spatial data drives the adoption of cloud-based GIS solutions.
• Collaboration and Sharing Needs: The ability to access GIS data and collaborate from anywhere enhances productivity and supports remote work environments. Cloud GIS supports simultaneous access by multiple users, facilitating better teamwork and data sharing.
• Urbanization and Smart Cities Initiatives: Cloud GIS is crucial for smart city initiatives, urban planning, and infrastructure development, providing the tools needed for efficient resource management. Supports planning and monitoring of sustainable development projects by providing comprehensive spatial analysis capabilities.
• Government and Policy Support: Increased government investment in geospatial technologies and smart infrastructure projects drives the adoption of Cloud GIS. Compliance with regulatory requirements for environmental monitoring and land use planning necessitates the use of advanced GIS tools.
• Industry-Specific Applications: Precision farming and land management benefit from the advanced analytics and data integration capabilities of Cloud GIS. Epidemiology and public health monitoring rely on spatial data analysis for tracking disease outbreaks and resource allocation.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This webmap displays the percent of population 25 years and over whose highest education completed is bachelor's degree or higher. The webmap contains the following layers: City of Corona Limits, State Boundary, County Boundary and Tract Boundary.
HEPGIS is a web-based interactive geographic map server that allows users to navigate and view geo-spatial data, print maps, and obtain data on specific features using only a web browser. It includes geo-spatial data used for transportation planning. HEPGIS previously received ARRA funding for development of Economically distressed Area maps. It is also being used to demonstrate emerging trends to address MPO and statewide planning regulations/requirements , enhanced National Highway System, Primary Freight Networks, commodity flows and safety data . HEPGIS has been used to help implement MAP-21 regulations and will help implement the Grow America Act, particularly related to Ladder of Opportunities and MPO reforms.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
IntroductionBuilt environment attributes have been linked to cardiovascular disease (CVD) risk. Therefore, identifying built environment attributes that are associated with CVD risk is relevant for facilitating effective public health interventions.ObjectiveTo conduct a systematic review of literature to examine the influence of built environmental attributes on CVD risks.Data SourceMultiple database searches including Science direct, CINAHL, Masterfile Premier, EBSCO and manual scan of reference lists were conducted.Inclusion CriteriaStudies published in English between 2005 and April 2015 were included if they assessed one or more of the neighborhood environmental attributes in relation with any major CVD outcomes and selected risk factors among adults.Data ExtractionAuthor(s), country/city, sex, age, sample size, study design, tool used to measure neighborhood environment, exposure and outcome assessments and associations were extracted from eligible studies.ResultsEighteen studies met the inclusion criteria. Most studies used both cross-sectional design and Geographic Information System (GIS) to assess the neighborhood environmental attributes. Neighborhood environmental attributes were significantly associated with CVD risk and CVD outcomes in the expected direction. Residential density, safety from traffic, recreation facilities, street connectivity and high walkable environment were associated with physical activity. High walkable environment, fast food restaurants, supermarket/grocery stores were associated with blood pressure, body mass index, diabetes mellitus and metabolic syndrome. High density traffic, road proximity and fast food restaurants were associated with CVDs outcomes.ConclusionThis study confirms the relationship between neighborhood environment attributes and CVDs and risk factors. Prevention programs should account for neighborhood environmental attributes in the communities where people live.
Finalized as of 12.20.2024, this list of final locations eligible for BEAD funding is provided in Location IDs in terms of FCC Broadband Serviceable Location Fabric Version 3.2. The Location ID number is provided, along with the Latitude and Longitude, as well as the service code. “0” is Unserved, “1” is Underserved, “2” is Served. The list of unserved, eligible Community Anchor Institutions has also been added to this page as of December 20, 2024.
To view these locations without GIS software, see the BEAD-Eligible Locations layer on the Commonwealth Connection Map: https://commonwealth-connection.com/
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This project file contains row research data and result data that have been used for the paper entitled "GIS-based multi-criteria analysis for Arabica coffee expansion in Rwanda" by Innocent Nzeyimana, Alfred E. Hartemink, Violette Geissen. http://dx.doi.org/10.6084/m9.figshare.1128594- See more at: http://figshare.com/preview/_preview/1128594#sthash.QkGK7m8Y.dpuf
HEPGIS is a web-based interactive geographic map server that allows users to navigate and view geo-spatial data, print maps, and obtain data on specific features using only a web browser. It includes geo-spatial data used for transportation planning. HEPGIS previously received ARRA funding for development of Economically distressed Area maps. It is also being used to demonstrate emerging trends to address MPO and statewide planning regulations/requirements , enhanced National Highway System, Primary Freight Networks, commodity flows and safety data . HEPGIS has been used to help implement MAP-21 regulations and will help implement the Grow America Act, particularly related to Ladder of Opportunities and MPO reforms.
The Human Geography Dark Map (World Edition) web map provides a detailed world basemap with a dark monochromatic style and content adjusted to support human geography information. Where possible, the map content has been adjusted so that it observes WCAG contrast criteria.This basemap, included in the ArcGIS Living Atlas of the World, uses 3 vector tile layers:Human Geography Dark Label, a label reference layer including cities and communities, countries, administrative units, and at larger scales street names.Human Geography Dark Detail, a detail reference layer including administrative boundaries, roads and highways, and larger bodies of water. This layer is designed to be used with a high degree of transparency so that the detail does not compete with your information. It is set at approximately 50% in this web map, but can be adjusted.Human Geography Dark Base, a simple basemap consisting of land areas in a very dark gray only.The vector tile layers in this web map are built using the same data sources used for other Esri Vector Basemaps. For details on data sources contributed by the GIS community, view the map of Community Maps Basemap Contributors. Esri Vector Basemaps are updated monthly.Learn more about this basemap from the cartographic designer in A Dark Version of the Human Geography Basemap.Use this MapThis map is designed to be used as a basemap for overlaying other layers of information or as a stand-alone reference map. You can add layers to this web map and save as your own map. If you like, you can add this web map to a custom basemap gallery for others in your organization to use in creating web maps. If you would like to add this map as a layer in other maps you are creating, you may use the tile layers referenced in this map.
The data release for the geologic map of the Challis 1 x 2 degrees quadrangle, Idaho, is a Geologic Map Schema (GeMS)-compliant version that updates the GIS files for the geologic map published in U.S. Geological Survey (USGS) Miscellaneous Investigations I-1819 (Fisher and others, 1992). The updated digital data present the attribute tables and geospatial features (points, lines and polygons) in the format that meets GeMS requirements. This data release presents the geologic map as shown on the plates and captured in geospatial data for the published map. Minor errors, such as mistakes in line decoration or differences between the digital data and the map image, are corrected in this version. The database represents the geology for the 4.4 million acre, geologically complex Challis 1 x 2 degrees quadrangle, at a publication scale of 1:250,000. The map covers primarily Boise, Custer, Lemhi and Valley Counties, but also includes minor parts of Elmore County. These GIS data supersede those in the interpretive report: Fisher, F.S., McIntyre, D.H., and Johnson, K.M., 1992, Geologic map of the Challis 1 degree x 2 degrees quadrangle, Idaho: U.S. Geological Survey, Miscellaneous Investigations Series Map I-1819, scale 1:250,000, https://pubs.usgs.gov/imap/i-1819/
The interactive GIS mapping tool provides the estimated geographic extent of each existing flow requirement represented by a polygon layer. Clicking on a polygon will open a pop-up window that provides an overview of the flow requirement for the applicable stream reach. More detail on an existing instream flow requirement is also available by clicking on the link to the source document within the same pop-up window. Stakeholders can request the State Water Board update the existing flow requirements in the mapping tool to modify the flow requirement conditions, as applicable; clarify the geographic scope of the flow requirement; or add any existing flow requirements that are not identified. If you have any comments, corrections, or additional information to provide, you are encouraged to contact the State Water Board via email at WRCannabis@waterboards.ca.gov.