95 datasets found
  1. B

    Open Data Training Workshop: Case Studies in Open Data for Qualitative and...

    • borealisdata.ca
    Updated Apr 18, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Srinvivas Murthy; Maggie Woo Kinshella; Jessica Trawin; Teresa Johnson; Niranjan Kissoon; Matthew Wiens; Gina Ogilvie; Gurm Dhugga; J Mark Ansermino (2023). Open Data Training Workshop: Case Studies in Open Data for Qualitative and Quantitative Clinical Research [Dataset]. http://doi.org/10.5683/SP3/BNNAE7
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 18, 2023
    Dataset provided by
    Borealis
    Authors
    Srinvivas Murthy; Maggie Woo Kinshella; Jessica Trawin; Teresa Johnson; Niranjan Kissoon; Matthew Wiens; Gina Ogilvie; Gurm Dhugga; J Mark Ansermino
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Dataset funded by
    Digital Research Alliance of Canada
    Description

    Objective(s): Momentum for open access to research is growing. Funding agencies and publishers are increasingly requiring researchers make their data and research outputs open and publicly available. However, clinical researchers struggle to find real-world examples of Open Data sharing. The aim of this 1 hr virtual workshop is to provide real-world examples of Open Data sharing for both qualitative and quantitative data. Specifically, participants will learn: 1. Primary challenges and successes when sharing quantitative and qualitative clinical research data. 2. Platforms available for open data sharing. 3. Ways to troubleshoot data sharing and publish from open data. Workshop Agenda: 1. “Data sharing during the COVID-19 pandemic” - Speaker: Srinivas Murthy, Clinical Associate Professor, Department of Pediatrics, Faculty of Medicine, University of British Columbia. Investigator, BC Children's Hospital 2. “Our experience with Open Data for the 'Integrating a neonatal healthcare package for Malawi' project.” - Speaker: Maggie Woo Kinshella, Global Health Research Coordinator, Department of Obstetrics and Gynaecology, BC Children’s and Women’s Hospital and University of British Columbia This workshop draws on work supported by the Digital Research Alliance of Canada. Data Description: Presentation slides, Workshop Video, and Workshop Communication Srinivas Murthy: Data sharing during the COVID-19 pandemic presentation and accompanying PowerPoint slides. Maggie Woo Kinshella: Our experience with Open Data for the 'Integrating a neonatal healthcare package for Malawi' project presentation and accompanying Powerpoint slides. This workshop was developed as part of Dr. Ansermino's Data Champions Pilot Project supported by the Digital Research Alliance of Canada. NOTE for restricted files: If you are not yet a CoLab member, please complete our membership application survey to gain access to restricted files within 2 business days. Some files may remain restricted to CoLab members. These files are deemed more sensitive by the file owner and are meant to be shared on a case-by-case basis. Please contact the CoLab coordinator on this page under "collaborate with the pediatric sepsis colab."

  2. f

    Data_Sheet_1_Raw Data Visualization for Common Factorial Designs Using SPSS:...

    • frontiersin.figshare.com
    zip
    Updated Jun 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Florian Loffing (2023). Data_Sheet_1_Raw Data Visualization for Common Factorial Designs Using SPSS: A Syntax Collection and Tutorial.ZIP [Dataset]. http://doi.org/10.3389/fpsyg.2022.808469.s001
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jun 2, 2023
    Dataset provided by
    Frontiers
    Authors
    Florian Loffing
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Transparency in data visualization is an essential ingredient for scientific communication. The traditional approach of visualizing continuous quantitative data solely in the form of summary statistics (i.e., measures of central tendency and dispersion) has repeatedly been criticized for not revealing the underlying raw data distribution. Remarkably, however, systematic and easy-to-use solutions for raw data visualization using the most commonly reported statistical software package for data analysis, IBM SPSS Statistics, are missing. Here, a comprehensive collection of more than 100 SPSS syntax files and an SPSS dataset template is presented and made freely available that allow the creation of transparent graphs for one-sample designs, for one- and two-factorial between-subject designs, for selected one- and two-factorial within-subject designs as well as for selected two-factorial mixed designs and, with some creativity, even beyond (e.g., three-factorial mixed-designs). Depending on graph type (e.g., pure dot plot, box plot, and line plot), raw data can be displayed along with standard measures of central tendency (arithmetic mean and median) and dispersion (95% CI and SD). The free-to-use syntax can also be modified to match with individual needs. A variety of example applications of syntax are illustrated in a tutorial-like fashion along with fictitious datasets accompanying this contribution. The syntax collection is hoped to provide researchers, students, teachers, and others working with SPSS a valuable tool to move towards more transparency in data visualization.

  3. Quantitative Service Delivery Survey in Education 2003 - Indonesia

    • dev.ihsn.org
    • catalog.ihsn.org
    • +1more
    Updated Apr 25, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SMERU Research Institute, Indonesia (2019). Quantitative Service Delivery Survey in Education 2003 - Indonesia [Dataset]. https://dev.ihsn.org/nada/catalog/72560
    Explore at:
    Dataset updated
    Apr 25, 2019
    Dataset provided by
    World Bankhttp://worldbank.org/
    SMERU Research Institute, Indonesia
    Time period covered
    2002 - 2003
    Area covered
    Indonesia
    Description

    Abstract

    This survey is the first detailed study on the phenomena of teacher absenteeism in Indonesia obtained from two unannounced visits to 147 sample schools in October 2002 and March 2003. The study was conducted by the SMERU Research Institute and the World Bank, affiliated with the Global Development Network (GDN). Similar surveys were carried out at the same time in seven other developing countries: Bangladesh, Ecuador, India, Papua New Guinea, Peru, Uganda, and Zambia.

    This research focuses on primary school teacher absence rates and their relations to individual teacher characteristics, conditions of the community and its institutions, and the education policy at various levels of authority. A teacher was considered as absent if at the time of the visit the researcher could not find the sample teacher in the school.

    This survey was conducted in randomly selected 10 districts/cities in four Indonesian regions: Java-Bali, Sumatera, Kalimantan-Sulawesi, and Nusa Tenggara.

    Geographic coverage

    Java-Bali, Sumatera, Kalimantan-Sulawesi and Nusa Tenggara regions

    Analysis unit

    • Teachers
    • Schools

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Information from Indonesian Statistics Agency (BPS) and the Ministry of Education was used as a basis to build a sample frame. The data gathered included the amount of total population, a list of villages and primary school facilities in each district/city. Due to limited time and resources, this research only focused on primary schools. In Indonesia, there are two types of primary education facilities: primary schools and primary madrasah. Primary schools are regulated by the Ministry of National Education, using the general curriculum, while primary madrasah are regulated by the Ministry of Religious Affairs, using a mixed (general and Islamic) curriculum.

    A sample of districts/cities and schools (consisting of primary schools and primary madrasah) were selected using the following steps. First, Indonesia was divided into several regions based on the number of total population: Java-Bali, Sumatera, Kalimantan-Sulawesi, and Nusa Tenggara. Indonesian provinces that were suffering from various conflicts (such as Aceh, Central Sulawesi, Maluku, North Maluku, and Papua) were removed from the sample selection process. Then, from each region, a total of five districts and cities were randomly selected, taking into account the population of each district/city.

    Second, 12 schools were selected in each district/city. Before choosing sampled schools, researchers randomly selected 10 villages in each district/city to be sampled, taking into account the location of these villages (in urban or rural areas). One of the 10 villages was a backup village to anticipate the possibility of a village that was too difficult to reach. In each village sampled, researchers asked residents about the location of primary schools/madrasah (both public and private) in these villages. They started visiting schools, giving priority to public primary schools/madrasahs. To meet the number of samples in each district/city, additional samples were selected from private schools.

    Third, in each school sampled, the researcher would request a list of teachers. If a school visited was considered to be large, such as schools with more than 15 teachers, then the researcher would only interview 15 teachers chosen randomly to ensure that survey quality could be maintained despite the limited time and resources. Each school was visited twice, both on an unannounced date. From the 147 primary schools/madrasah in the sample, 1,441 teachers were selected in each visit (because this is a panel study, the teacher absence data that were used were taken only from teachers that could be interviewed or whose data were obtained from both visits). If there were teachers whose information was only obtained from one of the visits, then their data was not included in the dataset panel.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The following survey instruments are available:

    • Teacher Questionnaire, First Visit
    • Teacher Questionnaire, Second Visit.

    Cleaning operations

    Detailed information about data editing procedures is available in "Data Cleaning Guide for PETS/QSDS Surveys" in external resources.

    The STATA cleaning do-file and the data quality report on the dataset can also be found in external resources.

  4. D

    Replication Data for: A Three-Year Mixed Methods Study of Undergraduates’...

    • dataverse.no
    • dataverse.azure.uit.no
    Updated Oct 8, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ellen Nierenberg; Ellen Nierenberg (2024). Replication Data for: A Three-Year Mixed Methods Study of Undergraduates’ Information Literacy Development: Knowing, Doing, and Feeling [Dataset]. http://doi.org/10.18710/SK0R1N
    Explore at:
    txt(21865), txt(19475), csv(55030), txt(14751), txt(26578), txt(16861), txt(28211), pdf(107685), pdf(657212), txt(12082), txt(16243), text/x-fixed-field(55030), pdf(65240), txt(8172), pdf(634629), txt(31896), application/x-spss-sav(51476), txt(4141), pdf(91121), application/x-spss-sav(31612), txt(35011), txt(23981), text/x-fixed-field(15653), txt(25369), txt(17935), csv(15653)Available download formats
    Dataset updated
    Oct 8, 2024
    Dataset provided by
    DataverseNO
    Authors
    Ellen Nierenberg; Ellen Nierenberg
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    Aug 8, 2019 - Jun 10, 2022
    Area covered
    Norway
    Description

    This data set contains the replication data and supplements for the article "Knowing, Doing, and Feeling: A three-year, mixed-methods study of undergraduates’ information literacy development." The survey data is from two samples: - cross-sectional sample (different students at the same point in time) - longitudinal sample (the same students and different points in time)Surveys were distributed via Qualtrics during the students' first and sixth semesters. Quantitative and qualitative data were collected and used to describe students' IL development over 3 years. Statistics from the quantitative data were analyzed in SPSS. The qualitative data was coded and analyzed thematically in NVivo. The qualitative, textual data is from semi-structured interviews with sixth-semester students in psychology at UiT, both focus groups and individual interviews. All data were collected as part of the contact author's PhD research on information literacy (IL) at UiT. The following files are included in this data set: 1. A README file which explains the quantitative data files. (2 file formats: .txt, .pdf)2. The consent form for participants (in Norwegian). (2 file formats: .txt, .pdf)3. Six data files with survey results from UiT psychology undergraduate students for the cross-sectional (n=209) and longitudinal (n=56) samples, in 3 formats (.dat, .csv, .sav). The data was collected in Qualtrics from fall 2019 to fall 2022. 4. Interview guide for 3 focus group interviews. File format: .txt5. Interview guides for 7 individual interviews - first round (n=4) and second round (n=3). File format: .txt 6. The 21-item IL test (Tromsø Information Literacy Test = TILT), in English and Norwegian. TILT is used for assessing students' knowledge of three aspects of IL: evaluating sources, using sources, and seeking information. The test is multiple choice, with four alternative answers for each item. This test is a "KNOW-measure," intended to measure what students know about information literacy. (2 file formats: .txt, .pdf)7. Survey questions related to interest - specifically students' interest in being or becoming information literate - in 3 parts (all in English and Norwegian): a) information and questions about the 4 phases of interest; b) interest questionnaire with 26 items in 7 subscales (Tromsø Interest Questionnaire - TRIQ); c) Survey questions about IL and interest, need, and intent. (2 file formats: .txt, .pdf)8. Information about the assignment-based measures used to measure what students do in practice when evaluating and using sources. Students were evaluated with these measures in their first and sixth semesters. (2 file formats: .txt, .pdf)9. The Norwegain Centre for Research Data's (NSD) 2019 assessment of the notification form for personal data for the PhD research project. In Norwegian. (Format: .pdf)

  5. d

    Data from: tableone: An open source Python package for producing summary...

    • datadryad.org
    • zenodo.org
    zip
    Updated Apr 23, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tom J. Pollard; Alistair E. W. Johnson; Jesse D. Raffa; Roger G. Mark (2019). tableone: An open source Python package for producing summary statistics for research papers [Dataset]. http://doi.org/10.5061/dryad.26c4s35
    Explore at:
    zipAvailable download formats
    Dataset updated
    Apr 23, 2019
    Dataset provided by
    Dryad
    Authors
    Tom J. Pollard; Alistair E. W. Johnson; Jesse D. Raffa; Roger G. Mark
    Time period covered
    2019
    Description

    Objectives: In quantitative research, understanding basic parameters of the study population is key for interpretation of the results. As a result, it is typical for the first table (“Table 1”) of a research paper to include summary statistics for the study data. Our objectives are 2-fold. First, we seek to provide a simple, reproducible method for providing summary statistics for research papers in the Python programming language. Second, we seek to use the package to improve the quality of summary statistics reported in research papers.

    Materials and Methods: The tableone package is developed following good practice guidelines for scientific computing and all code is made available under a permissive MIT License. A testing framework runs on a continuous integration server, helping to maintain code stability. Issues are tracked openly and public contributions are encouraged.

    Results: The tableone software package automatically compiles summary statistics into publishable formats such...

  6. Independent T-tests of key variables by exposure to healthcare barriers...

    • plos.figshare.com
    xls
    Updated Jun 14, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Athena D. F. Sherman; Monique S. Balthazar; Gaea Daniel; Kalisha Bonds Johnson; Meredith Klepper; Kristen D. Clark; Glenda N. Baguso; Ethan Cicero; Kisha Allure; Whitney Wharton; Tonia Poteat (2023). Independent T-tests of key variables by exposure to healthcare barriers among the quantitative sample (N = 151). [Dataset]. http://doi.org/10.1371/journal.pone.0269776.t004
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 14, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Athena D. F. Sherman; Monique S. Balthazar; Gaea Daniel; Kalisha Bonds Johnson; Meredith Klepper; Kristen D. Clark; Glenda N. Baguso; Ethan Cicero; Kisha Allure; Whitney Wharton; Tonia Poteat
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Independent T-tests of key variables by exposure to healthcare barriers among the quantitative sample (N = 151).

  7. b

    The ASK feasibility trial quantitative data - Datasets - data.bris

    • data.bris.ac.uk
    Updated Jul 9, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). The ASK feasibility trial quantitative data - Datasets - data.bris [Dataset]. https://data.bris.ac.uk/data/dataset/2b9vlo0wejnsh2nfoa6fka66cx
    Explore at:
    Dataset updated
    Jul 9, 2024
    Description

    In order to request access to this data please complete the data request form.* * University of Bristol staff should use this form instead. The ASK feasibility trial: a randomised controlled feasibility trial and process evaluation of a complex multicomponent intervention to improve AccesS to living-donor Kidney transplantation This trial was a two-arm, parallel group, pragmatic, individually-randomised, controlled, feasibility trial, comparing usual care with a multicomponent intervention to increase access to living-donor kidney transplantation. The trial was based at two UK hospitals: a transplanting hospital and a non-transplanting referral hospital. 62 participants were recruited. 60 participants consented to data sharing, and their trial data is available here. 2 participants did not consent to data sharing and their data is not available. This project contains: 1. The ASK feasibility trial dataset 2. The trial questionnaire 3. An example consent form 4. Trial information sheet This dataset is part of a series: ASK feasibility trial documents: https://doi.org/10.5523/bris.1u5ooi0iqmb5c26zwim8l7e8rm The ASK feasibility trial: CONSORT documents: https://doi.org/10.5523/bris.2iq6jzfkl6e1x2j1qgfbd2kkbb The ASK feasibility trial: Wellcome Open Research CONSORT checklist: https://doi.org/10.5523/bris.1m3uhbdfdrykh27iij5xck41le The ASK feasibility trial: qualitative data: https://doi.org/10.5523/bris.1qm9yblprxuj2qh3o0a2yylgg

  8. Q

    Community Expert Interviews on Priority Healthcare Needs Amongst People...

    • data.qdr.syr.edu
    pdf, txt
    Updated Nov 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Carolyn Ingram; Carolyn Ingram (2023). Community Expert Interviews on Priority Healthcare Needs Amongst People Experiencing Homelessness in Dublin, Ireland: 2022-2023 [Dataset]. http://doi.org/10.5064/F6HFOEC5
    Explore at:
    pdf(599798), txt(6566), pdf(474790), pdf(138736), pdf(530060), pdf(612983), pdf(453939), pdf(729114), pdf(538538), pdf(396835), pdf(593906), pdf(656401), pdf(643059), pdf(506008), pdf(451086), pdf(550588), pdf(670927), pdf(180547), pdf(189571), pdf(367380)Available download formats
    Dataset updated
    Nov 10, 2023
    Dataset provided by
    Qualitative Data Repository
    Authors
    Carolyn Ingram; Carolyn Ingram
    License

    https://qdr.syr.edu/policies/qdr-standard-access-conditionshttps://qdr.syr.edu/policies/qdr-standard-access-conditions

    Time period covered
    Sep 1, 2022 - Mar 31, 2023
    Area covered
    Ireland, Dublin
    Description

    Project Overview This study used a community-based participatory approach to identify and investigate the needs of people experiencing homelessness in Dublin, Ireland. The project had several stages: A systematic review on health disparities amongst people experiencing homelessness in the Republic of Ireland; Observation and interviews with homeless attendees of a community health clinic; and Interviews with community experts (CEs) conducted from September 2022 to March 2023 on ongoing work and gaps in the research/health service response. This data deposit stems from stage 3, the community expert interview aspect of this project. Stage 1 of the project has been published (Ingram et al., 2023.) and associated data are available here. De-identified field note data from stage 2 of the project are planned for sharing upon completion of analysis, in January 2024. Data and Data Collection Overview A purposive, criterion-i sampling strategy (Palinkas et al., 2015) – where selected interviewees meet a predetermined criterion of importance – was used to identify professionals working in homeless health and/or addiction services in Dublin, stratified by occupation type. Potential CEs were identified through an internet search of homeless health and addiction services in Dublin. Interviewed CEs were invited to recommend colleagues they felt would have relevant perspectives on community health needs, expanding the sample via snowball strategy. Interview questions were based on World Health Organization Community Health Needs Assessment guidelines (Rowe at al., 2001). Semi-structured interviews were conducted between September 2022 and March 2023 utilising ZOOM™, the phone, or in person according to participant preference. Carolyn Ingram, who has formal qualitative research training, served as the interviewer. CEs were presented with an information sheet and gave audio recorded, informed oral consent – considered appropriate for remote research conducted with non-vulnerable adult participants – in the full knowledge that interviews would be audio recorded, transcribed, and de-identified, as approved by the researchers’ institutional Human Research Ethics Committee (LS-E-125-Ingram-Perrotta-Exemption). Interviewees also gave permission for de-identified transcripts to be shared in a qualitative data archive. Shared Data Organization 16 de-identified transcripts from the CE interviews are being published. Three participants from the total sample (N=19) did not consent to data archival. The transcript from each interviewee is named based on the type of work the interviewee performs, with individuals in the same type of work being differentiated by numbers. The full set of professional categories is as follows: Addiction Services Government Homeless Health Services Hospital Psychotherapist Researcher Social Care Any changes or removal of words or phrases for de-identification purposes are flagged by including [brackets] and italics. The documentation files included in this data project are the consent form and the interview guide used for the study, this data narrative and an administrative README file. References Ingram C, Buggy C, Elabbasy D, Perrotta C. (2023) “Homelessness and health-related outcomes in the Republic of Ireland: a systematic review, meta-analysis and evidence map.” Journal of Public Health (Berl). https://doi.org/10.1007/s10389-023-01934-0 Palinkas LA, Horwitz SM, Green CA, Wisdom JP, Duan N, Hoagwood K. (2015) “Purposeful sampling for qualitative data collection and analysis in mixed method implementation research.” Administration and Policy in Mental Health. Sep;42(5):533–44. https://doi.org/10.1007/s10488-013-0528-y Rowe A, McClelland A, Billingham K, Carey L. (2001) “Community health needs assessment: an introductory guide for the family health nurse in Europe” [Internet]. World Health Organization. Regional Office for Europe. Available at: https://apps.who.int/iris/handle/10665/108440

  9. f

    Data from: pmartR: Quality Control and Statistics for Mass...

    • acs.figshare.com
    • figshare.com
    xlsx
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kelly G. Stratton; Bobbie-Jo M. Webb-Robertson; Lee Ann McCue; Bryan Stanfill; Daniel Claborne; Iobani Godinez; Thomas Johansen; Allison M. Thompson; Kristin E. Burnum-Johnson; Katrina M. Waters; Lisa M. Bramer (2023). pmartR: Quality Control and Statistics for Mass Spectrometry-Based Biological Data [Dataset]. http://doi.org/10.1021/acs.jproteome.8b00760.s001
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    ACS Publications
    Authors
    Kelly G. Stratton; Bobbie-Jo M. Webb-Robertson; Lee Ann McCue; Bryan Stanfill; Daniel Claborne; Iobani Godinez; Thomas Johansen; Allison M. Thompson; Kristin E. Burnum-Johnson; Katrina M. Waters; Lisa M. Bramer
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    Prior to statistical analysis of mass spectrometry (MS) data, quality control (QC) of the identified biomolecule peak intensities is imperative for reducing process-based sources of variation and extreme biological outliers. Without this step, statistical results can be biased. Additionally, liquid chromatography–MS proteomics data present inherent challenges due to large amounts of missing data that require special consideration during statistical analysis. While a number of R packages exist to address these challenges individually, there is no single R package that addresses all of them. We present pmartR, an open-source R package, for QC (filtering and normalization), exploratory data analysis (EDA), visualization, and statistical analysis robust to missing data. Example analysis using proteomics data from a mouse study comparing smoke exposure to control demonstrates the core functionality of the package and highlights the capabilities for handling missing data. In particular, using a combined quantitative and qualitative statistical test, 19 proteins whose statistical significance would have been missed by a quantitative test alone were identified. The pmartR package provides a single software tool for QC, EDA, and statistical comparisons of MS data that is robust to missing data and includes numerous visualization capabilities.

  10. D

    Replication Data for: The Choice of Aspect in the Russian Modal Construction...

    • dataverse.no
    csv, pdf, tsv, txt
    Updated Sep 28, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Beatrice Bernasconi; Beatrice Bernasconi (2023). Replication Data for: The Choice of Aspect in the Russian Modal Construction with prixodit'sja/prijtis' [Dataset]. http://doi.org/10.18710/KR5RRK
    Explore at:
    pdf(133994), txt(731), csv(197397), txt(1563), pdf(668808), txt(1523), txt(134354), txt(3307), txt(2842), tsv(70878), pdf(992161)Available download formats
    Dataset updated
    Sep 28, 2023
    Dataset provided by
    DataverseNO
    Authors
    Beatrice Bernasconi; Beatrice Bernasconi
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    1950 - 2020
    Area covered
    Russian Federation
    Description

    This dataset includes all the data files that were used for the studies in my Master Thesis: "The Choice of Aspect in the Russian Modal Construction with prixodit'sja/prijtis'". The data files are numbered so that they are shown in the same order as they are presented in the thesis. They include the database and the code used for the statistical analysis. Their contents are described in the ReadMe files. The core of the work is a quantitative and empirical study on the choice of aspect by Russian native speakers in the modal construction prixodit’sja/prijtis’ + inf. The hypothesis is that in the modal construction prixodit’sja/prijtis’ + inf the aspect of the infinitive is not fully determined by grammatical context but, to some extent, open to construal. A preliminary analysis was carried out on data gathered from the Russian National Corpus (www.ruscorpora.ru). Four hundred and forty-seven examples with the verb prijtis' were annotated manually for several factors and a statistical test (CART) was run. Results demonstrated that no grammatical factor plays a big role in the use of one aspect rather than the other. Data for this study can be consulted in the files from 01 to 03 and include a ReadMe file, the database in .csv format and the code used for the statistical test. An experiment with native speakers was then carried out. A hundred and ten native speakers of Russian were surveyed and asked to evaluate the acceptability of the infinitive in examples with prixodit’sja/prijtis’ delat’/sdelat’ šag/vid/vybor. The survey presented seventeen examples from the Russian National Corpus that were submitted two times: the first time with the same aspect as in the original version, the second time with the other aspect. Participants had to evaluate each case by choosing among “Impossible”, “Acceptable” and “Excellent” ratings. They were also allowed to give their opinion about the difference between aspects in each example. A Logistic Regression with Mixed Effects was run on the answers. Data for this study can be consulted in the files from 04 to 010 and include a ReadMe file, the text and the answers of the questionnaire, the database in .csv, .txt and pdf formats and the code used for the statistical test. Results showed that prijtis’ often admits both aspects in the infinitive, while prixodit’sja is more restrictive and prefers imperfective. Overall, “Acceptable” and “Excellent” responses were higher than “Impossible” responses for both aspects, even when the aspect evaluated didn’t match with the original. Personal opinions showed that the choice of aspect often depends on the meaning the speaker wants to convey. Only in very few cases the grammatical context was considered to be a constraint on the choice.

  11. National Child Development Study: Social Participation and Identity,...

    • beta.ukdataservice.ac.uk
    • datacatalogue.cessda.eu
    Updated 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    J. Elliott; M. Savage; A. Miles; S. Parsons (2023). National Child Development Study: Social Participation and Identity, 2007-2010 [Dataset]. http://doi.org/10.5255/ukda-sn-6691-3
    Explore at:
    Dataset updated
    2023
    Dataset provided by
    UK Data Servicehttps://ukdataservice.ac.uk/
    datacite
    Authors
    J. Elliott; M. Savage; A. Miles; S. Parsons
    Description

    The National Child Development Study (NCDS) is a continuing longitudinal study that seeks to follow the lives of all those living in Great Britain who were born in one particular week in 1958. The aim of the study is to improve understanding of the factors affecting human development over the whole lifespan.

    The NCDS has its origins in the Perinatal Mortality Survey (PMS) (the original PMS study is held at the UK Data Archive under SN 2137). This study was sponsored by the National Birthday Trust Fund and designed to examine the social and obstetric factors associated with stillbirth and death in early infancy among the 17,000 children born in England, Scotland and Wales in that one week. Selected data from the PMS form NCDS sweep 0, held alongside NCDS sweeps 1-3, under SN 5565.

    Survey and Biomeasures Data (GN 33004):

    To date there have been nine attempts to trace all members of the birth cohort in order to monitor their physical, educational and social development. The first three sweeps were carried out by the National Children's Bureau, in 1965, when respondents were aged 7, in 1969, aged 11, and in 1974, aged 16 (these sweeps form NCDS1-3, held together with NCDS0 under SN 5565). The fourth sweep, also carried out by the National Children's Bureau, was conducted in 1981, when respondents were aged 23 (held under SN 5566). In 1985 the NCDS moved to the Social Statistics Research Unit (SSRU) - now known as the Centre for Longitudinal Studies (CLS). The fifth sweep was carried out in 1991, when respondents were aged 33 (held under SN 5567). For the sixth sweep, conducted in 1999-2000, when respondents were aged 42 (NCDS6, held under SN 5578), fieldwork was combined with the 1999-2000 wave of the 1970 Birth Cohort Study (BCS70), which was also conducted by CLS (and held under GN 33229). The seventh sweep was conducted in 2004-2005 when the respondents were aged 46 (held under SN 5579), the eighth sweep was conducted in 2008-2009 when respondents were aged 50 (held under SN 6137) and the ninth sweep was conducted in 2013 when respondents were aged 55 (held under SN 7669).

    Four separate datasets covering responses to NCDS over all sweeps are available. National Child Development Deaths Dataset: Special Licence Access (SN 7717) covers deaths; National Child Development Study Response and Outcomes Dataset (SN 5560) covers all other responses and outcomes; National Child Development Study: Partnership Histories (SN 6940) includes data on live-in relationships; and National Child Development Study: Activity Histories (SN 6942) covers work and non-work activities. Users are advised to order these studies alongside the other waves of NCDS.

    From 2002-2004, a Biomedical Survey was completed and is available under End User Licence (EUL) (SN 8731) and Special Licence (SL) (SN 5594). Proteomics analyses of blood samples are available under SL SN 9254.

    Linked Geographical Data (GN 33497):
    A number of geographical variables are available, under more restrictive access conditions, which can be linked to the NCDS EUL and SL access studies.

    Linked Administrative Data (GN 33396):
    A number of linked administrative datasets are available, under more restrictive access conditions, which can be linked to the NCDS EUL and SL access studies. These include a Deaths dataset (SN 7717) available under SL and the Linked Health Administrative Datasets (SN 8697) available under Secure Access.

    Additional Sub-Studies (GN 33562):
    In addition to the main NCDS sweeps, further studies have also been conducted on a range of subjects such as parent migration, unemployment, behavioural studies and respondent essays. The full list of NCDS studies available from the UK Data Service can be found on the NCDS series access data webpage.

    How to access genetic and/or bio-medical sample data from a range of longitudinal surveys:
    For information on how to access biomedical data from NCDS that are not held at the UKDS, see the CLS Genetic data and biological samples webpage.

    Further information about the full NCDS series can be found on the Centre for Longitudinal Studies website.

    The Social Participation and Identity project combined quantitative longitudinal data with a qualitative investigation of a sub-sample of the NCDS cohort when they were aged 50, presented here as a mixed-methods data collection containing both qualitative and quantitative data. This was the first attempt to interview members of a national, longitudinal cohort study in depth, with the possibility of linking such biographical narratives to structured survey data collected throughout the life course. Interviews were conducted with a sub-sample of 220 NCDS cohort members resident in Great Britain (England, Scotland and Wales). The interviews were organised into six main sections focussing on: 1) Neighbourhood and belonging; 2) Leisure activities and social participation; 3) Personal communities; 4) Life histories; 5) Identity; 6) Reflections on being part of the NCDS.

    Further information:For the first and second editions of the study (2011 and 2012), the interview transcripts, interviewer observation summaries, gender identity diagrams and life trajectory diagrams for all participants were made available. For the third edition (July 2013), 179 essays collected from the subproject participants at the time of the NCDS2 wave (conducted 1969) were added to the study. See documentation for further details. (Users should note that an additional sample of transcribed essays from a wider set of NCDS2 participants is available from the Archive under SN 8313.)

  12. Most used qualitative methods used in the market research industry worldwide...

    • statista.com
    Updated Apr 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Most used qualitative methods used in the market research industry worldwide 2022 [Dataset]. https://www.statista.com/statistics/875985/market-research-industry-use-of-traditional-qualitative-methods/
    Explore at:
    Dataset updated
    Apr 23, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Oct 25, 2022 - Dec 16, 2022
    Area covered
    Worldwide
    Description

    In 2022, online surveys were the most used traditional qualitative methodologies in the market research industry worldwide. During the survey, 95 percent of respondents stated that they regularly used this method. Second in the list was data visualization/dashboards, where 90 percent of respondents gave this as their answer.

  13. c

    Smart qualitative data: Methods and community tools for data mark-Up (SQUAD)...

    • datacatalogue.cessda.eu
    Updated Mar 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Corti, L (2025). Smart qualitative data: Methods and community tools for data mark-Up (SQUAD) [Dataset]. http://doi.org/10.5255/UKDA-SN-850003
    Explore at:
    Dataset updated
    Mar 19, 2025
    Dataset provided by
    University of Essex
    Authors
    Corti, L
    Time period covered
    Mar 1, 2005 - Oct 31, 2006
    Area covered
    United Kingdom
    Variables measured
    Other
    Measurement technique
    Tools and technologies to explore new forms of sharing and disseminating qualitative data
    Description

    SQUAD - Smart Qualitative Data: Methods and Community Tools for Data Mark-Up is a demonstrator project that will explore methodological and technical solutions for exposing digital qualitative data to make them fully shareable, exploitable and archivable for the longer term. Such tools are required to exploit fully the potential of qualitative data for adventurous collaborative research using web-based and e-science systems. An example of the latter might be linking multiple data and information sources, such as text, statistics and maps. Initially, the project deals with specifying and testing flexible means of storing and marking-up, or annotating, qualitative data using universal standards and technologies, through eXtensible Mark-up Language (XML).A community standard, or schema, will be proposed that will be applicable to most kinds of qualitative data. The second strand investigates optimal requirements for describing or 'contextualising' research data (e.g. interview setting or interviewer characteristics), aiming to develop standards for data documentation. The third strand aims to use natural language processing technologies to develop and implement user-friendly tools for semi-automating processes to prepare marked-up qualitative data. Finally, the project will investigate tools for publishing the enriched data and contextual information to web-based systems and for exporting to preservation formats.

  14. d

    Comparison of Unsupervised Anomaly Detection Methods

    • catalog.data.gov
    • data.nasa.gov
    • +2more
    Updated Dec 6, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dashlink (2023). Comparison of Unsupervised Anomaly Detection Methods [Dataset]. https://catalog.data.gov/dataset/comparison-of-unsupervised-anomaly-detection-methods
    Explore at:
    Dataset updated
    Dec 6, 2023
    Dataset provided by
    Dashlink
    Description

    Several different unsupervised anomaly detection algorithms have been applied to Space Shuttle Main Engine (SSME) data to serve the purpose of developing a comprehensive suite of Integrated Systems Health Management (ISHM) tools. As the theoretical bases for these methods vary considerably, it is reasonable to conjecture that the resulting anomalies detected by them may differ quite significantly as well. As such, it would be useful to apply a common metric with which to compare the results. However, for such a quantitative analysis to be statistically significant, a sufficient number of examples of both nominally categorized and anomalous data must be available. Due to the lack of sufficient examples of anomalous data, use of any statistics that rely upon a statistically significant sample of anomalous data is infeasible. Therefore, the main focus of this paper will be to compare actual examples of anomalies detected by the algorithms via the sensors in which they appear, as well the times at which they appear. We find that there is enough overlap in detection of the anomalies among all of the different algorithms tested in order for them to corroborate the severity of these anomalies. In certain cases, the severity of these anomalies is supported by their categorization as failures by experts, with realistic physical explanations. For those anomalies that can not be corroborated by at least one other method, this overlap says less about the severity of the anomaly, and more about their technical nuances, which will also be discussed.

  15. Data from: Algorithms for Quantitative Pedology (AQP)

    • agdatacommons.nal.usda.gov
    bin
    Updated Feb 13, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dylan Beaudette; Pierre Roudier; Andrew Brown (2024). Algorithms for Quantitative Pedology (AQP) [Dataset]. https://agdatacommons.nal.usda.gov/articles/dataset/Algorithms_for_Quantitative_Pedology_AQP_/24853281
    Explore at:
    binAvailable download formats
    Dataset updated
    Feb 13, 2024
    Dataset provided by
    United States Department of Agriculturehttp://usda.gov/
    Authors
    Dylan Beaudette; Pierre Roudier; Andrew Brown
    License

    https://www.gnu.org/licenses/fdl-1.3.en.htmlhttps://www.gnu.org/licenses/fdl-1.3.en.html

    Description

    Algorithms for Quantitative Pedology (AQP) is a collection of code, ideas, documentation, and examples wrapped-up into several R packages. The theory behind much of the code can be found in Beaudette, D., Roudier, P., & O'Geen, A. (2013). Algorithms for quantitative pedology: A toolkit for soil scientists. Computers & Geosciences, 52, 258-268. doi: 10.1016/j.cageo.2012.10.020. The AQP package was designed to support data-driven approaches to common soils-related tasks such as visualization, aggregation, and classification of soil profile collections. To contribute code, documentation, bug reports, etc. contact Dylan at dylan [dot] beaudette [at] usda [dot] gov. AQP is a collaborative effort, funded in part by the Kearney Foundation of Soil Science (2009-2011) and USDA-NRCS (2011-current). The AQP suite of R packages are used to generate figures for SoilWeb, Series Extent Explorer, and Soil Data Explorer. Soil data presented were derived from the 100+ year efforts of the National Cooperative Soil Survey, c/o USDA-NRCS. Resources in this dataset:Resource Title: aqp: Algorithms for Quantitative Pedology (CRAN). File Name: Web Page, url: https://CRAN.R-project.org/package=aqp The Algorithms for Quantitative Pedology (AQP) project was started in 2009 to organize a loosely-related set of concepts and source code on the topic of soil profile visualization, aggregation, and classification into this package (aqp). Over the past 8 years, the project has grown into a suite of related R packages that enhance and simplify the quantitative analysis of soil profile data. Central to the AQP project is a new vocabulary of specialized functions and data structures that can accommodate the inherent complexity of soil profile information; freeing the scientist to focus on ideas rather than boilerplate data processing tasks . These functions and data structures have been extensively tested and documented, applied to projects involving hundreds of thousands of soil profiles, and deeply integrated into widely used tools such as SoilWeb https://casoilresource.lawr.ucdavis.edu/soilweb-apps/. Components of the AQP project (aqp, soilDB, sharpshootR, soilReports packages) serve an important role in routine data analysis within the USDA-NRCS Soil Science Division. The AQP suite of R packages offer a convenient platform for bridging the gap between pedometric theory and practice.

  16. d

    Student Perceptions and Experiences of Quantitative Methods, 2006 - Dataset...

    • b2find.dkrz.de
    Updated Jul 25, 2009
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2009). Student Perceptions and Experiences of Quantitative Methods, 2006 - Dataset - B2FIND [Dataset]. https://b2find.dkrz.de/dataset/f8e5d4f5-e12b-5ca8-a4ec-df36f6090801
    Explore at:
    Dataset updated
    Jul 25, 2009
    Description

    Abstract copyright UK Data Service and data collection copyright owner. This ESRC funded research study aimed to collect national level data on student attitudes toward quantitative methods which would provide reliable and valid description of student perceptions of and attitudes towards quantitative methods in sociology and political science. The survey consisted of an online self-completion questionnaire which was administered in English and Welsh to higher education institutions (HEIs) students in their second or third year of a three-year undergraduate degree. A random sample of 34 institutions offering major/single honours degrees in sociology or politics were selected. The sampling units were in both old and new universities and university colleges. Further information about the study can be found on the ESRC Award web page. Main Topics: The questionnaire focused on student attitudes toward studying quantitative methods, with additional questions on achieved grades and attitudes toward teaching and learning. The questionnaire also asked students about their A-level (or equivalent) choices and choice of sociology at degree level, their views of sociology’s status and whether they saw it as closer to the arts/humanities or science/mathematics. One-stage stratified or systematic random sample Self-completion Email survey

  17. H

    Dataset for "Quantifying the quantitative (re-)turn in historical...

    • dataverse.harvard.edu
    Updated Feb 20, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Barbara McGillivray; Gard Jenset (2023). Dataset for "Quantifying the quantitative (re-)turn in historical linguistics" [Dataset]. http://doi.org/10.7910/DVN/IIHRZ3
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 20, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Barbara McGillivray; Gard Jenset
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    This dataset contains the data analysed in the article "Quantifying the quantitative (re-)turn in historical linguistics" authored by Barbara McGillivray and Gard Jenset and published in the journal "Humanities and Social Sciences Communications" in 2023. The dataset contains our analysis of 63 articles published in 2018 in six historical linguistics journals (Diachronica, Folia Linguistica Historica, Journal of Historical Linguistics, Language Dynamics and change, Language variation and change, and Transactions of the Philological Society). We recorded the following information: the type evidence base used in the paper (digital corpora, word lists, examples, etc.) and the statistical techniques used for the analysis, if any (t-tests, regression models, principal component analysis, etc.). We then classified the articles across two dimensions: corpus-based vs. non corpus-based and quantitative vs. non quantitative.

  18. Quantitative Service Delivery Survey in Health 2000 - Uganda

    • catalog.ihsn.org
    • datacatalog.ihsn.org
    • +2more
    Updated Mar 29, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Bank (2019). Quantitative Service Delivery Survey in Health 2000 - Uganda [Dataset]. http://catalog.ihsn.org/catalog/867
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset provided by
    Ministry of Health of Ugandahttp://www.health.go.ug/
    World Bankhttp://worldbank.org/
    Makerere Institute for Social Research, Uganda
    Ministry of Finance, Planning and Economic Development, Uganda
    Time period covered
    2000
    Area covered
    Uganda
    Description

    Abstract

    This study examines various dimensions of primary health care delivery in Uganda, using a baseline survey of public and private dispensaries, the most common lower level health facilities in the country.

    The survey was designed and implemented by the World Bank in collaboration with the Makerere Institute for Social Research and the Ugandan Ministries of Health and of Finance, Planning and Economic Development. It was carried out in October - December 2000 and covered 155 local health facilities and seven district administrations in ten districts. In addition, 1617 patients exiting health facilities were interviewed. Three types of dispensaries (both with and without maternity units) were included: those run by the government, by private for-profit providers, and by private nonprofit providers, mainly religious.

    This research is a Quantitative Service Delivery Survey (QSDS). It collected microlevel data on service provision and analyzed health service delivery from a public expenditure perspective with a view to informing expenditure and budget decision-making, as well as sector policy.

    Objectives of the study included: 1) Measuring and explaining the variation in cost-efficiency across health units in Uganda, with a focus on the flow and use of resources at the facility level; 2) Diagnosing problems with facility performance, including the extent of drug leakage, as well as staff performance and availability;
    3) Providing information on pricing and user fee policies and assessing the types of service actually provided; 4) Shedding light on the quality of service across the three categories of service provider - government, for-profit, and nonprofit; 5) Examining the patterns of remuneration, pay structure, and oversight and monitoring and their effects on health unit performance; 6) Assessing the private-public partnership, particularly the program of financial aid to nonprofits.

    Geographic coverage

    The study districts were Mpigi, Mukono, and Masaka in the central region; Mbale, Iganga, and Soroti in the east; Arua and Apac in the north; and Mbarara and Bushenyi in the west.

    Analysis unit

    • local dispensary with or without maternity unit

    Universe

    The survey covered government, for-profit and nonprofit private dispensaries with or without maternity units in ten Ugandan districts.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The survey covered government, for-profit and nonprofit private dispensaries with or without maternity units in ten Ugandan districts.

    The sample design was governed by three principles. First, to ensure a degree of homogeneity across sampled facilities, attention was restricted to dispensaries, with and without maternity units (that is, to the health center III level). Second, subject to security constraints, the sample was intended to capture regional differences. Finally, the sample had to include facilities in the main ownership categories: government, private for-profit, and private nonprofit (religious organizations and NGOs). The sample of government and nonprofit facilities was based on the Ministry of Health facility register for 1999. Since no nationwide census of for-profit facilities was available, these facilities were chosen by asking sampled government facilities to identify the closest private dispensary.

    Of the 155 health facilities surveyed, 81 were government facilities, 30 were private for-profit facilities, and 44 were nonprofit facilities. An exit poll of clients covered 1,617 individuals.

    The final sample consisted of 155 primary health care facilities drawn from ten districts in the central, eastern, northern, and western regions of the country. It included government, private for-profit, and private nonprofit facilities. The nonprofit sector includes facilities owned and operated by religious organizations and NGOs. Approximately one third of the surveyed facilities were dispensaries without maternity units; the rest provided maternity care. The facilities varied considerably in size, from units run by a single individual to facilities with as many as 19 staff members.

    Ministry of Health facility register for 1999 was used to design the sampling frame. Ten districts were randomly selected. From the selected districts, a sample of government and private nonprofit facilities and a reserve list of replacement facilities were randomly drawn. Because of the unreliability of the register for private for-profit facilities, it was decided that for-profit facilities would be identified on the basis of information from the government facilities sampled. The administrative records for facilities in the original sample were first reviewed at the district headquarters, where some facilities that did not meet selection criteria and data collection requirements were dropped from the sample. These were replaced by facilities from the reserve list. Overall, 30 facilities were replaced.

    The sample was designed in such a way that the proportion of facilities drawn from different regions and ownership categories broadly mirrors that of the universe of facilities. Because no nationwide census of for-profit health facilities is available, it is difficult to assess the extent to which the sample is representative of this category. A census of health care facilities in selected districts, carried out in the context of the Delivery of Improved Services for Health (DISH) project supported by the U.S. Agency for International Development (USAID), suggests that about 63 percent of all facilities operate on a for-profit basis, while government and nonprofit providers run 26 and 11 percent of facilities, respectively. This would suggest an undersampling of private providers in the survey. It is not clear, however, whether the DISH districts are representative of other districts in Uganda in terms of the market for health care.

    For the exit poll, 10 interviews per facility were carried out in approximately 85 percent of the facilities. In the remaining facilities the target of 10 interviews was not met, as a result of low activity levels.

    Sampling deviation

    In the first stage in the sampling process, eight districts (out of 45) had to be dropped from the sample frame due to security concerns. These districts were Bundibugyo, Gulu, Kabarole, Kasese, Kibaale, Kitgum, Kotido, and Moroto.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The following survey instruments are available:

    • District Health Team Questionnaire;
    • District Facility Data Sheets;
    • Uganda Health Facility Survey Questionnaire;
    • Facility Data Sheets;
    • Facility Patient Exit Poll Questionnaire.

    The survey collected data at three levels: district administration, health facility, and client. In this way it was possible to capture central elements of the relationships between the provider organization, the frontline facility, and the user. In addition, comparison of data from different levels (triangulation) permitted cross-validation of information.

    At the district level, a District Health Team Questionnaire was administered to the district director of health services (DDHS), who was interviewed on the role of the DDHS office in health service delivery. Specifically, the questionnaire collected data on health infrastructure, staff training, support and supervision arrangements, and sources of financing.

    The District Facility Data Sheet was used at the district level to collect more detailed information on the sampled health units for fiscal 1999-2000, including data on staffing and the related salary structures, vaccine supplies and immunization activity, and basic and supplementary supplies of drugs to the facilities. In addition, patient data, including monthly returns from facilities on total numbers of outpatients, inpatients, immunizations, and deliveries, were reviewed for the period April-June 2000.

    At the facility level, the Uganda Health Facility Survey Questionnaire collected a broad range of information related to the facility and its activities. The questionnaire, which was administered to the in-charge, covered characteristics of the facility (location, type, level, ownership, catchment area, organization, and services); inputs (staff, drugs, vaccines, medical and nonmedical consumables, and capital inputs); outputs (facility utilization and referrals); financing (user charges, cost of services by category, expenditures, and financial and in-kind support); and institutional support (supervision, reporting, performance assessment, and procurement). Each health facility questionnaire was supplemented by a Facility Data Sheet (FDS). The FDS was designed to obtain data from the health unit records on staffing and the related salary structure; daily patient records for fiscal 1999-2000; the type of patients using the facility; vaccinations offered; and drug supply and use at the facility.

    Finally, at the facility level, an exit poll was used to interview about 10 patients per facility on the cost of treatment, drugs received, perceived quality of services, and reasons for using that unit instead of alternative sources of health care.

    Cleaning operations

    Detailed information about data editing procedures is available in "Data Cleaning Guide for PETS/QSDS Surveys" in external resources.

    STATA cleaning do-files and the data quality reports on the datasets can also be found in external resources.

  19. f

    Data from: S1 Data -

    • plos.figshare.com
    application/csv
    Updated Aug 15, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Veronica Kembabazi; Arnold Tigaiza; Charles Opio; Juliet Aweko; Mary Nakafeero; Fredrick Edward Makumbi; Michael Ediau; Elizabeth Ekirapa Kiracho; Andrew K. Tusubira; Peter Waiswa (2024). S1 Data - [Dataset]. http://doi.org/10.1371/journal.pone.0308322.s001
    Explore at:
    application/csvAvailable download formats
    Dataset updated
    Aug 15, 2024
    Dataset provided by
    PLOS ONE
    Authors
    Veronica Kembabazi; Arnold Tigaiza; Charles Opio; Juliet Aweko; Mary Nakafeero; Fredrick Edward Makumbi; Michael Ediau; Elizabeth Ekirapa Kiracho; Andrew K. Tusubira; Peter Waiswa
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    BackgroundWhereas digital payments have been identified as a solution to health payment challenges, evidence on their adoptability among Community Health Workers (CHWs) is limited. Understanding their adoptability is crucial for sustainability. This study assessed the adoptability of digital payments for CHWs in Wakiso district, Uganda.MethodsA convergent parallel mixed-methods study was conducted between November and December 2022, in Wakiso district, Uganda. We surveyed a random sample of 150 CHWs using a structured questionnaire and conducted key informant interviews among three purposively selected Digital payment coordinators. The study utilized the Technology Acceptance Model (TAM) framework to assess the adoptability of digital payments among CHWs. Factor analysis was performed to extract composite variables from the original constituting variables. Using the median, the outcome was converted to a binary variable and logistic regression was conducted to assess the association between the TAM constructs and adoptability of digital payments by CHWs. Quantitative data was analyzed using STATA 14, while qualitative data was transcribed verbatim and analyzed using ATLAS.ti 22.ResultsNearly all participants (98.0%; n = 49) had previously received payments through mobile money, a digital payment method. (52%; n = 78) of CHWs said they intend to use digital payment modalities. Perceived risk of digital payments was associated with 83% lower odds of adoptability of digital payment modalities (OR = 0.17;95%CI:0.052, 0.54), while perceived trust had nearly three times higher odds of adoptability of digital payment modalities (OR = 2.82;95%CI:1.41, 5.67). Qualitative interviews showed that most CHWs reported positive experiences with digital health payments, including effectiveness and completeness of payments except for delays associated with mobile money payments across payment providers. Mobile money was reported to be easy to use, in addition to fostering financial responsibility compared to cash.ConclusionCHWs in Wakiso district intend to use digital payment modalities, particularly mobile money/e-cash. Perceived risk of the payment method and trust are key determinants of adoptability. Synergized efforts by both payment providers to manage payment delays and mitigate risks associated with digital payments could attenuate perceived risk and build trust in digital payment modalities.

  20. m

    Data sets, stimuli and questionnaires used in Studies 1, 2 and 3

    • data.mendeley.com
    Updated Sep 12, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Iskra Herak (2017). Data sets, stimuli and questionnaires used in Studies 1, 2 and 3 [Dataset]. http://doi.org/10.17632/tfsj36xtfz.1
    Explore at:
    Dataset updated
    Sep 12, 2017
    Authors
    Iskra Herak
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The data were collected under the supervision of Nicolas Kervyn and Matthew Thomson, during the March-April and December 2016 (studies 1 & 3) and June 2017 (study 2). Data for studies 1 and 3 were collected and distributed in Belgium, by and through Louvain School of Management French speaking students. Data for study 2 were collected using MTurk English speaking sample. Data do not include participants whom haven't completed the instrument 100%.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Srinvivas Murthy; Maggie Woo Kinshella; Jessica Trawin; Teresa Johnson; Niranjan Kissoon; Matthew Wiens; Gina Ogilvie; Gurm Dhugga; J Mark Ansermino (2023). Open Data Training Workshop: Case Studies in Open Data for Qualitative and Quantitative Clinical Research [Dataset]. http://doi.org/10.5683/SP3/BNNAE7

Open Data Training Workshop: Case Studies in Open Data for Qualitative and Quantitative Clinical Research

Explore at:
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Apr 18, 2023
Dataset provided by
Borealis
Authors
Srinvivas Murthy; Maggie Woo Kinshella; Jessica Trawin; Teresa Johnson; Niranjan Kissoon; Matthew Wiens; Gina Ogilvie; Gurm Dhugga; J Mark Ansermino
License

Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically

Dataset funded by
Digital Research Alliance of Canada
Description

Objective(s): Momentum for open access to research is growing. Funding agencies and publishers are increasingly requiring researchers make their data and research outputs open and publicly available. However, clinical researchers struggle to find real-world examples of Open Data sharing. The aim of this 1 hr virtual workshop is to provide real-world examples of Open Data sharing for both qualitative and quantitative data. Specifically, participants will learn: 1. Primary challenges and successes when sharing quantitative and qualitative clinical research data. 2. Platforms available for open data sharing. 3. Ways to troubleshoot data sharing and publish from open data. Workshop Agenda: 1. “Data sharing during the COVID-19 pandemic” - Speaker: Srinivas Murthy, Clinical Associate Professor, Department of Pediatrics, Faculty of Medicine, University of British Columbia. Investigator, BC Children's Hospital 2. “Our experience with Open Data for the 'Integrating a neonatal healthcare package for Malawi' project.” - Speaker: Maggie Woo Kinshella, Global Health Research Coordinator, Department of Obstetrics and Gynaecology, BC Children’s and Women’s Hospital and University of British Columbia This workshop draws on work supported by the Digital Research Alliance of Canada. Data Description: Presentation slides, Workshop Video, and Workshop Communication Srinivas Murthy: Data sharing during the COVID-19 pandemic presentation and accompanying PowerPoint slides. Maggie Woo Kinshella: Our experience with Open Data for the 'Integrating a neonatal healthcare package for Malawi' project presentation and accompanying Powerpoint slides. This workshop was developed as part of Dr. Ansermino's Data Champions Pilot Project supported by the Digital Research Alliance of Canada. NOTE for restricted files: If you are not yet a CoLab member, please complete our membership application survey to gain access to restricted files within 2 business days. Some files may remain restricted to CoLab members. These files are deemed more sensitive by the file owner and are meant to be shared on a case-by-case basis. Please contact the CoLab coordinator on this page under "collaborate with the pediatric sepsis colab."

Search
Clear search
Close search
Google apps
Main menu