18 datasets found
  1. G

    QGIS Training Tutorials: Using Spatial Data in Geographic Information...

    • open.canada.ca
    • datasets.ai
    • +1more
    html
    Updated Oct 5, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics Canada (2021). QGIS Training Tutorials: Using Spatial Data in Geographic Information Systems [Dataset]. https://open.canada.ca/data/en/dataset/89be0c73-6f1f-40b7-b034-323cb40b8eff
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Oct 5, 2021
    Dataset provided by
    Statistics Canada
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    Have you ever wanted to create your own maps, or integrate and visualize spatial datasets to examine changes in trends between locations and over time? Follow along with these training tutorials on QGIS, an open source geographic information system (GIS) and learn key concepts, procedures and skills for performing common GIS tasks – such as creating maps, as well as joining, overlaying and visualizing spatial datasets. These tutorials are geared towards new GIS users. We’ll start with foundational concepts, and build towards more advanced topics throughout – demonstrating how with a few relatively easy steps you can get quite a lot out of GIS. You can then extend these skills to datasets of thematic relevance to you in addressing tasks faced in your day-to-day work.

  2. GISF2E: ArcGIS, QGIS, and python tools and Tutorial

    • figshare.com
    • resodate.org
    pdf
    Updated Jun 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban Road Networks (2023). GISF2E: ArcGIS, QGIS, and python tools and Tutorial [Dataset]. http://doi.org/10.6084/m9.figshare.2065320.v3
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 2, 2023
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Urban Road Networks
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    ArcGIS tool and tutorial to convert the shapefiles into network format. The latest version of the tool is available at http://csun.uic.edu/codes/GISF2E.htmlUpdate: we now have added QGIS and python tools. To download them and learn more, visit http://csun.uic.edu/codes/GISF2E.htmlPlease cite: Karduni,A., Kermanshah, A., and Derrible, S., 2016, "A protocol to convert spatial polyline data to network formats and applications to world urban road networks", Scientific Data, 3:160046, Available at http://www.nature.com/articles/sdata201646

  3. H

    GeoServer Tutorials

    • hydroshare.org
    • beta.hydroshare.org
    • +1more
    zip
    Updated Aug 4, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jacob Wise Calhoon (2022). GeoServer Tutorials [Dataset]. https://www.hydroshare.org/resource/753127b14dd443a1a4f2cf9634835d7a
    Explore at:
    zip(14.4 MB)Available download formats
    Dataset updated
    Aug 4, 2022
    Dataset provided by
    HydroShare
    Authors
    Jacob Wise Calhoon
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This resources contains PDF files and Python notebook files that demonstrate how to create geospatial resources in HydroShare and how to use these resources through web services provided by the built-in HydroShare GeoServer instance. Geospatial resources can be consumed directly into ArcMap, ArcGIS, Story Maps, Quantum GIS (QGIS), Leaflet, and many other mapping environments. This provides HydroShare users with the ability to store data and retrieve it via services without needing to set up new data services. All tutorials cover how to add WMS and WFS connections. WCS connections are available for QGIS and are covered in the QGIS tutorial. The tutorials and examples provided here are intended to get the novice user up-to-speed with WMS and GeoServer, though we encourage users to read further on these topic using internet searches and other resources. Also included in this resource is a tutorial designed to that walk users through the process of creating a GeoServer connected resource.

    The current list of available tutorials: - Creating a Resource - ArcGIS Pro - ArcMap - ArcGIS Story Maps - QGIS - IpyLeaflet - Folium

  4. a

    Hotspot Analysis in GIS

    • gulf-coast-geospatial-geo-project.hub.arcgis.com
    Updated Feb 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GEOproject_admin (2025). Hotspot Analysis in GIS [Dataset]. https://gulf-coast-geospatial-geo-project.hub.arcgis.com/items/8233bff0e1e2488288e19beac3afb2b2
    Explore at:
    Dataset updated
    Feb 6, 2025
    Dataset authored and provided by
    GEOproject_admin
    Description

    Raczynski, K., Nagel, A., & Cartwright, J. H. (2025). GEO Tutorial: Hotspot Analysis in GIS. Mississippi State University: Geosystems Research Institute. [View Document] GEO TutorialNumber of Pages: 5Publication Date: 06/2025This work was supported through funding by the National Oceanic and Atmospheric Administration Regional Geospatial Modeling Grant, Award # NA19NOS4730207.

  5. QGIS tutorial GeoDev

    • kaggle.com
    zip
    Updated Jun 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tek Bahadur Kshetri (2023). QGIS tutorial GeoDev [Dataset]. https://www.kaggle.com/datasets/tekbahadurkshetri/qgis-tutorial-geodev/suggestions
    Explore at:
    zip(6055998 bytes)Available download formats
    Dataset updated
    Jun 15, 2023
    Authors
    Tek Bahadur Kshetri
    Description

    This dataset is part of the QGIS beginner tutorial: https://youtu.be/wu42hyshx7Q

  6. a

    Batching GIS Tasks: a Way To Speed Up Repetitive Procedures

    • gulf-coast-geospatial-geo-project.hub.arcgis.com
    Updated Feb 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GEOproject_admin (2025). Batching GIS Tasks: a Way To Speed Up Repetitive Procedures [Dataset]. https://gulf-coast-geospatial-geo-project.hub.arcgis.com/documents/4d372bb7d9014dae90f862fc0e6d242c
    Explore at:
    Dataset updated
    Feb 6, 2025
    Dataset authored and provided by
    GEOproject_admin
    Description

    Raczynski, K., Nagel, A., & Cartwright, J. H. (2025). GEO Tutorial: Batching GIS Tasks: a Way To Speed Up Repetitive Procedures. Mississippi State University: Geosystems Research Institute. [View Document]

    GEO Tutorial Number of Pages: 6 Publication Date: 06/2025This work was supported through funding by the National Oceanic and Atmospheric Administration Regional Geospatial Modeling Grant, Award # NA19NOS4730207.

  7. a

    Work Automation in QGIS Using Model Builder

    • gulf-coast-geospatial-geo-project.hub.arcgis.com
    Updated Nov 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GEOproject_admin (2024). Work Automation in QGIS Using Model Builder [Dataset]. https://gulf-coast-geospatial-geo-project.hub.arcgis.com/documents/3922445273cb452f87aa2f10b6932073
    Explore at:
    Dataset updated
    Nov 29, 2024
    Dataset authored and provided by
    GEOproject_admin
    Area covered
    Description

    Raczynski, K., Grala, K., & Cartwright, J. H. (2024). GEO Tutorial: Work Automation in QGIS Using Model Builder. Mississippi State University: Geosystems Research Institute. [View Document] GEO TutorialNumber of Pages: 9Publication Date: 11/2024This work was supported through funding by the National Oceanic and Atmospheric Administration Regional Geospatial Modeling Grant, Award # NA19NOS4730207.

  8. a

    Part 3B: Using Supervised Machine Learning For Land Use Land Cover...

    • gulf-coast-geospatial-geo-project.hub.arcgis.com
    Updated Feb 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GEOproject_admin (2025). Part 3B: Using Supervised Machine Learning For Land Use Land Cover Classification [Dataset]. https://gulf-coast-geospatial-geo-project.hub.arcgis.com/items/05f76df8d0674982ae48393ddfbcc516
    Explore at:
    Dataset updated
    Feb 6, 2025
    Dataset authored and provided by
    GEOproject_admin
    Description

    Raczynski, K., Xavier, F., & Cartwright, J. H. (2025). GEO Tutorial: Dealing with Coastal Flooding series, part 3B: Using Supervised Machine Learning For Land Use Land Cover Classification. Mississippi State University: Geosystems Research Institute. [View Document] GEO TutorialNumber of Pages: 8Publication Date: 06/2025This work was supported through funding by the National Oceanic and Atmospheric Administration Regional Geospatial Modeling Grant, Award # NA19NOS4730207.

  9. d

    Test Resource for OGC Web Services

    • search.dataone.org
    • hydroshare.org
    • +1more
    Updated Dec 5, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jacob Wise Calhoon (2021). Test Resource for OGC Web Services [Dataset]. https://search.dataone.org/view/sha256%3A70b5bfd9d450fc4266770c000c1d32e0e93fd17ff6e597f4c755dd7d46a8a2db
    Explore at:
    Dataset updated
    Dec 5, 2021
    Dataset provided by
    Hydroshare
    Authors
    Jacob Wise Calhoon
    Time period covered
    Aug 6, 2020
    Area covered
    Description

    This resource contains the test data for the GeoServer OGC Web Services tutorials for various GIS applications including ArcGIS Pro, ArcMap, ArcGIS Story Maps, and QGIS. The contents of the data include a polygon shapefile, a polyline shapefile, a point shapefile, and a raster dataset; all of which pertain to the state of Utah, USA. The polygon shapefile is of every county in the state of Utah. The polyline is of every trail in the state of Utah. The point shapefile is the current list of GNIS place names in the state of Utah. The raster dataset covers a region in the center of the state of Utah. All datasets are projected to NAD 1983 Zone 12N.

  10. Fieldwork area exploration tutorials (for undergraduate field course)

    • figshare.com
    pdf
    Updated Aug 19, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wouter Marra (2016). Fieldwork area exploration tutorials (for undergraduate field course) [Dataset]. http://doi.org/10.6084/m9.figshare.3472940.v2
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Aug 19, 2016
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Wouter Marra
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Instructions for students to use aerial photos, Google Earth and QGIS to explore their fieldwork area prior to their field trip. This material was designed for first-year undergraduate Earth Sciences students, in preparation to a fieldwork in the French Alps. The fieldwork and this guide focuses on understanding the geology and geomorphology.The accompanying dataset.zip contains required gis-data, which are a DEM (SRTM) and Satellite images (Landsat). This dataset is without a topographic map (SCAN25 from IGN) due to licence constraint. For academic use, request your own licence from IGN (ign.fr) directly.

  11. a

    Generating Viewsheds: a Visibility Analysis

    • gulf-coast-geospatial-geo-project.hub.arcgis.com
    Updated Feb 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GEOproject_admin (2025). Generating Viewsheds: a Visibility Analysis [Dataset]. https://gulf-coast-geospatial-geo-project.hub.arcgis.com/items/5f04d11488d84c7c9f8d2ebf314a9feb
    Explore at:
    Dataset updated
    Feb 6, 2025
    Dataset authored and provided by
    GEOproject_admin
    Description

    Raczynski, K., Grala, K., Raczynska, J., & Cartwright, J. H. (2025). GEO Tutorial: Generating Viewsheds: a Visibility Analysis. Mississippi State University: Geosystems Research Institute. [View Document] GEO TutorialNumber of Pages: 6Publication Date: 06/2025This work was supported through funding by the National Oceanic and Atmospheric Administration Regional Geospatial Modeling Grant, Award # NA19NOS4730207.

  12. a

    Part 9: Creating And Animating Timeseries

    • gulf-coast-geospatial-geo-project.hub.arcgis.com
    Updated Feb 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GEOproject_admin (2025). Part 9: Creating And Animating Timeseries [Dataset]. https://gulf-coast-geospatial-geo-project.hub.arcgis.com/documents/ed72db1beafd4cd081a6bee4b0ca8de5
    Explore at:
    Dataset updated
    Feb 6, 2025
    Dataset authored and provided by
    GEOproject_admin
    Description

    Raczynski, K., Babineaux, C., & Cartwright, J. H. (2025). GEO Tutorial: Dealing with Coastal Flooding series, part 9: Creating And Animating Timeseries. Mississippi State University: Geosystems Research Institute. [View Document] GEO TutorialNumber of Pages: 5Publication Date: 06/2025This work was supported through funding by the National Oceanic and Atmospheric Administration Regional Geospatial Modeling Grant, Award # NA19NOS4730207.

  13. Supplementary material 3 from: Ryan Z, Clark E, Cundiff B, Nichols J,...

    • zenodo.org
    • data.niaid.nih.gov
    pdf
    Updated Oct 16, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zoe Ryan; Emily Clark; Beatrice Cundiff; Joslyn Nichols; Maya Mahoney; Nkosi Evans; Thomas Campbell; Danny Kreider; Matt von Konrat; Zoe Ryan; Emily Clark; Beatrice Cundiff; Joslyn Nichols; Maya Mahoney; Nkosi Evans; Thomas Campbell; Danny Kreider; Matt von Konrat (2024). Supplementary material 3 from: Ryan Z, Clark E, Cundiff B, Nichols J, Mahoney M, Evans N, Campbell T, Kreider D, von Konrat M (2024) Open-source software integration: A tutorial on species distribution mapping and ecological niche modelling. Research Ideas and Outcomes 10: e129578. https://doi.org/10.3897/rio.10.e129578 [Dataset]. http://doi.org/10.3897/rio.10.e129578.suppl3
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Oct 16, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Zoe Ryan; Emily Clark; Beatrice Cundiff; Joslyn Nichols; Maya Mahoney; Nkosi Evans; Thomas Campbell; Danny Kreider; Matt von Konrat; Zoe Ryan; Emily Clark; Beatrice Cundiff; Joslyn Nichols; Maya Mahoney; Nkosi Evans; Thomas Campbell; Danny Kreider; Matt von Konrat
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    QGIS Intro and Instructions for Mapping Species Occurrences

  14. a

    Part 4: Hydrologic Raster Preparation: Resampling And Burning Stream Network...

    • gulf-coast-geospatial-geo-project.hub.arcgis.com
    Updated Feb 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GEOproject_admin (2025). Part 4: Hydrologic Raster Preparation: Resampling And Burning Stream Network [Dataset]. https://gulf-coast-geospatial-geo-project.hub.arcgis.com/documents/260b6d99ee9f4309a4be92a647625aa4
    Explore at:
    Dataset updated
    Feb 6, 2025
    Dataset authored and provided by
    GEOproject_admin
    Description

    Raczynski, K., Nagel, A., & Cartwright, J. H. (2025). GEO Tutorial: Dealing with Coastal Flooding series, part 4: Hydrologic Raster Preparation: Resampling and Burning Stream Network: Geosystems Research Institute. [View Document] GEO TutorialNumber of Pages: 5Publication Date: 05/2025 This work was supported through funding by the National Oceanic and Atmospheric Administration Regional Geospatial Modeling Grant, Award # NA19NOS4730207.

  15. e

    Seilaplan Tutorial: Merge DTM tiles

    • envidat.ch
    • data.europa.eu
    mp4, not available
    Updated May 29, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Laura Ramstein; Lioba Rath; Stephan Böhm; Pierre Simon; Christian Kanzian; Janine Schweier; Leo Gallus Bont (2025). Seilaplan Tutorial: Merge DTM tiles [Dataset]. http://doi.org/10.16904/envidat.344
    Explore at:
    not available, mp4Available download formats
    Dataset updated
    May 29, 2025
    Dataset provided by
    BOKU
    Swiss Federal Institute for Forest, Snow and Landscape Research WSL
    Authors
    Laura Ramstein; Lioba Rath; Stephan Böhm; Pierre Simon; Christian Kanzian; Janine Schweier; Leo Gallus Bont
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Area covered
    Switzerland
    Dataset funded by
    Kooperationsplattform Forst Holz Papier
    WSL
    Bundesministerium für Landwirtschaft, Regionen und Tourismus Österreich
    Description

    In order to use the QGIS plugin ‘Seilaplan’ for digital cable line planning, a digital terrain model (DTM) is required. In this tutorial video, we show how to merge multiple DTM raster tiles into one file, using the QGIS tool ‘Virtual Raster’. This simplifies the digital planning of a cable line using the QGIS plugin ‘Seilaplan’. Please note that the tutorial language is German! Link to Seilaplan website: https://seilaplan.wsl.ch

    Für die Verwendung des QGIS Plugins Seilaplan zur digitalen Seillinienplanung ist ein digitales Höhenmodell (DHM) nötig. In diesem Tutorialvideo zeigen wir, wie man mit dem QGIS-Plugin Virtuelles Raster mehrere DHM-Kacheln zu einem einzigen Rasterfile zusammenfügen und abspeichern kann. Für die Seillinienplanung mit Seilaplan muss nun nur noch eine Datei, mein neues virtuelles Raster, ausgewählt werden. Link zur Seilaplan-Website: https://seilaplan.wsl.ch

  16. a

    Calculating Spatial Statistics Of Inundated Areas

    • gulf-coast-geospatial-geo-project.hub.arcgis.com
    Updated Feb 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GEOproject_admin (2025). Calculating Spatial Statistics Of Inundated Areas [Dataset]. https://gulf-coast-geospatial-geo-project.hub.arcgis.com/documents/95b427ded02743cd9c30c996d47cf5c9
    Explore at:
    Dataset updated
    Feb 6, 2025
    Dataset authored and provided by
    GEOproject_admin
    Description

    Raczynski, K., Nagel, A., & Cartwright, J. H. (2025). GEO Tutorial: Dealing with Coastal Flooding series, part 6: Calculating Spatial Statistics Of Inundated Areas. Mississippi State University: Geosystems Research Institute. [View Document] GEO TutorialNumber of Pages: 5Publication Date: 06/2025This work was supported through funding by the National Oceanic and Atmospheric Administration Regional Geospatial Modeling Grant, Award # NA19NOS4730207.

  17. e

    Seilaplan Tutorial: DTM download with SwissGeoDownloader

    • envidat.ch
    • data.europa.eu
    json, mp4 +2
    Updated May 29, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Laura Ramstein; Lioba Rath; Patricia Moll; Stephan Böhm; Pierre Simon; Christian Kanzian; Janine Schweier; Leo Gallus Bont (2025). Seilaplan Tutorial: DTM download with SwissGeoDownloader [Dataset]. http://doi.org/10.16904/envidat.342
    Explore at:
    mp4, not available, xml, jsonAvailable download formats
    Dataset updated
    May 29, 2025
    Dataset provided by
    Self-employed
    BOKU
    Swiss Federal Institute for Forest, Snow and Landscape Research WSL
    Authors
    Laura Ramstein; Lioba Rath; Patricia Moll; Stephan Böhm; Pierre Simon; Christian Kanzian; Janine Schweier; Leo Gallus Bont
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Area covered
    Switzerland
    Dataset funded by
    Bundesministerium für Landwirtschaft Regionen und Tourismus Österreich
    WSL
    Kooperationsplattform Forst Holz Papier
    Description

    In order to use the QGIS plugin ‘Seilaplan’ for digital cable line planning, a digital terrain model (DTM) is required. The plugin ‘Swiss Geo Downloader’, which is available for the open source geoinformation software QGIS, allows freely available Swiss geodata to be downloaded and displayed directly within QGIS. It was developed in 2021 by Patricia Moll in collaboration with the Swiss Federal Institute for Forest, Snow and Landscape Research WSL. In this tutorial we describe how to download the high accuracy elevation model ‘swissALTI3D’ with the help of the ‘Swiss Geo Downloader’ and how to use it for digital planning of a cable line with the plugin ‘Seilaplan’. Please note that the tutorial language is German! Link to the Swiss Geo Downloader: https://pimoll.github.io/swissgeodownloader Link to Seilaplan website: https://seilaplan.wsl.ch

    Für die Verwendung des QGIS Plugins Seilaplan zur digitalen Seillinienplanung ist ein digitales Höhenmodell (DHM) nötig. Das Plugin Swiss Geo Downloader, welches für das Open Source Geoinformationssystem QGIS zur Verfügung steht, ermöglicht frei verfügbare Schweizer Geodaten direkt innerhalb von QGIS herunterzuladen und anzuzeigen. Es wurde 2021 von Patricia Moll in Zusammenarbeit mit der eidgenössischen Forschungsanstalt Wald, Schnee und Landschaft WSL entwickelt. In diesem Tutorial beschreiben wir, wie man mit Hilfe des Swiss Geo Downloaders das hochgenaue Höhenmodell swissALTI3D herunterladen und für die Seillinienplanung mit dem Plugin Seilaplan verwenden kann. Link zum Swiss Geo Downloader: https://pimoll.github.io/swissgeodownloader Link zur Seilaplan-Webseite: https://seilaplan.wsl.ch

  18. Orthophotos and DSMs derived from RPAS flights over the nature reserve...

    • zenodo.org
    • data.niaid.nih.gov
    • +1more
    tiff, tsv, zip
    Updated Jul 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jeroen Vanden Borre; Jeroen Vanden Borre; Klaas Pauly; Klaas Pauly; Stijn Van Hoey; Stijn Van Hoey; Jeroen De Reu; Jeroen De Reu; Peter Desmet; Peter Desmet (2024). Orthophotos and DSMs derived from RPAS flights over the nature reserve Kalmthoutse Heide in Flanders, Belgium [Dataset]. http://doi.org/10.5281/zenodo.3057592
    Explore at:
    tiff, zip, tsvAvailable download formats
    Dataset updated
    Jul 23, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Jeroen Vanden Borre; Jeroen Vanden Borre; Klaas Pauly; Klaas Pauly; Stijn Van Hoey; Stijn Van Hoey; Jeroen De Reu; Jeroen De Reu; Peter Desmet; Peter Desmet
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Flanders, Belgium, Kalmthout Heath
    Description

    Study area

    The Kalmthoutse Heide is a nature reserve situated north of Kalmthout, in the province of Antwerp, Flanders, Belgium. It is part of the Cross-Border Nature Park De Zoom - Kalmthoutse Heide in the Netherlands and Belgium. The Kalmthoutse Heide is managed by the Flemish Agency for Nature and Forest and consists of wet and dry heathlands, inland dunes, forests and moorland pools. In this area, there is particular interest in monitoring the encroachment of the heathlands by Molinia caerulea and Campylopus introflexus.

    Data collection

    Data were collected by the Research Institute for Nature and Forest (INBO) with a fixed wing drone Gatewing X100 in 2015 and 2016 (8 flights). RGB data were acquired using an off-the-shelf Ricoh GR Digital IV camera, with the following image bands: 1: red, 2: green, 3: blue, 4: alpha channel.

    Data processing

    The raw data were processed to Digital Surface Models and orthophotos by the Flemish Institute for Technological Research (VITO) in 2017. Images with coarse GPS coordinates were imported and processed in Agisoft PhotoScan Pro 1.4.x, a structure-from-motion (SfM) based photogrammetry software program. After extraction and matching of tie points, a bundle adjustment leads to a sparse point cloud and a refined set of camera position and orientation values. Ground control points (either artificially installed markers on the terrain, or other photo-identifiable points, measured on the ground with RTK GNSS) were used to further refine the camera calibration and obtain a pixel-level georeferencing accuracy. From there, a point cloud densification and classification into ground and non-ground points was performed, leading to a rasterized digital surface model (DSM) and digital terrain model (DTM). Finally, a true orthomosaic was projected onto the DTM.

    Coordinate reference system

    All geospatial data have the coordinate reference system EPSG:31370 - Belgian Lambert 72.

    Files

    • Raw flight data: images and logs collected by the drone during flight. These files are zipped per flight, with the date (yyyymmdd) and flight number (x) indicated in the file name (flight_yyyymmdd_KH_x.zip).
    • Processed data: Digital Surface Models (filename_DSM.tif) and orthophotos (filename_Ortho.tif) stitched together from the raw data. The included flights are indicated in the file name (e.g. 3 flights for 20150717_KH_1-3_DSM.tif).
    • Ground control points: temporary ground control points were placed for the first flights on 2015-07-17 (visible in 20150717_KH_1-3_Ortho.tif). Coordinates for these are available in GCP_20150717_KH.tsv.

    Cloud Optimized GeoTIFF

    The most efficient way to explore the processed data is by loading the Cloud Optimized GeoTIFFs we created for each processed file. Copy one of the file URLs below and follow e.g. the QGIS tutorial to load this type of file.

    See this page for an overview of public INBO RPAS data.

  19. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statistics Canada (2021). QGIS Training Tutorials: Using Spatial Data in Geographic Information Systems [Dataset]. https://open.canada.ca/data/en/dataset/89be0c73-6f1f-40b7-b034-323cb40b8eff

QGIS Training Tutorials: Using Spatial Data in Geographic Information Systems

Explore at:
htmlAvailable download formats
Dataset updated
Oct 5, 2021
Dataset provided by
Statistics Canada
License

Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically

Description

Have you ever wanted to create your own maps, or integrate and visualize spatial datasets to examine changes in trends between locations and over time? Follow along with these training tutorials on QGIS, an open source geographic information system (GIS) and learn key concepts, procedures and skills for performing common GIS tasks – such as creating maps, as well as joining, overlaying and visualizing spatial datasets. These tutorials are geared towards new GIS users. We’ll start with foundational concepts, and build towards more advanced topics throughout – demonstrating how with a few relatively easy steps you can get quite a lot out of GIS. You can then extend these skills to datasets of thematic relevance to you in addressing tasks faced in your day-to-day work.

Search
Clear search
Close search
Google apps
Main menu