3 datasets found
  1. p

    MNISQ data for quantum computing

    • pennylane.ai
    Updated Aug 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Leonardo Placidi; Ryuichiro Hataya; Toshio Mori; Koki Aoyama; Hayata Morisaki; Kosuke Mitarai; Keisuke Fujii (2023). MNISQ data for quantum computing [Dataset]. https://pennylane.ai/datasets/mnisq
    Explore at:
    Dataset updated
    Aug 30, 2023
    Authors
    Leonardo Placidi; Ryuichiro Hataya; Toshio Mori; Koki Aoyama; Hayata Morisaki; Kosuke Mitarai; Keisuke Fujii
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Measurement technique
    Simulation
    Dataset funded by
    Xanadu Quantum Technologies
    Description

    This dataset contains a portion of MNISQ: a dataset of quantum circuits that encode data from MNIST, Fashion-MNIST, and Kuzushiji-MNIST.

  2. i

    QuaN: Noisy Dataset For Quantum Machine Learning

    • ieee-dataport.org
    Updated Apr 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Himanshu Sahu (2024). QuaN: Noisy Dataset For Quantum Machine Learning [Dataset]. https://ieee-dataport.org/documents/quan-noisy-dataset-quantum-machine-learning
    Explore at:
    Dataset updated
    Apr 29, 2024
    Authors
    Himanshu Sahu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Medical MNIST

  3. f

    DataSheet1_Entanglement-Based Feature Extraction by Tensor Network Machine...

    • frontiersin.figshare.com
    docx
    Updated Jun 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yuhan Liu; Wen-Jun Li; Xiao Zhang; Maciej Lewenstein; Gang Su; Shi-Ju Ran (2023). DataSheet1_Entanglement-Based Feature Extraction by Tensor Network Machine Learning.docx [Dataset]. http://doi.org/10.3389/fams.2021.716044.s001
    Explore at:
    docxAvailable download formats
    Dataset updated
    Jun 2, 2023
    Dataset provided by
    Frontiers
    Authors
    Yuhan Liu; Wen-Jun Li; Xiao Zhang; Maciej Lewenstein; Gang Su; Shi-Ju Ran
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    It is a hot topic how entanglement, a quantity from quantum information theory, can assist machine learning. In this work, we implement numerical experiments to classify patterns/images by representing the classifiers as matrix product states (MPS). We show how entanglement can interpret machine learning by characterizing the importance of data and propose a feature extraction algorithm. We show on the MNIST dataset that when reducing the number of the retained pixels to 1/10 of the original number, the decrease of the ten-class testing accuracy is only O (10–3), which significantly improves the efficiency of the MPS machine learning. Our work improves machine learning’s interpretability and efficiency under the MPS representation by using the properties of MPS representing entanglement.

  4. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Leonardo Placidi; Ryuichiro Hataya; Toshio Mori; Koki Aoyama; Hayata Morisaki; Kosuke Mitarai; Keisuke Fujii (2023). MNISQ data for quantum computing [Dataset]. https://pennylane.ai/datasets/mnisq

MNISQ data for quantum computing

MNISQ

Related Article
Explore at:
Dataset updated
Aug 30, 2023
Authors
Leonardo Placidi; Ryuichiro Hataya; Toshio Mori; Koki Aoyama; Hayata Morisaki; Kosuke Mitarai; Keisuke Fujii
License

Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically

Measurement technique
Simulation
Dataset funded by
Xanadu Quantum Technologies
Description

This dataset contains a portion of MNISQ: a dataset of quantum circuits that encode data from MNIST, Fashion-MNIST, and Kuzushiji-MNIST.

Search
Clear search
Close search
Google apps
Main menu