Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Map Service showing whole of state detailed geology data sets maintained by the Department of Resources. The data sets are organised by layers including: Field Site (0) Detailed 1:100k (1) Detailed Structure (2) Detailed Geological Boundaries (3) Detailed Faults and Shear Zones (4) Detailed Folds (5) Detailed Dykes Veins or Sills (6) Detailed Markers Marker Beds or Marker Bands (7) Detailed Lineaments (8) Detailed Joints and Fractures (9) Detailed Trends and Dips (10) Detailed Volcanic features (11) Detailed Other Natural features (12) Detailed Other features (13) Detailed Surface geology extent (14) Detailed Surface geology (15) Detailed Solid geology extent (16) Detailed Solid geology (17)
Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
This dataset and its metadata statement were supplied to the Bioregional Assessment Programme by a third party and are presented here as originally supplied.
This dataset was sourced from the Queensland Department of Natural Resources and Mines in 2012. Information provided by the Department describes the dataset as follows:
This data was originally provided on DVD and contains the converted shapefiles, layer files, raster images and project .mxd files used on the Queensland geology and structural framework map. The maps were done in ArcGIS 9.3.1 and the data stored in file geodatabases, topology created and validated. This provides greater data quality by performing topological validation on the feature's spatial relationships. For the purposes of the DVD, shapefiles were created from the file geodatabases and for MapInfo users MapInfo .tab and .wor files. The shapefiles on the DVD are a revision of the 1975 Queensland geology data, and are both are available for display, query and download on the department's online GIS application.
The Queensland geology map is a digital representation of the distribution or extent of geological units within Queensland. In the GIS, polygons have a range of attributes including unit name, type of unit, age, lithological description, dominant rock type, and an abbreviated symbol for use in labelling the polygons. The lines in this dataset are a digital representation of the position of the boundaries of geological units and other linear features such as faults and folds. The lines are attributed with a description of the type of line represented. Approximately 2000 rock units were grouped into the 250 map units in this data set. The digital data was generalised and simplified from the Department's detailed geological data and was captured at 1:500 000 scale for output at 1:2 000 000 scale.
In the ESRI version, a layer file is provided which presents the units in the colours and patterns used on the printed hard copy map. For Map Info users, a simplified colour palette is provided without patterns. However a georeferenced image of the hard copy map is included and can be displayed as a background in both Arc Map and Map Info.
The geological framework of Queensland is classified by structural or tectonic unit (provinces and basins) in which the rocks formed. These are referred to as basins (or in some cases troughs and depressions) where the original form and structure are still apparent. Provinces (and subprovinces) are generally older basins that have been strongly tectonised and/or metamorphosed so that the original basin extent and form are no longer preserved. Note that intrusive and some related volcanic rocks that overlap these provinces and basins have not been included in this classification. The map was compiled using boundaries modified and generalised from the 1:2 000 000 Queensland Geology map (2012). Outlines of subsurface basins are also shown and these are based on data and published interpretations from petroleum exploration and geophysical surveys (seismic, gravity and magnetics).
For the structural framework dataset, two versions are provided. In QLD_STRUCTURAL_FRAMEWORK, polygons are tagged with the name of the surface structural unit, and names of underlying units are imbedded in a text string in the HIERARCHY field. In QLD_STRUCTURAL_FRAMEWORK_MULTI_POLYS, the data is structured into a series of overlapping, multi-part polygons, one for each structural unit. Two layer files are provided with the ESRI data, one where units are symbolised by name. Because the dataset has been designed for units display in the order of superposition, this layer file assigns colours to the units that occur at the surface with concealed units being left uncoloured. Another layer file symbolises them by the orogen of which they are part. A similar set of palettes has been provided for Map Info.
Details on the source data can be found in the xml file associated with data layer.
Data in this release
*ESRI.shp and MapInfo .tab files of rock unit polygons and lines with associated layer attributes of Queensland geology
*ESRI.shp and MapInfo .tab files of structural unit polygons and lines with associated layer attributes of structural framework
*ArcMap .mxd and .lyr files and MapInfo .wor files containing symbology
*Georeferenced Queensland geology map, gravity and magnetic images
*Queensland geology map, structural framework and schematic diagram PDF files
*Data supplied in geographical coordinates (latitude/longitude) based on Geocentric Datum of Australia - GDA94
Accessing the data
Programs exist for the viewing and manipulation of the digital spatial data contained on this DVD. Accessing the digital datasets will require GIS software. The following GIS viewers can be downloaded from the internet. ESRI ArcExplorer can be found by a search of www.esriaustralia.com.au and MapInfo ProViewer by a search on www.pbinsight.com.au collectively ("the websites").
Metadata
Metadata is contained in .htm files placed in the root folder of each vector data folder. For ArcMap users metadata for viewing in ArcCatalog is held in an .xml file with each shapefile within the ESRI Shapefile folders.
Disclaimer
The State of Queensland is not responsible for the privacy practices or the content of the websites and makes no statements, representations, or warranties about the content or accuracy or completeness of, any information or products contained on the websites.
Despite our best efforts, the State of Queensland makes no warranties that the information or products available on the websites are free from infection by computer viruses or other contamination.
The State of Queensland disclaims all responsibility and all liability (including without limitation, liability in negligence) for all expenses, losses, damages and costs you might incur as a result of accessing the websites or using the products available on the websites in any way, and for any reason.
The State of Queensland has included the websites in this document as an information source only. The State of Queensland does not promote or endorse the websites or the programs contained on them in any way.
WARNING: The Queensland Government and the Department of Natural Resources and Mines accept no liability for and give no undertakings, guarantees or warranties concerning the accuracy, completeness or fitness for the purposes of the information provided. The consumer must take all responsible steps to protect the data from unauthorised use, reproduction, distribution or publication by other parties.
Please view the 'readme.html' and 'licence.html' file for further, more complete information
Geological Survey of Queensland (2012) Queensland geology and structural framework - GIS data July 2012. Bioregional Assessment Source Dataset. Viewed 07 December 2018, http://data.bioregionalassessments.gov.au/dataset/69da6301-04c1-4993-93c1-4673f3e22762.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Map Service showing whole of state regional geology data sets maintained by the Department of Resources. The data sets are organised by layers including: Regional 1:500k 1:1M (0) Regional geology extent (1) Regional Bowen Basin extent (2) Regional Burdekin River extent (3) Regional Cape York Peninsula extent (4) Regional Carpentaria-Karumba Basins extent (5) Regional Central Eromanga Basin extent (6) Regional Georgina Basin extent (7) Regional Hodgkinson-Laura Basins extent (8) Regional Moreton Region extent (9) Regional Mount Isa Inlier extent (10) Regional Northern Eromanga Basin extent (11) Regional Northwestern Eromanga Basin extent (12) Regional Surat Basin extent (13) Regional Torres Strait extent (14) Regional Townsville Hinterland extent (15) Regional Bowen Basin Structure (16) Regional Bowen Basin Solid Geology (17) Regional Burdekin River Structure (18) Regional Burdekin River Surface Geology (19) Regional Cape York Peninsula Structure (20) Regional Cape York Peninsula Surface Geology (21) Regional Carpentaria-Karumba Basins Structure (22) Regional Carpentaria-Karumba Basins Surface Geology (23) Regional Central Eromanga Basin Structure (24) Regional Central Eromanga Basin Surface Geology (25) Regional Georgina Basin Structure (26) Regional Georgina Basin Surface Geology (27) Regional Hodgkinson-Laura Basins Structure (28) Regional Hodgkinson-Laura Basins Surface Geology (29) Regional Moreton Region Structure (30) Regional Moreton Region Surface Geology (31) Regional Mount Isa Inlier Structure (32) Regional Mount Isa Inlier Surface Geology (33) Regional Nthn Eromanga Basin Structure (34) Regional Nthn Eromanga Basin Surface Geology (35) Regional NW Eromanga Basin Structure (36) Regional NW Eromanga Basin Surface Geology (37) Regional Surat Basin Structure (38) Regional Surat Basin Surface Geology (39) Regional Torres Strait Structure (40) Regional Torres Strait Surface Geology (41) Regional Townsville Hinterland Structure (42) Regional Townsville Hinterland Surface Geology (43)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
URL: https://geoscience.data.qld.gov.au/dataset/cr145752
Geology of Queensland 2013
Geological observations in Queensland began during the early exploration in 1844, but soon became focussed on discovery of gold to support the new colony. Since 1872 when the first map of Queensland geology was drawn, many upgrades have been produced. Much of the geological investigations in Queensland have been driven by the need to discover new resources to support the State. The new map and book are the culmination of 170 years of studies in the state.
The GIS for the associated map and structural framework related to this publication can be accessed online at Queensland Geology and structural framework GIS data Geology Map 2012.
Physical 'hard' copies of this book may still be purchased by completing the form at this link
Geology of Queensland / edited by Peter A Jell.
ISBN 9781921489761 (hbk.) Includes bibliographical references and index.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Abstract The dataset was derived by the Bioregional Assessment Programme from multiple the Queensland geology and structural framework dataset. The source dataset is identified in the Lineage field in this metadata statement. The processes undertaken to produce this derived dataset are described in the History field in this metadata statement. This dataset contains a polygon shapefile of the Belyando Basin province boundary. The Belyando Basin underlies the eastern margin of the Galilee …Show full descriptionAbstract The dataset was derived by the Bioregional Assessment Programme from multiple the Queensland geology and structural framework dataset. The source dataset is identified in the Lineage field in this metadata statement. The processes undertaken to produce this derived dataset are described in the History field in this metadata statement. This dataset contains a polygon shapefile of the Belyando Basin province boundary. The Belyando Basin underlies the eastern margin of the Galilee subregion. Extracted from the QLD Geology and Structural Framework of 2012 - the abstract of which is below. The data on this DVD contains the converted shapefiles, layer files, raster images and project .mxd files used on the Queensland geology and structural framework map. The maps were done in ArcGIS 9.3.1 and the data stored in file geodatabases, topology created and validated. This provides greater data quality by performing topological validation on the feature's spatial relationships. For the purposes of the DVD, shapefiles were created from the file geodatabases and for MapInfo users MapInfo .tab and .wor files. The shapefiles on the DVD are a revision of the 1975 Queensland geology data, and are both are available for display, query and download on the department's online GIS application. The Queensland geology map is a digital representation of the distribution or extent of geological units within Queensland. In the GIS, polygons have a range of attributes including unit name, type of unit, age, lithological description, dominant rock type, and an abbreviated symbol for use in labelling the polygons. The lines in this dataset are a digital representation of the position of the boundaries of geological units and other linear features such as faults and folds. The lines are attributed with a description of the type of line represented. Approximately 2000 rock units were grouped into the 250 map units in this data set. The digital data was generalised and simplified from the Department's detailed geological data and was captured at 1:500 000 scale for output at 1:2 000 000 scale. The geological framework of Queensland is classified by structural or tectonic unit (provinces and basins) in which the rocks formed. These are referred to as basins (or in some cases troughs and depressions) where the original form and structure are still apparent. Provinces (and subprovinces) are generally older basins that have been strongly tectonised and/or metamorphosed so that the original basin extent and form are no longer preserved. Note that intrusive and some related volcanic rocks that overlap these provinces and basins have not been included in this classification. The map was compiled using boundaries modified and generalised from the 1:2 000 000 Queensland Geology map (2012). Outlines of subsurface basins are also shown and these are based on data and published interpretations from petroleum exploration and geophysical surveys (seismic, gravity and magnetics). For the structural framework dataset, two versions are provided. In QLD_STRUCTURAL_FRAMEWORK, polygons are tagged with the name of the surface structural unit, and names of underlying units are imbedded in a text string in the HIERARCHY field. In QLD_STRUCTURAL_FRAMEWORK_MULTI_POLYS, the data is structured into a series of overlapping, multi-part polygons, one for each structural unit. Two layer files are provided with the ESRI data, one where units are symbolised by name. Because the dataset has been designed for units display in the order of superposition, this layer file assigns colours to the units that occur at the surface with concealed units being left uncoloured. Another layer file symbolises them by the orogen of which they are part. A similar set of palettes has been provided for Map Info. Purpose This dataset provides a single, merged representation of the Belyando Basin as interpreted by the QLD Geology and Structural Framework of 2012 Dataset History This dataset has been extracted directly from the QLD Geology and Structural Framework: QLD_STRUCTURAL_FRAMEWORK.shp. Features with the following 'Heirarchy' attributes were selected and extracted: a) Galilee Basin>Drummond Basin>Belyando Basin>Thomson Orogen b) Eromanga Basin>Galilee Basin>Drummond Basin>Belyando Basin>Thomson Orogen c) Drummond Basin>Belyando Basin>Thomson Orogen d) Galilee Basin>Drummond Basin>Belyando Basin>Thomson Orogen Features were merged together to produce the Belyando Basin province. The lineage of the QLD Geology and Structural Framework is below: Data in this release *ESRI.shp and MapInfo .tab files of rock unit polygons and lines with associated layer attributes of Queensland geology *ESRI.shp and MapInfo .tab files of structural unit polygons and lines with associated layer attributes of structural framework *ArcMap .mxd and .lyr files and MapInfo .wor files containing symbology *Georeferenced Queensland geology map, gravity and magnetic images *Queensland geology map, structural framework and schematic diagram PDF files *Data supplied in geographical coordinates (latitude/longitude) based on Geocentric Datum of Australia - GDA94 Accessing the data Programs exist for the viewing and manipulation of the digital spatial data contained on this DVD. Accessing the digital datasets will require GIS software. The following GIS viewers can be downloaded from the internet. ESRI ArcExplorer can be found by a search of www.esriaustralia.com.au and MapInfo ProViewer by a search on www.pbinsight.com.au collectively ("the websites"). Metadata Metadata is contained in .htm files placed in the root folder of each vector data folder. For ArcMap users metadata for viewing in ArcCatalog is held in an .xml file with each shapefile within the ESRI Shapefile folders. Disclaimer The State of Queensland is not responsible for the privacy practices or the content of the websites and makes no statements, representations, or warranties about the content or accuracy or completeness of, any information or products contained on the websites. Despite our best efforts, the State of Queensland makes no warranties that the information or products available on the websites are free from infection by computer viruses or other contamination. The State of Queensland disclaims all responsibility and all liability (including without limitation, liability in negligence) for all expenses, losses, damages and costs you might incur as a result of accessing the websites or using the products available on the websites in any way, and for any reason. The State of Queensland has included the websites in this document as an information source only. The State of Queensland does not promote or endorse the websites or the programs contained on them in any way. WARNING: The Queensland Government and the Department of Natural Resources and Mines accept no liability for and give no undertakings, guarantees or warranties concerning the accuracy, completeness or fitness for the purposes of the information provided. The consumer must take all responsible steps to protect the data from unauthorised use, reproduction, distribution or publication by other parties. Dataset Citation Bioregional Assessment Programme (XXXX) Belyando Basin Boundary - QLD Structural Framework. Bioregional Assessment Derived Dataset. Viewed 07 December 2018, http://data.bioregionalassessments.gov.au/dataset/4add856a-eb40-4bb2-bd41-f89788884782. Dataset Ancestors Derived From Queensland geology and structural framework - GIS data July 2012
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
URL: https://geoscience.data.qld.gov.au/dataset/ds000077
The New Economy Minerals Initiative (NEMI) was announced November 2019. The Initiative totals $23 million, and is implemented over an area across northern Queensland, including the North West Minerals Province in the west and extending to the coast between Townsville and Cooktown in the east. The goal of the initiative is to develop and support the growth of the critical minerals component of the resources sector in Queensland, from assessing regional prospectivity and facilitating exploration to investigating opportunities for processing and re-purposing of old mine sites and tailings facilities.
Kamilaroi Airborne Magnetic and Radiometric Survey - A 61,368 line km geophysical survey covering over 5,000 sq km north of Mount Isa flown at 100m at line interval.
Mount Isa Region Airborne Data Merge 2022 - A regional geophysical merge product created by merging recent high-resolution regional GSQ airborne magnetic and radiometric surveys and open-file exploration surveys in the North West Minerals Province, cell size of 10 metres covering 44,000 square kilometres.
Canobie Airborne Gravity Gradiometry Survey - A 4,712 line km regional airborne gravity gradiometry survey flown at 1000m line interval north of Cloncurry
Carpentaria Conductivity Anomaly Magnetotelluric Survey - Regional broadband Magnetotelluric (MT) focused to the south of Cloncurry was designed to link existing regional magnetotelluric lines, allowing integration with the 94 MTI seismic line and the Camooweal seismic survey.
CF2/3 Magnetotelluric Survey - Two traverses of Magnetotelluric data along the 2014 CF2 and CF3 seismic lines consisting of 100 broadband MT stations from Winton to Boulia and to Birdsville spaced ~10km along line.
Cloncurry Magnetotelluric Inversion Report - Report and model package for the 3D inversion of the Cloncurry and Cloncurry Extension MT surveys to the north of Cloncurry.
East Isa AEM inversion work - Inversion of 2016 East Isa VTEM data conducted by Aarhus Geophysics
Peralkaline Magmatic Systems - An investigation of peralkaline and near peralkaline igneous rock suites throughout eastern Queensland to assess potential for hosting critical metal enrichment;
Ore Potential – Central Queensland Volcanic Systems - A detailed study of the geology, geochemistry and petrogenesis of the Peak Range Volcanics in Central Queensland, known to be locally enriched in rare earth elements (University of Adelaide).
Regional Prospectivity - A series of collaborative project between the GSQ, CSIRO and industry partners to generate new regional datasets in North-west Queensland. Focusing on improving understanding of the cover thickness, geology and geochemistry of the basement rocks of the Mount Isa Province.
Seismic Interpretation of Northern Queensland - A collaborative project between the GSQ and UQ aimed at improving big picture understanding of the geology and evolution of northern Queensland and implications for mineral resources. The project integrates geology, geophysics and isotopic analysis to generate a new understanding of the structure and evolution of northern Queensland.
Characterisation of Queensland mineral deposits – An integrated work program aiming to build up an extensive reference collection of representative drill hole and surface samples and associated geoscience data, to comprehensively characterise geochemical, mineralogical and petrophysical signatures of mineralisation, alteration and distal footprints of key deposits of different deposit types including the north east and north west mineral provinces;
New Economy Minerals Compilation - A series of reports conducted by the Sustainable Minerals Institute (SMI) compiling geoscientific information and interpretations as an aid to exploration targeting for New Economy Minerals including;
North East Queensland Deposit Atlas - Atlas of major deposits across north east Queensland including 3D Models and pdf report for each deposit.
Critical metals in the Proterozoic Cu-Au-U systems of the eastern Mount Isa Inlier Report - Report by ANU on critical mineral variability across Cu-Au systems within the Mount Isa Eastern succession
Potential for indium mineralisation in the Herberton Mineral Field, NE Qld - PhD project with James Cook University to understand the mineralogy, paragenesis, geochemistry and distribution of indium at the Baal Gammon and similar deposits, to develop a mineralisation model that links the occurrence of indium with the host tin-tungsten and polymetallic mineralisation
Mineralisation potential for Ni, Sc, Cr and Co of ultramafic complexes in NE Qld - PhD project with James Cook University to understand the formation, petrogenesis and new economy mineral potential of ultramafic rocks in northeast Queensland, including mineralogical deportment of new economy metals and potential geochemical, textural and mineralogical vectors to ore that could be used during exploration
Mt Garnet project - Fingerprinting mineralising fluids with hydrothermal minerals -A UQ-GSQ collaboration project examined key hydrothermal minerals (calcite, fluorite, etc.) in the Mt. Garnet skarn deposit, NE Queensland. Samples were analysed using advanced techniques including TIMA Automated Mineralogy, EPMA, LA-ICP-MS, and optical petrography.
Sphalerite Report - This study analysed sphalerite from multiple Queensland deposits. Samples were provided by the Geological Survey of Queensland and analysed at the Australian National University. Element concentrations were determined using Scanning Electron Microscopy (SEM) and Laser Ablation – Inductively Coupled Plasma – Mass Spectrometry (LA-ICP-MS).
Signatures of Key Mineral Systems in the Eastern Mount Isa Province, Queensland: New Perspectives from Data Analytics - A collaborative project between the GSQ and CSIRO, leveraging a multi-property database generated through the earlier Cloncurry Uncover and METAL to discriminate signatures of mineral systems in the Eastern Mount Isa Province. The dataset consists of a range of petrophysical, geochemical, mineralogical and spectral properties for over two thousand samples collected from twenty-eight deposits across the region. The consistency, range of features, and diversity of samples within the reference database provides a solid foundation for analytics and investigation of data-driven models for mineral system signatures.
Cu Isotopes in Groundwater; an exploration tool undercover - A collaborative project between GSQ, James Cook University and Juniata College in the US, to determine whether the Cu isotope composition of groundwater could be used as a vectoring tool for copper mineralisation under cover.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Layer 02 Base of Cenozoic surface
Surface produced for the Great Artesian Water Resource Assessment (GABWRA) by Geoscience Australia (http://www.ga.gov.au). This surface was created for 3D visualisation of the Base of Cenozoic sequence. It was used in Figure 3.1 of Ransley TR and Smerdon BD (eds) (2012) Hydrostratigraphy, hydrogeology and system conceptualisation of the Great Artesian Basin. A technical report to the Australian Government from the CSIRO Great Artesian Basin Water Resource Assessment. CSIRO Water for a Healthy Country Flagship, Australia.
The surface is available in the following formats 1. GOCAD surface (.ts) 2. ESRI grid 3. ASCII grid (.grd)
Use limitations: 1. GOCAD surface requires program capable of reading GOCAD *.ts (triangulated surface) files 2. ASCII grid data requires re-interpolation by end-user resulting in minor differences to accompanying GOCAD *.ts surface
This layer is part of a set comprised of: Layer 01 3-second Digital Elevation Model surface (catalogue #75990) Layer 02 Base of Cenozoic surface (catalogue #75991) Layer 03 Base of Mackunda Formation and equivalents surface (catalogue #76021) Layer 04 Base of Rolling Downs Group surface (catalogue #76022) Layer 05 Base of Hooray Sandstone and equivalents surface (catalogue #76023) Layer 06 Base of Injune Creek Group surface (catalogue #76024) Layer 07 Base of Hutton Sandstone surface (catalogue #76025) Layer 05-07 Base of Algebuckina Sandstone surface (catalogue #76952) Layer 08A Base of Evergreen and Marburg formations (catalogue #76026) Layer 08B Base of Poolowanna Formation (catalogue #76953) Layer 09 Base of Precipice Sandstone and equivalents surface (catalogue #76027) Layer 10 Base of Jurassic-Cretaceous sequence surface (catalogue #76028)
This dataset and associated metadata can be obtained from www.ga.gov.au, using catalogue number 75991.
REFERENCES (Continued from Lineage field): 10. Senior D (1968) Durham Downs, Qld. 1:250 000 Geological Series, Bureau of Mineral Resources explanatory notes, SG/54-15. Australian Government Publishing Service Canberra. 11. Langford RP, Wilford GE, Truswell EM and Isern AR (1995) Palaeogeographic Atlas of Australia. Volume 10 - Cainozoic. Australian Geological Survey Organisation, Canberra. Available online: https://www.ga.gov.au/resources/multimedia/animation/palaeo/html/palaeo.html 12. Moussavi-Harami, R and Alexander, E., 1998 - Tertiary stratigraphy and tectonics, Eromanga Basin region. MESA Journal 8 (February 1998), 32-36p. 13. Hou, B., Fabris, A.J., Keling, J.L. & Fairclough, M.C., 2007 - Cainozoic palaeochannel-hosted uranium and current exploration methods, South Australia. MESA Journal 46 (September), 34-39. 14. Ransley and Smerdon (Eds) 2012. Hydrostratigraphy, hydrogeology and system conceptualisation of the Great Artesian Basin. CSIRO. Canberra. 15. Nelson GJ, Carey H, Radke BM and Ransley TR (2012). The three-dimensional visualisation of the Great Artesian Basin. A report to the Australian Government from the CSIRO Great Artesian Basin Water Resource Assessment. CSIRO Water for a Healthy Country Flagship, Australia. 16. Senior, B.R., 1978. The Whitula Formation, a new Tertiary stratigraphic unit. Appendix p 49-50 In Senior BR, Mond A and Harrison PL (1978) Geology of the Eromanga Basin. Bulletin 167. Bureau of Mineral Resources, Geology and Geophysics, Canberra. 17. Grimes KG (1980) The Tertiary geology of north Queensland. In: Henderson RA and Stephenson PJ (Eds) The Geology and Geophysics of Northeastern Australia. Geological Society of Australia, Queensland Division, Brisbane, 329-347. 18. Paten RJ (1964) The Tertiary geology of the Boulia region, western Queensland. Report 77. Bureau of Mineral Resources, Australia.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Wetlands provide a wide range of ecosystem services including improving water quality, carbon sequestration, as well as providing habitat for fish, amphibians, reptiles and birds. Managing wetlands in Australia is challenging due to competing pressures for water availability and highly variable climatic settings. The Wetlands Insight Tool (QLD) has been developed to provide catchment managers, environmental water holders, and wetlands scientists a consistent historical baseline of wetlands dynamics from 1987 onwards. The Wetlands Insight Tool (QLD) is available online through the Queensland Government Wetland
What this product offers The Wetlands Insight Tool (QLD) summarises how the amount of water, green vegetation, dry vegetation and bare soil varies over time within each wetland. It provides the user with the ability to compare how the wetland is behaving now with how it has behaved in the past. This allows users to identify how changes in water availability have affected the wetland. It achieves this by presenting a combined view of Water Observations from Space, Tasseled Cap Wetness and Fractional Cover measurements from the Landsat series of satellites, summarised as a stacked line plot to show how that wetland has changed over time.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
URL: https://geoscience.data.qld.gov.au/dataset/cr131884
Punchbowl Gully 3 was drilled as a gas development well within the 100% Denison Gas operated PL 183. The well is located near the Punchbowl Gully 1 well, which has been online and producing for 13 years after being fracture stimulated in 1991. More recently, late 2020, Punchbowl Gully 2 successfully appraised the field, lowered the LKG by 33m and discovered minimal depletion at the location. The tenement is located within the Denison Trough sub-basin of the greater Bowen Basin in southeast Queensland.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Important: Our technical support team is available to assist you during business hours only. Please keep in mind that we can only address technical difficulties during these hours. When using the product to make decisions, please take this into consideration.
Abstract This spatial product shows consistent ‘near real-time’ bushfire and prescribed burn boundaries for all jurisdictions who have the technical ability or appropriate licence conditions to provide this information. Currency Maintenance of the underlying data is the responsibility of the custodian. Geoscience Australia has automated methods of regularly checking for changes in source data. Once detected the dataset and feeds will be updated as soon as possible. NOTE: The update frequency of the underlying data from the jurisdictions varies and, in most cases, does not line up to this product’s update cycle. Date created: November 2023 Modification frequency: Every 15 Minutes Spatial Extent
West Bounding Longitude: 113° South Bounding Latitude: -44° East Bounding Longitude: 154° North Bounding Latitude: -10°
Source Information The project team initially identified a list of potential source data through jurisdictional websites and the Emergency Management LINK catalogue. These were then confirmed by each jurisdiction through the EMSINA National and EMSINA Developers networks. This Webservice contains authoritative data sourced from:
Australian Capital Territory - Emergency Service Agency (ESA)
New South Wales - Rural Fire Service (RFS)
Queensland - Queensland Fire and Emergency Service (QFES)
South Australia - Country Fire Service (CFS)
Tasmania - Tasmania Fire Service (TFS)
Victoria – Department of Environment, Land, Water and Planning (DELWP)
Western Australia – Department of Fire and Emergency Services (DFES)
The completeness of the data within this webservice is reliant on each jurisdictional source and the information they elect to publish into their Operational Bushfire Boundary webservices. Known Limitations:
This dataset does not contain information from the Northern Territory government. This dataset contains a subset of the Queensland bushfire boundary data. The Queensland ‘Operational’ feed that is consumed within this National Database displays a the last six (6) months of incident boundaries. In order to make this dataset best represent a ‘near-real-time’ or current view of operational bushfire boundaries Geoscience Australia has filtered the Queensland data to only incorporate the last two (2) weeks data. Geoscience Australia is aware of duplicate data (features) may appear within this dataset. This duplicate data is commonly represented in the regions around state borders where it is operationally necessary for one jurisdiction to understand cross border situations. Care must be taken when summing the values to obtain a total area burnt. The data within this aggregated National product is a spatial representation of the input data received from the custodian agencies. Therefore, data quality and data completion will vary. If you wish to assess more information about specific jurisdictional data and/or data feature(s) it is strongly recommended that you contact the appropriate custodian.
The accuracy of the data attributes within this webservice is reliant on each jurisdictional source and the information they elect to publish into their Operational Bushfire Boundary webservices.
Note: Geoscience Australia has, where possible, attempted to align the data to the (as of October 2023) draft National Current Incident Extent Feeds Data Dictionary. However, this has not been possible in all cases. Work to progress this alignment will be undertaken after the publication of this dataset, once this project enters a maintenance period.
Catalog entry: Bushfire Boundaries – Near Real-Time
Lineage Statement
Version 1 and 2 (2019/20):
This dataset was first built by EMSINA, Geoscience Australia, and Esri Australia staff in early January 2020 in response to the Black Summer Bushfires. The product was aimed at providing a nationally consistent dataset of bushfire boundaries. Version 1 was released publicly on 8 January 2020 through Esri AGOL software.
Version 2 of the product was released in mid-February as EMSINA and Geoscience Australia began automating the product. The release of version 2 exhibited a reformatted attributed table to accommodate these new automation scripts.
The product was continuously developed by the three entities above until early May 2020 when both the scripts and data were handed over to the National Bushfire Recovery Agency. The EMSINA Group formally ended their technical involvement with this project on June 30, 2020.
Version 3 (2020/21):
A 2020/21 version of the National Operational Bushfire Boundaries dataset was agreed to by the Australian Government. It continued to extend upon EMSINA’s 2019/20 Version 2 product. This product was owned and managed by the Australian Government Department of Home Affairs, with Geoscience Australia identified as the technical partners responsible for development and delivery.
Work on Version 3 began in August 2020 with delivery of this product occurring on 14 September 2020.
Version 4 (2021/22):
A 2021/22 version of the National Operational Bushfire Boundaries dataset was produced by Geoscience Australia. This product was owned and managed by Geoscience Australia, who provided both development and delivery.
Work on Version 4 began in August 2021 with delivery of this product occurring on 1 September 2021. The dataset was discontinued in May 2022 because of insufficient Government funding.
Version 5 (2023/25):
A 2023/25 version of the National Near-Real-Time Bushfire Boundaries dataset is produced by Geoscience Australia under funding from the National Bushfire Intelligence Capability (NBIC) - CSIRO. NBIC and Geoscience Australia have also partnered with the EMSINA Group to assist with accessing and delivering this dataset. This dataset is the first time where the jurisdictional attributes are aligned to AFAC’s National Bushfire Schema.
Work on Version 5 began in August 2023 and was released in late 2023 under formal access arrangements with the States and Territories.
Data Dictionary
Geoscience Australia has not included attributes added automatically by spatial software processes in the table below.
Attribute Name Description
fire_id ID attached to fire (e.g. incident ID, Event ID, Burn ID).
fire_name Incident name. If available.
fire_type Binary variable to describe whether a fire was a bushfire or prescribed burn.
ignition_date The date of the ignition of a fire event. Date and time are local time zone from the State where the fire is located and stored as a string.
capt_date The date of the incident boundary was captured or updated. Date and time are local time zone from the Jurisdiction where the fire is located and stored as a string.
capt_method Categorical variable to describe the source of data used for defining the spatial extent of the fire.
area_ha Burnt area in Hectares. Currently calculated field so that all areas calculations are done in the same map projection. Jurisdiction supply area in appropriate projection to match state incident reporting system.
perim_km ) Burnt perimeter in Kilometres. Calculated field so that all areas calculations are done in the same map projection. Jurisdiction preference is that supplied perimeter calculations are used for consistency with jurisdictional reporting.
state State custodian of the data. NOTE: Currently some states use and have in their feeds cross border data
agency Agency that is responsible for the incident
date_retrieved The date and time that Geoscience Australia retrieved this data from the jurisdictions, stored as UTC. Please note when viewed in ArcGIS Online, the date is converted from UTC to your local time.
Contact Geoscience Australia, clientservices@ga.gov.au
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Important: Our technical support team is available to assist you during business hours only. Please keep in mind that we can only address technical difficulties during these hours. When using the product to make decisions, please take this into consideration.
Abstract This spatial product shows consistent ‘near real-time’ bushfire and prescribed burn boundaries for all jurisdictions who have the technical ability or appropriate licence conditions to provide this information. Currency Maintenance of the underlying data is the responsibility of the custodian. Geoscience Australia has automated methods of regularly checking for changes in source data. Once detected the dataset and feeds will be updated as soon as possible. NOTE: The update frequency of the underlying data from the jurisdictions varies and, in most cases, does not line up to this product’s update cycle. Date created: November 2023 Modification frequency: Every 15 Minutes Spatial Extent
West Bounding Longitude: 113° South Bounding Latitude: -44° East Bounding Longitude: 154° North Bounding Latitude: -10°
Source Information The project team initially identified a list of potential source data through jurisdictional websites and the Emergency Management LINK catalogue. These were then confirmed by each jurisdiction through the EMSINA National and EMSINA Developers networks. This Webservice contains authoritative data sourced from:
Australian Capital Territory - Emergency Service Agency (ESA)
New South Wales - Rural Fire Service (RFS)
Queensland - Queensland Fire and Emergency Service (QFES)
South Australia - Country Fire Service (CFS)
Tasmania - Tasmania Fire Service (TFS)
Victoria – Department of Environment, Land, Water and Planning (DELWP)
Western Australia – Department of Fire and Emergency Services (DFES)
The completeness of the data within this webservice is reliant on each jurisdictional source and the information they elect to publish into their Operational Bushfire Boundary webservices. Known Limitations:
This dataset does not contain information from the Northern Territory government. This dataset contains a subset of the Queensland bushfire boundary data. The Queensland ‘Operational’ feed that is consumed within this National Database displays a the last six (6) months of incident boundaries. In order to make this dataset best represent a ‘near-real-time’ or current view of operational bushfire boundaries Geoscience Australia has filtered the Queensland data to only incorporate the last two (2) weeks data. Geoscience Australia is aware of duplicate data (features) may appear within this dataset. This duplicate data is commonly represented in the regions around state borders where it is operationally necessary for one jurisdiction to understand cross border situations. Care must be taken when summing the values to obtain a total area burnt. The data within this aggregated National product is a spatial representation of the input data received from the custodian agencies. Therefore, data quality and data completion will vary. If you wish to assess more information about specific jurisdictional data and/or data feature(s) it is strongly recommended that you contact the appropriate custodian.
The accuracy of the data attributes within this webservice is reliant on each jurisdictional source and the information they elect to publish into their Operational Bushfire Boundary webservices.
Note: Geoscience Australia has, where possible, attempted to align the data to the (as of October 2023) draft National Current Incident Extent Feeds Data Dictionary. However, this has not been possible in all cases. Work to progress this alignment will be undertaken after the publication of this dataset, once this project enters a maintenance period.
Catalog entry: Bushfire Boundaries – Near Real-Time
Lineage Statement
Version 1 and 2 (2019/20):
This dataset was first built by EMSINA, Geoscience Australia, and Esri Australia staff in early January 2020 in response to the Black Summer Bushfires. The product was aimed at providing a nationally consistent dataset of bushfire boundaries. Version 1 was released publicly on 8 January 2020 through Esri AGOL software.
Version 2 of the product was released in mid-February as EMSINA and Geoscience Australia began automating the product. The release of version 2 exhibited a reformatted attributed table to accommodate these new automation scripts.
The product was continuously developed by the three entities above until early May 2020 when both the scripts and data were handed over to the National Bushfire Recovery Agency. The EMSINA Group formally ended their technical involvement with this project on June 30, 2020.
Version 3 (2020/21):
A 2020/21 version of the National Operational Bushfire Boundaries dataset was agreed to by the Australian Government. It continued to extend upon EMSINA’s 2019/20 Version 2 product. This product was owned and managed by the Australian Government Department of Home Affairs, with Geoscience Australia identified as the technical partners responsible for development and delivery.
Work on Version 3 began in August 2020 with delivery of this product occurring on 14 September 2020.
Version 4 (2021/22):
A 2021/22 version of the National Operational Bushfire Boundaries dataset was produced by Geoscience Australia. This product was owned and managed by Geoscience Australia, who provided both development and delivery.
Work on Version 4 began in August 2021 with delivery of this product occurring on 1 September 2021. The dataset was discontinued in May 2022 because of insufficient Government funding.
Version 5 (2023/25):
A 2023/25 version of the National Near-Real-Time Bushfire Boundaries dataset is produced by Geoscience Australia under funding from the National Bushfire Intelligence Capability (NBIC) - CSIRO. NBIC and Geoscience Australia have also partnered with the EMSINA Group to assist with accessing and delivering this dataset. This dataset is the first time where the jurisdictional attributes are aligned to AFAC’s National Bushfire Schema.
Work on Version 5 began in August 2023 and was released in late 2023 under formal access arrangements with the States and Territories.
Data Dictionary
Geoscience Australia has not included attributes added automatically by spatial software processes in the table below.
Attribute Name Description
fire_id ID attached to fire (e.g. incident ID, Event ID, Burn ID).
fire_name Incident name. If available.
fire_type Binary variable to describe whether a fire was a bushfire or prescribed burn.
ignition_date The date of the ignition of a fire event. Date and time are local time zone from the State where the fire is located and stored as a string.
capt_date The date of the incident boundary was captured or updated. Date and time are local time zone from the Jurisdiction where the fire is located and stored as a string.
capt_method Categorical variable to describe the source of data used for defining the spatial extent of the fire.
area_ha Burnt area in Hectares. Currently calculated field so that all areas calculations are done in the same map projection. Jurisdiction supply area in appropriate projection to match state incident reporting system.
perim_km ) Burnt perimeter in Kilometres. Calculated field so that all areas calculations are done in the same map projection. Jurisdiction preference is that supplied perimeter calculations are used for consistency with jurisdictional reporting.
state State custodian of the data. NOTE: Currently some states use and have in their feeds cross border data
agency Agency that is responsible for the incident
date_retrieved The date and time that Geoscience Australia retrieved this data from the jurisdictions, stored as UTC. Please note when viewed in ArcGIS Online, the date is converted from UTC to your local time.
Contact Geoscience Australia, clientservices@ga.gov.au
SILO (Scientific Information for Land Owners) is a database of Australian climate data from 1889 (current to yesterday). It provides daily datasets for a range of climate variables in ready-to-use formats suitable for research and climate applications. SILO products provide national coverage with interpolated infills for missing data, which allows you to focus on your research or model development without the burden of data preparation.
SILO is hosted by the Science and Technology Division of the Queensland Government's Department of Environment and Science (DES). The datasets are constructed from observational data obtained from the Australian Bureau of Meteorology.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
http://creativecommons.org/licenses/http://creativecommons.org/licenses/
The Digital Elevation Model (DEM) 5 Metre Grid of Australia derived from LiDAR model represents a National 5 metre (bare earth) DEM which has been derived from some 236 individual LiDAR surveys between 2001 and 2015 covering an area in excess of 245,000 square kilometres. These surveys cover Australia's populated coastal zone; floodplain surveys within the Murray Darling Basin, and individual surveys of major and minor population centres. All available 1 metre resolution LiDAR-derived DEMs have been compiled and resampled to 5 metre resolution datasets for each survey area, and then merged into a single dataset for each State. These State datasets have also been merged into a 1 second resolution national dataset.
The acquisition of the individual LiDAR surveys and derivation of the 5m product has been part of a long-term collaboration between Geoscience Australia, the Cooperative Research Centre for Spatial Information (CRCSI), the Departments of Climate Change and Environment, State and Territory jurisdictions, Local Government and the Murray Darling Basin Authority under the auspices of the National Elevation Data Framework and Coastal and Urban DEM Program, with additional data supplied by the Australian Department of Defence. The source datasets have been captured to standards that are generally consistent with the Australian ICSM LiDAR Acquisition Specifications with require a fundamental vertical accuracy of at least 0.30m (95% confidence) and horizontal accuracy of at least 0.80m (95% confidence).
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Map Service showing whole of state detailed geology data sets maintained by the Department of Resources. The data sets are organised by layers including: Field Site (0) Detailed 1:100k (1) Detailed Structure (2) Detailed Geological Boundaries (3) Detailed Faults and Shear Zones (4) Detailed Folds (5) Detailed Dykes Veins or Sills (6) Detailed Markers Marker Beds or Marker Bands (7) Detailed Lineaments (8) Detailed Joints and Fractures (9) Detailed Trends and Dips (10) Detailed Volcanic features (11) Detailed Other Natural features (12) Detailed Other features (13) Detailed Surface geology extent (14) Detailed Surface geology (15) Detailed Solid geology extent (16) Detailed Solid geology (17)