2 datasets found
  1. Data from: Water-quality data imputation with a high percentage of missing...

    • zenodo.org
    • explore.openaire.eu
    • +1more
    csv
    Updated Jun 8, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rafael Rodríguez; Rafael Rodríguez; Marcos Pastorini; Marcos Pastorini; Lorena Etcheverry; Lorena Etcheverry; Christian Chreties; Mónica Fossati; Alberto Castro; Alberto Castro; Angela Gorgoglione; Angela Gorgoglione; Christian Chreties; Mónica Fossati (2021). Water-quality data imputation with a high percentage of missing values: a machine learning approach [Dataset]. http://doi.org/10.5281/zenodo.4731169
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jun 8, 2021
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Rafael Rodríguez; Rafael Rodríguez; Marcos Pastorini; Marcos Pastorini; Lorena Etcheverry; Lorena Etcheverry; Christian Chreties; Mónica Fossati; Alberto Castro; Alberto Castro; Angela Gorgoglione; Angela Gorgoglione; Christian Chreties; Mónica Fossati
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The monitoring of surface-water quality followed by water-quality modeling and analysis is essential for generating effective strategies in water resource management. However, water-quality studies are limited by the lack of complete and reliable data sets on surface-water-quality variables. These deficiencies are particularly noticeable in developing countries.

    This work focuses on surface-water-quality data from Santa Lucía Chico river (Uruguay), a mixed lotic and lentic river system. Data collected at six monitoring stations are publicly available at https://www.dinama.gub.uy/oan/datos-abiertos/calidad-agua/. The high temporal and spatial variability that characterizes water-quality variables and the high rate of missing values (between 50% and 70%) raises significant challenges.

    To deal with missing values, we applied several statistical and machine-learning imputation methods. The competing algorithms implemented belonged to both univariate and multivariate imputation methods (inverse distance weighting (IDW), Random Forest Regressor (RFR), Ridge (R), Bayesian Ridge (BR), AdaBoost (AB), Huber Regressor (HR), Support Vector Regressor (SVR), and K-nearest neighbors Regressor (KNNR)).

    IDW outperformed the others, achieving a very good performance (NSE greater than 0.8) in most cases.

    In this dataset, we include the original and imputed values for the following variables:

    • Water temperature (Tw)

    • Dissolved oxygen (DO)

    • Electrical conductivity (EC)

    • pH

    • Turbidity (Turb)

    • Nitrite (NO2-)

    • Nitrate (NO3-)

    • Total Nitrogen (TN)

    Each variable is identified as [STATION] VARIABLE FULL NAME (VARIABLE SHORT NAME) [UNIT METRIC].

    More details about the study area, the original datasets, and the methodology adopted can be found in our paper https://www.mdpi.com/2071-1050/13/11/6318.

    If you use this dataset in your work, please cite our paper:
    Rodríguez, R.; Pastorini, M.; Etcheverry, L.; Chreties, C.; Fossati, M.; Castro, A.; Gorgoglione, A. Water-Quality Data Imputation with a High Percentage of Missing Values: A Machine Learning Approach. Sustainability 2021, 13, 6318. https://doi.org/10.3390/su13116318

  2. f

    Data from: Small sample adjustment for inference without assuming...

    • tandf.figshare.com
    zip
    Updated Oct 30, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kazushi Maruo; Ryota Ishii; Yusuke Yamaguchi; Tomohiro Ohigashi; Masahiko Gosho (2024). Small sample adjustment for inference without assuming orthogonality in a mixed model for repeated measures analysis [Dataset]. http://doi.org/10.6084/m9.figshare.27330045.v1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Oct 30, 2024
    Dataset provided by
    Taylor & Francis
    Authors
    Kazushi Maruo; Ryota Ishii; Yusuke Yamaguchi; Tomohiro Ohigashi; Masahiko Gosho
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The mixed model for repeated measures (MMRM) analysis is sometimes used as a primary statistical analysis for a longitudinal randomized clinical trial. When the MMRM analysis is implemented in ordinary statistical software, the standard error of the treatment effect is estimated by assuming orthogonality between the fixed effects and covariance parameters, based on the characteristics of the normal distribution. However, orthogonality does not hold unless the normality assumption of the error distribution holds, and/or the missing data are derived from the missing completely at random structure. Therefore, assuming orthogonality in the MMRM analysis is not preferable. However, without the assumption of orthogonality, the small-sample bias in the standard error of the treatment effect is significant. Nonetheless, there is no method to improve small-sample performance. Furthermore, there is no software that can easily implement inferences on treatment effects without assuming orthogonality. Hence, we propose two small-sample adjustment methods inflating standard errors that are reasonable in ideal situations and achieve empirical conservatism even in general situations. We also provide an R package to implement these inference processes. The simulation results show that one of the proposed small-sample adjustment methods performs particularly well in terms of underestimation bias of standard errors; consequently, the proposed method is recommended. When using the MMRM analysis, our proposed method is recommended if the sample size is not large and between-group heteroscedasticity is expected.

  3. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Rafael Rodríguez; Rafael Rodríguez; Marcos Pastorini; Marcos Pastorini; Lorena Etcheverry; Lorena Etcheverry; Christian Chreties; Mónica Fossati; Alberto Castro; Alberto Castro; Angela Gorgoglione; Angela Gorgoglione; Christian Chreties; Mónica Fossati (2021). Water-quality data imputation with a high percentage of missing values: a machine learning approach [Dataset]. http://doi.org/10.5281/zenodo.4731169
Organization logo

Data from: Water-quality data imputation with a high percentage of missing values: a machine learning approach

Related Article
Explore at:
csvAvailable download formats
Dataset updated
Jun 8, 2021
Dataset provided by
Zenodohttp://zenodo.org/
Authors
Rafael Rodríguez; Rafael Rodríguez; Marcos Pastorini; Marcos Pastorini; Lorena Etcheverry; Lorena Etcheverry; Christian Chreties; Mónica Fossati; Alberto Castro; Alberto Castro; Angela Gorgoglione; Angela Gorgoglione; Christian Chreties; Mónica Fossati
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

The monitoring of surface-water quality followed by water-quality modeling and analysis is essential for generating effective strategies in water resource management. However, water-quality studies are limited by the lack of complete and reliable data sets on surface-water-quality variables. These deficiencies are particularly noticeable in developing countries.

This work focuses on surface-water-quality data from Santa Lucía Chico river (Uruguay), a mixed lotic and lentic river system. Data collected at six monitoring stations are publicly available at https://www.dinama.gub.uy/oan/datos-abiertos/calidad-agua/. The high temporal and spatial variability that characterizes water-quality variables and the high rate of missing values (between 50% and 70%) raises significant challenges.

To deal with missing values, we applied several statistical and machine-learning imputation methods. The competing algorithms implemented belonged to both univariate and multivariate imputation methods (inverse distance weighting (IDW), Random Forest Regressor (RFR), Ridge (R), Bayesian Ridge (BR), AdaBoost (AB), Huber Regressor (HR), Support Vector Regressor (SVR), and K-nearest neighbors Regressor (KNNR)).

IDW outperformed the others, achieving a very good performance (NSE greater than 0.8) in most cases.

In this dataset, we include the original and imputed values for the following variables:

  • Water temperature (Tw)

  • Dissolved oxygen (DO)

  • Electrical conductivity (EC)

  • pH

  • Turbidity (Turb)

  • Nitrite (NO2-)

  • Nitrate (NO3-)

  • Total Nitrogen (TN)

Each variable is identified as [STATION] VARIABLE FULL NAME (VARIABLE SHORT NAME) [UNIT METRIC].

More details about the study area, the original datasets, and the methodology adopted can be found in our paper https://www.mdpi.com/2071-1050/13/11/6318.

If you use this dataset in your work, please cite our paper:
Rodríguez, R.; Pastorini, M.; Etcheverry, L.; Chreties, C.; Fossati, M.; Castro, A.; Gorgoglione, A. Water-Quality Data Imputation with a High Percentage of Missing Values: A Machine Learning Approach. Sustainability 2021, 13, 6318. https://doi.org/10.3390/su13116318

Search
Clear search
Close search
Google apps
Main menu