100+ datasets found
  1. Datasets for R-as-GIS book, lectures, and workshops

    • figshare.com
    txt
    Updated Apr 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Taro Mieno (2024). Datasets for R-as-GIS book, lectures, and workshops [Dataset]. http://doi.org/10.6084/m9.figshare.24529897.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Apr 26, 2024
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Taro Mieno
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This data repository hosts datasets that are used for students to practice spatial operations introduced in R-as-GIS lectures and workshops.

  2. Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter...

    • catalog.data.gov
    • datasets.ai
    Updated Jun 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter accuracy and 1-foot resolution 2006-2007 mapping), Mississippi and Florida (NPS, GRD, GRI, GUIS, GUIS_geomorphology digital map) adapted from U.S. Geological Survey Open File Report maps by Morton and Rogers (2009) and Morton and Montgomery (2010) [Dataset]. https://catalog.data.gov/dataset/digital-geomorphic-gis-map-of-gulf-islands-national-seashore-5-meter-accuracy-and-1-foot-r
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Guisguis Port Sariaya, Quezon, United States
    Description

    The Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter accuracy and 1-foot resolution 2006-2007 mapping), Mississippi and Florida is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (guis_geomorphology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (guis_geomorphology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (guis_geomorphology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (guis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (guis_geomorphology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (guis_geomorphology_metadata_faq.pdf). Please read the guis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (guis_geomorphology_metadata.txt or guis_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:26,000 and United States National Map Accuracy Standards features are within (horizontally) 13.2 meters or 43.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  3. f

    Input data for openSTARS.

    • plos.figshare.com
    xls
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mira Kattwinkel; Eduard Szöcs; Erin Peterson; Ralf B. Schäfer (2023). Input data for openSTARS. [Dataset]. http://doi.org/10.1371/journal.pone.0239237.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Mira Kattwinkel; Eduard Szöcs; Erin Peterson; Ralf B. Schäfer
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Input data for openSTARS.

  4. a

    Working with the R-ArcGIS Bridge

    • edu.hub.arcgis.com
    Updated Dec 14, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Education and Research (2017). Working with the R-ArcGIS Bridge [Dataset]. https://edu.hub.arcgis.com/documents/a7a03b88879b4d2ba461e0288646a198
    Explore at:
    Dataset updated
    Dec 14, 2017
    Dataset authored and provided by
    Education and Research
    Description

    A complete copy of the source files and sample data used during this workshop, arranged into a step-by-step tutorial series, can be obtained from the repository page on GitHub: https://esricanada-ce.github.io/r-arcgis-tutorials/

  5. C

    GIS Final Project

    • data.cityofchicago.org
    Updated Jul 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chicago Police Department (2025). GIS Final Project [Dataset]. https://data.cityofchicago.org/Public-Safety/GIS-Final-Project/8n2i-4jmi
    Explore at:
    application/rdfxml, csv, tsv, xml, application/rssxml, kmz, application/geo+json, kmlAvailable download formats
    Dataset updated
    Jul 13, 2025
    Authors
    Chicago Police Department
    Description

    This dataset reflects reported incidents of crime (with the exception of murders where data exists for each victim) that occurred in the City of Chicago from 2001 to present, minus the most recent seven days. Data is extracted from the Chicago Police Department's CLEAR (Citizen Law Enforcement Analysis and Reporting) system. In order to protect the privacy of crime victims, addresses are shown at the block level only and specific locations are not identified. Should you have questions about this dataset, you may contact the Research & Development Division of the Chicago Police Department at 312.745.6071 or RandD@chicagopolice.org. Disclaimer: These crimes may be based upon preliminary information supplied to the Police Department by the reporting parties that have not been verified. The preliminary crime classifications may be changed at a later date based upon additional investigation and there is always the possibility of mechanical or human error. Therefore, the Chicago Police Department does not guarantee (either expressed or implied) the accuracy, completeness, timeliness, or correct sequencing of the information and the information should not be used for comparison purposes over time. The Chicago Police Department will not be responsible for any error or omission, or for the use of, or the results obtained from the use of this information. All data visualizations on maps should be considered approximate and attempts to derive specific addresses are strictly prohibited. The Chicago Police Department is not responsible for the content of any off-site pages that are referenced by or that reference this web page other than an official City of Chicago or Chicago Police Department web page. The user specifically acknowledges that the Chicago Police Department is not responsible for any defamatory, offensive, misleading, or illegal conduct of other users, links, or third parties and that the risk of injury from the foregoing rests entirely with the user. The unauthorized use of the words "Chicago Police Department," "Chicago Police," or any colorable imitation of these words or the unauthorized use of the Chicago Police Department logo is unlawful. This web page does not, in any way, authorize such use. Data is updated daily Tuesday through Sunday. The dataset contains more than 65,000 records/rows of data and cannot be viewed in full in Microsoft Excel. Therefore, when downloading the file, select CSV from the Export menu. Open the file in an ASCII text editor, such as Wordpad, to view and search. To access a list of Chicago Police Department - Illinois Uniform Crime Reporting (IUCR) codes, go to http://data.cityofchicago.org/Public-Safety/Chicago-Police-Department-Illinois-Uniform-Crime-R/c7ck-438e

  6. Global map of tree density

    • figshare.com
    zip
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Crowther, T. W.; Glick, H. B.; Covey, K. R.; Bettigole, C.; Maynard, D. S.; Thomas, S. M.; Smith, J. R.; Hintler, G.; Duguid, M. C.; Amatulli, G.; Tuanmu, M. N.; Jetz, W.; Salas, C.; Stam, C.; Piotto, D.; Tavani, R.; Green, S.; Bruce, G.; Williams, S. J.; Wiser, S. K.; Huber, M. O.; Hengeveld, G. M.; Nabuurs, G. J.; Tikhonova, E.; Borchardt, P.; Li, C. F.; Powrie, L. W.; Fischer, M.; Hemp, A.; Homeier, J.; Cho, P.; Vibrans, A. C.; Umunay, P. M.; Piao, S. L.; Rowe, C. W.; Ashton, M. S.; Crane, P. R.; Bradford, M. A. (2023). Global map of tree density [Dataset]. http://doi.org/10.6084/m9.figshare.3179986.v2
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Crowther, T. W.; Glick, H. B.; Covey, K. R.; Bettigole, C.; Maynard, D. S.; Thomas, S. M.; Smith, J. R.; Hintler, G.; Duguid, M. C.; Amatulli, G.; Tuanmu, M. N.; Jetz, W.; Salas, C.; Stam, C.; Piotto, D.; Tavani, R.; Green, S.; Bruce, G.; Williams, S. J.; Wiser, S. K.; Huber, M. O.; Hengeveld, G. M.; Nabuurs, G. J.; Tikhonova, E.; Borchardt, P.; Li, C. F.; Powrie, L. W.; Fischer, M.; Hemp, A.; Homeier, J.; Cho, P.; Vibrans, A. C.; Umunay, P. M.; Piao, S. L.; Rowe, C. W.; Ashton, M. S.; Crane, P. R.; Bradford, M. A.
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Crowther_Nature_Files.zip This description pertains to the original download. Details on revised (newer) versions of the datasets are listed below. When more than one version of a file exists in Figshare, the original DOI will take users to the latest version, though each version technically has its own DOI. -- Two global maps (raster files) of tree density. These maps highlight how the number of trees varies across the world. One map was generated using biome-level models of tree density, and applied at the biome scale. The other map was generated using ecoregion-level models of tree density, and applied at the ecoregion scale. For this reason, transitions between biomes or between ecoregions may be unrealistically harsh, but large-scale estimates are robust (see Crowther et al 2015 and Glick et al 2016). At the outset, this study was intended to generate reliable estimates at broad spatial scales, which inherently comes at the cost of fine-scale precision. For this reason, country-scale (or larger) estimates are generally more robust than individual pixel-level estimates. Additionally, due to data limitations, estimates for Mangroves and Tropical coniferous forest (as identified by WWF and TNC) were generated using models constructed from Topical moist broadleaf forest data and Temperate coniferous forest data, respectively. Because we used ecological analogy, the estimates for these two biomes should be considered less reliable than those of other biomes . These two maps initially appeared in Crowther et al (2015), with the biome map being featured more prominently. Explicit publication of the data is associated with Glick et al (2016). As they are produced, updated versions of these datasets, as well as alternative formats, will be made available under Additional Versions (see below).

    Methods: We collected over 420,000 ground-sources estimates of tree density from around the world. We then constructed linear regression models using vegetative, climatic, topographic, and anthropogenic variables to produce forest tree density estimates for all locations globally. All modeling was done in R. Mapping was done using R and ArcGIS 10.1.

    Viewing Instructions: Load the files into an appropriate geographic information system (GIS). For the original download (ArcGIS geodatabase files), load the files into ArcGIS to view or export the data to other formats. Because these datasets are large and have a unique coordinate system that is not read by many GIS, we suggest loading them into an ArcGIS dataframe whose coordinate system matches that of the data (see File Format). For GeoTiff files (see Additional Versions), load them into any compatible GIS or image management program.

    Comments: The original download provides a zipped folder that contains (1) an ArcGIS File Geodatabase (.gdb) containing one raster file for each of the two global models of tree density – one based on biomes and one based on ecoregions; (2) a layer file (.lyr) for each of the global models with the symbology used for each respective model in Crowther et al (2015); and an ArcGIS Map Document (.mxd) that contains the layers and symbology for each map in the paper. The data is delivered in the Goode homolosine interrupted projected coordinate system that was used to compute biome, ecoregion, and global estimates of the number and density of trees presented in Crowther et al (2015). To obtain maps like those presented in the official publication, raster files will need to be reprojected to the Eckert III projected coordinate system. Details on subsequent revisions and alternative file formats are list below under Additional Versions.----------

    Additional Versions: Crowther_Nature_Files_Revision_01.zip contains tree density predictions for small islands that are not included in the data available in the original dataset. These predictions were not taken into consideration in production of maps and figures presented in Crowther et al (2015), with the exception of the values presented in Supplemental Table 2. The file structure follows that of the original data and includes both biome- and ecoregion-level models.

    Crowther_Nature_Files_Revision_01_WGS84_GeoTiff.zip contains Revision_01 of the biome-level model, but stored in WGS84 and GeoTiff format. This file was produced by reprojecting the original Goode homolosine files to WGS84 using nearest neighbor resampling in ArcMap. All areal computations presented in the manuscript were computed using the Goode homolosine projection. This means that comparable computations made with projected versions of this WGS84 data are likely to differ (substantially at greater latitudes) as a product of the resampling. Included in this .zip file are the primary .tif and its visualization support files.

    References:

    Crowther, T. W., Glick, H. B., Covey, K. R., Bettigole, C., Maynard, D. S., Thomas, S. M., Smith, J. R., Hintler, G., Duguid, M. C., Amatulli, G., Tuanmu, M. N., Jetz, W., Salas, C., Stam, C., Piotto, D., Tavani, R., Green, S., Bruce, G., Williams, S. J., Wiser, S. K., Huber, M. O., Hengeveld, G. M., Nabuurs, G. J., Tikhonova, E., Borchardt, P., Li, C. F., Powrie, L. W., Fischer, M., Hemp, A., Homeier, J., Cho, P., Vibrans, A. C., Umunay, P. M., Piao, S. L., Rowe, C. W., Ashton, M. S., Crane, P. R., and Bradford, M. A. 2015. Mapping tree density at a global scale. Nature, 525(7568): 201-205. DOI: http://doi.org/10.1038/nature14967Glick, H. B., Bettigole, C. B., Maynard, D. S., Covey, K. R., Smith, J. R., and Crowther, T. W. 2016. Spatially explicit models of global tree density. Scientific Data, 3(160069), doi:10.1038/sdata.2016.69.

  7. r

    Multi-Criteria Analysis Shell for Spatial Decision Support (MCAS-S) Version...

    • researchdata.edu.au
    Updated Jun 21, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Australian Bureau of Agricultural and Resource Economics and Sciences (2018). Multi-Criteria Analysis Shell for Spatial Decision Support (MCAS-S) Version 3.2 [Dataset]. https://researchdata.edu.au/multi-criteria-analysis-version-32/2988727
    Explore at:
    Dataset updated
    Jun 21, 2018
    Dataset provided by
    data.gov.au
    Authors
    Australian Bureau of Agricultural and Resource Economics and Sciences
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This software version has been superseded: please note a more recent version of the MCAS-S software is now available. See the ABARES website for details. \r \r MCAS-S version 3.2 \r The Multi-Criteria Analysis Shell for Spatial Decision Support (MCAS-S) is a tool to view and combine mapped information. MCAS-S can inform spatial decision making and help with stakeholder engagement and communication. MCAS-S is powerful and easy to use. GIS (geographic information system) programming is not required, removing the usual technical obstacles to non-GIS users. \r \r MCAS-S projects are: \r • transparent - you can see all the inputs used to meet an objective and how these are combined \r • flexible - you can use MCAS-S to compare options and explore trade-offs. You can use your own input data \r • fast - you can immediately see changes to your objective when any input or combination method changes. \r The new version 3.2 has: • improved performance \r • a user guide incorporated into the software \r • live links to metadata \r • more options for processing and analysing time series data \r • simpler options for labelling and classifying data inputs. \r \r MCAS-S 3.2 is made freely available with the support of the MCAS-S development partners: ABARES, the NSW Office of Environment and Heritage, Barry Consulting, the Australian Collaborative Land Use and Management Program, the National Environmental Research Program Landscapes and Policy Hub at University of Tasmania and the Terrestrial Ecosystems Research Network.

  8. f

    terraceDL: A geomorphology deep learning dataset of agricultural terraces in...

    • figshare.com
    bin
    Updated Mar 22, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aaron Maxwell (2023). terraceDL: A geomorphology deep learning dataset of agricultural terraces in Iowa, USA [Dataset]. http://doi.org/10.6084/m9.figshare.22320373.v2
    Explore at:
    binAvailable download formats
    Dataset updated
    Mar 22, 2023
    Dataset provided by
    figshare
    Authors
    Aaron Maxwell
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Iowa, United States
    Description

    scripts.zip

    arcgisTools.atbx: terrainDerivatives: make terrain derivatives from digital terrain model (Band 1 = TPI (50 m radius circle), Band 2 = square root of slope, Band 3 = TPI (annulus), Band 4 = hillshade, Band 5 = multidirectional hillshades, Band 6 = slopeshade). rasterizeFeatures: convert vector polygons to raster masks (1 = feature, 0 = background).

    makeChips.R: R function to break terrain derivatives and chips into image chips of a defined size. makeTerrainDerivatives.R: R function to generated 6-band terrain derivatives from digital terrain data (same as ArcGIS Pro tool). merge_logs.R: R script to merge training logs into a single file. predictToExtents.ipynb: Python notebook to use trained model to predict to new data. trainExperiments.ipynb: Python notebook used to train semantic segmentation models using PyTorch and the Segmentation Models package. assessmentExperiments.ipynb: Python code to generate assessment metrics using PyTorch and the torchmetrics library. graphs_results.R: R code to make graphs with ggplot2 to summarize results. makeChipsList.R: R code to generate lists of chips in a directory. makeMasks.R: R function to make raster masks from vector data (same as rasterizeFeatures ArcGIS Pro tool).

    terraceDL.zip

    dems: LiDAR DTM data partitioned into training, testing, and validation datasets based on HUC8 watershed boundaries. Original DTM data were provided by the Iowa BMP mapping project: https://www.gis.iastate.edu/BMPs. extents: extents of the training, testing, and validation areas as defined by HUC 8 watershed boundaries. vectors: vector features representing agricultural terraces and partitioned into separate training, testing, and validation datasets. Original digitized features were provided by the Iowa BMP Mapping Project: https://www.gis.iastate.edu/BMPs.

  9. Geospatial Deep Learning Seminar Online Course

    • ckan.americaview.org
    Updated Nov 2, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.americaview.org (2021). Geospatial Deep Learning Seminar Online Course [Dataset]. https://ckan.americaview.org/dataset/geospatial-deep-learning-seminar-online-course
    Explore at:
    Dataset updated
    Nov 2, 2021
    Dataset provided by
    CKANhttps://ckan.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This seminar is an applied study of deep learning methods for extracting information from geospatial data, such as aerial imagery, multispectral imagery, digital terrain data, and other digital cartographic representations. We first provide an introduction and conceptualization of artificial neural networks (ANNs). Next, we explore appropriate loss and assessment metrics for different use cases followed by the tensor data model, which is central to applying deep learning methods. Convolutional neural networks (CNNs) are then conceptualized with scene classification use cases. Lastly, we explore semantic segmentation, object detection, and instance segmentation. The primary focus of this course is semantic segmenation for pixel-level classification. The associated GitHub repo provides a series of applied examples. We hope to continue to add examples as methods and technologies further develop. These examples make use of a vareity of datasets (e.g., SAT-6, topoDL, Inria, LandCover.ai, vfillDL, and wvlcDL). Please see the repo for links to the data and associated papers. All examples have associated videos that walk through the process, which are also linked to the repo. A variety of deep learning architectures are explored including UNet, UNet++, DeepLabv3+, and Mask R-CNN. Currenlty, two examples use ArcGIS Pro and require no coding. The remaining five examples require coding and make use of PyTorch, Python, and R within the RStudio IDE. It is assumed that you have prior knowledge of coding in the Python and R enviroinments. If you do not have experience coding, please take a look at our Open-Source GIScience and Open-Source Spatial Analytics (R) courses, which explore coding in Python and R, respectively. After completing this seminar you will be able to: explain how ANNs work including weights, bias, activation, and optimization. describe and explain different loss and assessment metrics and determine appropriate use cases. use the tensor data model to represent data as input for deep learning. explain how CNNs work including convolutional operations/layers, kernel size, stride, padding, max pooling, activation, and batch normalization. use PyTorch, Python, and R to prepare data, produce and assess scene classification models, and infer to new data. explain common semantic segmentation architectures and how these methods allow for pixel-level classification and how they are different from traditional CNNs. use PyTorch, Python, and R (or ArcGIS Pro) to prepare data, produce and assess semantic segmentation models, and infer to new data.

  10. r

    Grid Garage ArcGIS Toolbox

    • researchdata.edu.au
    • data.nsw.gov.au
    Updated Sep 6, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.nsw.gov.au (2018). Grid Garage ArcGIS Toolbox [Dataset]. https://researchdata.edu.au/grid-garage-arcgis-toolbox/1342780
    Explore at:
    Dataset updated
    Sep 6, 2018
    Dataset provided by
    data.nsw.gov.au
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    The Grid Garage Toolbox is designed to help you undertake the Geographic Information System (GIS) tasks required to process GIS data (geodata) into a standard, spatially aligned format. This format is required by most, grid or raster, spatial modelling tools such as the Multi-criteria Analysis Shell for Spatial Decision Support (MCAS-S) . Grid Garage contains 36 tools designed to save you time by batch processing repetitive GIS tasks as well diagnosing problems with data and capturing a record of processing step and any errors encountered.\r \r Grid Garage provides tools that function using a list based approach to batch processing where both inputs and outputs are specified in tables to enable selective batch processing and detailed result reporting. In many cases the tools simply extend the functionality of standard ArcGIS tools, providing some or all of the inputs required by these tools via the input table to enable batch processing on a 'per item' basis. This approach differs slightly from normal batch processing in ArcGIS, instead of manually selecting single items or a folder on which to apply a tool or model you provide a table listing target datasets. In summary the\r Grid Garage allows you to:\r \r * List, describe and manage very large volumes of geodata.\r * Batch process repetitive GIS tasks such as managing (renaming, describing etc.) or processing (clipping, resampling, reprojecting etc.) many geodata inputs such as time-series geodata derived from satellite imagery or climate models.\r * Record any errors when batch processing and diagnose errors by interrogating the input geodata that failed.\r * Develop your own models in ArcGIS ModelBuilder that allow you to automate any GIS workflow utilising one or more of the Grid Garage tools that can process an unlimited number of inputs.\r * Automate the process of generating MCAS-S TIP metadata files for any number of input raster datasets.\r \r The Grid Garage is intended for use by anyone with an understanding of GIS principles and an intermediate to advanced level of GIS skills. Using the Grid Garage tools in ArcGIS ModelBuilder requires skills in the use of the ArcGIS ModelBuilder tool.\r \r Download Instructions: Create a new folder on your computer or network and then download and unzip the zip file from the GitHub Release page for each of the following items in the 'Data and Resources' section below. There is a folder in each zip file that contains all the files. See the Grid Garage User Guide for instructions on how to install and use the Grid Garage Toolbox with the sample data provided. \r \r

  11. d

    Jupyter Notebooks to demonstrate RHESsys model on Coweeta sub18 in...

    • search.dataone.org
    • hydroshare.org
    • +1more
    Updated Apr 15, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    YOUNG-DON CHOI (2022). Jupyter Notebooks to demonstrate RHESsys model on Coweeta sub18 in HydroShare [Dataset]. https://search.dataone.org/view/sha256%3A3990ada61ba80933075d3f595d2774f0e7bef8d400f26cf9a7deb17246c99b27
    Explore at:
    Dataset updated
    Apr 15, 2022
    Dataset provided by
    Hydroshare
    Authors
    YOUNG-DON CHOI
    Description

    Hydrologic models are growing in complexity: spatial representations, model coupling, process representations, software structure, etc. New and emerging datasets are growing, supporting even more detailed modeling use cases. This complexity is leading to the reproducibility crisis in hydrologic modeling and analysis. We argue that moving hydrologic modeling to the cloud can help to address this reproducibility crisis. - We create two notebooks: 1. The first notebook demonstrates the process of collecting and manipulating GIS and Time-series data using GRASS GIS, Python and R to create RHESsys Model input. 2. The second notebook demonstrates the process of model compilation, simulation, and visualization.

    • The first notebook includes:

      1. Create Project Directory and Download Raw GIS Data from HydroShare
      2. Set GRASS Database and GISBASE Environment
      3. Preprocessing GIS Data for RHESsys Model using GRASS GIS and R script
      4. Preprocess Time series data for RHESsys Model
      5. Construct worldfile and flowtable to RHESSys
    • The second notebook includes:

      1. Download and compile RHESsys Execution file
      2. Simulate RHESsys model
      3. Plotting RHESsys output
  12. Supplementary material 6 from: Seltmann K, Lafia S, Paul D, James S, Bloom...

    • zenodo.org
    • data.niaid.nih.gov
    bin
    Updated Jan 21, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Katja Seltmann; Sara Lafia; Deborah Paul; Shelley James; David Bloom; Nelson Rios; Shari Ellis; Una Farrell; Jessica Utrup; Michael Yost; Edward Davis; Rob Emery; Gary Motz; Julien Kimmig; Vaughn Shirey; Emily Sandall; Daniel Park; Christopher Tyrrell; R. Sean Thackurdeen; Matthew Collins; Vincent O'Leary; Heather Prestridge; Christopher Evelyn; Ben Nyberg; Katja Seltmann; Sara Lafia; Deborah Paul; Shelley James; David Bloom; Nelson Rios; Shari Ellis; Una Farrell; Jessica Utrup; Michael Yost; Edward Davis; Rob Emery; Gary Motz; Julien Kimmig; Vaughn Shirey; Emily Sandall; Daniel Park; Christopher Tyrrell; R. Sean Thackurdeen; Matthew Collins; Vincent O'Leary; Heather Prestridge; Christopher Evelyn; Ben Nyberg (2020). Supplementary material 6 from: Seltmann K, Lafia S, Paul D, James S, Bloom D, Rios N, Ellis S, Farrell U, Utrup J, Yost M, Davis E, Emery R, Motz G, Kimmig J, Shirey V, Sandall E, Park D, Tyrrell C, Thackurdeen R, Collins M, O'Leary V, Prestridge H, Evelyn C, Nyberg B (2018) Georeferencing for Research Use (GRU): An integrated geospatial training paradigm for biocollections researchers and data providers. Research Ideas and Outcomes 4: e32449. https://doi.org/10.3897/rio.4.e32449 [Dataset]. http://doi.org/10.3897/rio.4.e32449.suppl6
    Explore at:
    binAvailable download formats
    Dataset updated
    Jan 21, 2020
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Katja Seltmann; Sara Lafia; Deborah Paul; Shelley James; David Bloom; Nelson Rios; Shari Ellis; Una Farrell; Jessica Utrup; Michael Yost; Edward Davis; Rob Emery; Gary Motz; Julien Kimmig; Vaughn Shirey; Emily Sandall; Daniel Park; Christopher Tyrrell; R. Sean Thackurdeen; Matthew Collins; Vincent O'Leary; Heather Prestridge; Christopher Evelyn; Ben Nyberg; Katja Seltmann; Sara Lafia; Deborah Paul; Shelley James; David Bloom; Nelson Rios; Shari Ellis; Una Farrell; Jessica Utrup; Michael Yost; Edward Davis; Rob Emery; Gary Motz; Julien Kimmig; Vaughn Shirey; Emily Sandall; Daniel Park; Christopher Tyrrell; R. Sean Thackurdeen; Matthew Collins; Vincent O'Leary; Heather Prestridge; Christopher Evelyn; Ben Nyberg
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Summary of topics to be covered in an ideal workshop as identified by workshop applicants in the workshop call for participation. We incorporated as many as possible that also fit our scope.

  13. n

    WorldClim

    • neuinfo.org
    • dknet.org
    • +1more
    Updated Jan 29, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). WorldClim [Dataset]. http://identifiers.org/RRID:SCR_010244
    Explore at:
    Dataset updated
    Jan 29, 2022
    Description

    A set of global climate layers (climate grids) with a spatial resolution of about 1 square kilometer. The data can be used for mapping and spatial modeling in a GIS or with other computer programs. If you are not familiar with such programs, you can try DIVA-GIS or the R raster package.

  14. t

    Major Streets and Routes - Open Data

    • gisdata.tucsonaz.gov
    • data-cotgis.opendata.arcgis.com
    • +1more
    Updated Aug 2, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Tucson (2018). Major Streets and Routes - Open Data [Dataset]. https://gisdata.tucsonaz.gov/items/c6d21082e6d248f0b7db0ff4f6f0ed8e
    Explore at:
    Dataset updated
    Aug 2, 2018
    Dataset authored and provided by
    City of Tucson
    Area covered
    Description

    The MS&R Plan identifies the general location and size of existing and proposed freeways, arterial and collector streets, future rights-of-way, setback requirements, typical intersections and cross sections, and gateway and scenic routes. The City’s Department of Transportation and the Planning and Development Services Department (PDSD) implement the MS&R Plan. The MS&R Plan is considered a Land Use Plan as defined in the Unified Development Code (UDC) Section 3.6, and, therefore, is subject to amendment in accordance with the standard Land Use Plan and Adoption and Amendment Procedures. The MS&R right-of-way lines are used in determining the setback for development through the MS&R Overlay provisions of the UDC. As stated in the current MS&R Plan, page 4, “The purpose of the Major Streets and Routes Plan is to facilitate future street widening, to inform the public which streets are the main thoroughfares, so that land use decisions can be based accordingly, and to reduce the disruption of existing uses on a property. By stipulating the required right-of-way, new development can be located so as to prepare for planned street improvements without demolition of buildings or loss of necessary parking.”PurposeThe major purposes of the Major Streets and Routes Plan are to identify street classifications, the width of public rights-of-way, to designate special routes, and to guide land use decisions. General Plan policies stipulate that planning and developing new transportation facilities be accomplished by identifying rights-of-way in the Major Streets and Routes Plan. The policies also aim to encourage bicycle and pedestrian travel, "minimize disruption of the environment," and "coordinate land use patterns with transportation plans" by using the street classification as a guide to land use decisions.Dataset ClassificationLevel 0 - OpenKnown UsesThis layer is intended to be used in the Open Data portal and not for regular use in ArcGIS Online and ArcGIS Enterprise.Known ErrorsLorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.Data ContactLorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.Update FrequencyAs needed

  15. Continous, multi-scale slope measurements in a terrain derived stream...

    • zenodo.org
    • data.niaid.nih.gov
    tiff
    Updated Jul 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stefan Blumentrath; Stefan Blumentrath; Sam Wenaas Perrin; Sam Wenaas Perrin (2024). Continous, multi-scale slope measurements in a terrain derived stream network for Fenoscandia (Norway, Sweden, Finland) [Dataset]. http://doi.org/10.5281/zenodo.4715751
    Explore at:
    tiffAvailable download formats
    Dataset updated
    Jul 19, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Stefan Blumentrath; Stefan Blumentrath; Sam Wenaas Perrin; Sam Wenaas Perrin
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Finland, Norway, Sweden
    Description

    A continous, multiscale stream steepness raster dataset produced for the INVAFISH project (Norges forskningsråd 243910) with the following script: connectivity.py

    It covers Norway, Sweden and Finland. The stream network has been derived with the GRASS GIS r.stream.extract module from a 10m digital elevation model (DEM). Slope has been calculated with r.slope.direction module at 10, 30, 50, 70, 110, and 150 m steps following the direction of the stream network.

    Resolution of the raster data follows the pixels of the underlying 10m DEM. Raster values represent slope in degree * 100, so for example a value of 732 refers to 7.32 degree in slope. Negative slope values indicated artifacts in the underlying DEM and occure where the r.stream.extract module had to hydrologically enforce overland flow through pits or over ridges.

    Data format is LZW-compressed GeoTiff in EPSG: 25833 coordinate system.

  16. f

    Delaney Dennis R reported holdings of GIS from Q1 2016 to Q1 2025

    • filingexplorer.com
    Updated Dec 31, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FilingExplorer.com; https://filingexplorer.com/ (2016). Delaney Dennis R reported holdings of GIS from Q1 2016 to Q1 2025 [Dataset]. https://www.filingexplorer.com/form13f-holding/370334104?cik=0001661536&period_of_report=2016-12-31
    Explore at:
    Dataset updated
    Dec 31, 2016
    Authors
    FilingExplorer.com; https://filingexplorer.com/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Historical holdings data showing quarterly positions, market values, shares held, and portfolio percentages for GIS held by Delaney Dennis R from Q1 2016 to Q1 2025

  17. d

    Geospatial Data from the Alpine Treeline Warming Experiment (ATWE) on Niwot...

    • search.dataone.org
    • data.ess-dive.lbl.gov
    • +2more
    Updated Jul 7, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fabian Zuest; Cristina Castanha; Nicole Lau; Lara M. Kueppers (2021). Geospatial Data from the Alpine Treeline Warming Experiment (ATWE) on Niwot Ridge, Colorado, USA [Dataset]. http://doi.org/10.15485/1804896
    Explore at:
    Dataset updated
    Jul 7, 2021
    Dataset provided by
    ESS-DIVE
    Authors
    Fabian Zuest; Cristina Castanha; Nicole Lau; Lara M. Kueppers
    Time period covered
    Jan 1, 2008 - Jan 1, 2012
    Area covered
    Description

    This is a collection of all GPS- and computer-generated geospatial data specific to the Alpine Treeline Warming Experiment (ATWE), located on Niwot Ridge, Colorado, USA. The experiment ran between 2008 and 2016, and consisted of three sites spread across an elevation gradient. Geospatial data for all three experimental sites and cone/seed collection locations are included in this package. ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Geospatial files include cone collection, experimental site, seed trap, and other GPS location/terrain data. File types include ESRI shapefiles, ESRI grid files or Arc/Info binary grids, TIFFs (.tif), and keyhole markup language (.kml) files. Trimble-imported data include plain text files (.txt), Trimble COR (CorelDRAW) files, and Trimble SSF (Standard Storage Format) files. Microsoft Excel (.xlsx) and comma-separated values (.csv) files corresponding to the attribute tables of many files within this package are also included. A complete list of files can be found in this document in the “Data File Organization” section in the included Data User's Guide. Maps are also included in this data package for reference and use. These maps are separated into two categories, 2021 maps and legacy maps, which were made in 2010. Each 2021 map has one copy in portable network graphics (.png) format, and the other in .pdf format. All legacy maps are in .pdf format. .png image files can be opened with any compatible programs, such as Preview (Mac OS) and Photos (Windows). All GIS files were imported into geopackages (.gpkg) using QGIS, and double-checked for compatibility and data/attribute integrity using ESRI ArcGIS Pro. Note that files packaged within geopackages will open in ArcGIS Pro with “main.” preceding each file name, and an extra column named “geom” defining geometry type in the attribute table. The contents of each geospatial file remain intact, unless otherwise stated in “niwot_geospatial_data_list_07012021.pdf/.xlsx”. This list of files can be found as an .xlsx and a .pdf in this archive. As an open-source file format, files within gpkgs (TIFF, shapefiles, ESRI grid or “Arc/Info Binary”) can be read using both QGIS and ArcGIS Pro, and any other geospatial softwares. Text and .csv files can be read using TextEdit/Notepad/any simple text-editing software; .csv’s can also be opened using Microsoft Excel and R. .kml files can be opened using Google Maps or Google Earth, and Trimble files are most compatible with Trimble’s GPS Pathfinder Office software. .xlsx files can be opened using Microsoft Excel. PDFs can be opened using Adobe Acrobat Reader, and any other compatible programs. A selection of original shapefiles within this archive were generated using ArcMap with associated FGDC-standardized metadata (xml file format). We are including these original files because they contain metadata only accessible using ESRI programs at this time, and so that the relationship between shapefiles and xml files is maintained. Individual xml files can be opened (without a GIS-specific program) using TextEdit or Notepad. Since ESRI’s compatibility with FGDC metadata has changed since the generation of these files, many shapefiles will require upgrading to be compatible with ESRI’s latest versions of geospatial software. These details are also noted in the “niwot_geospatial_data_list_07012021” file.

  18. f

    Delaney Dennis R reported holding of GIS

    • filingexplorer.com
    Updated Dec 31, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Delaney Dennis R (2016). Delaney Dennis R reported holding of GIS [Dataset]. https://www.filingexplorer.com/form13f-holding/370334104?cik=0001661536&period_of_report=2016-12-31
    Explore at:
    Dataset updated
    Dec 31, 2016
    Dataset authored and provided by
    Delaney Dennis R
    Description

    Historical ownership data of GIS by Delaney Dennis R

  19. Dataset 5: R script and input data

    • figshare.com
    txt
    Updated Jan 21, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ulrike Bayr (2021). Dataset 5: R script and input data [Dataset]. http://doi.org/10.6084/m9.figshare.12301307.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jan 21, 2021
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Ulrike Bayr
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description
    1. CSV-files as input for R code containing results from the GIS-analysis for points and polygons2. CSV-file with 3D-errors based on DTM 1m and DTM 10m (output from WSL Monoplotting Tool)2. R script
  20. S

    Two residential districts datasets from Kielce, Poland for building semantic...

    • scidb.cn
    Updated Sep 29, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Agnieszka Łysak (2022). Two residential districts datasets from Kielce, Poland for building semantic segmentation task [Dataset]. http://doi.org/10.57760/sciencedb.02955
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 29, 2022
    Dataset provided by
    Science Data Bank
    Authors
    Agnieszka Łysak
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Area covered
    Kielce, Poland
    Description

    Today, deep neural networks are widely used in many computer vision problems, also for geographic information systems (GIS) data. This type of data is commonly used for urban analyzes and spatial planning. We used orthophotographic images of two residential districts from Kielce, Poland for research including urban sprawl automatic analysis with Transformer-based neural network application.Orthophotomaps were obtained from Kielce GIS portal. Then, the map was manually masked into building and building surroundings classes. Finally, the ortophotomap and corresponding classification mask were simultaneously divided into small tiles. This approach is common in image data preprocessing for machine learning algorithms learning phase. Data contains two original orthophotomaps from Wietrznia and Pod Telegrafem residential districts with corresponding masks and also their tiled version, ready to provide as a training data for machine learning models.Transformed-based neural network has undergone a training process on the Wietrznia dataset, targeted for semantic segmentation of the tiles into buildings and surroundings classes. After that, inference of the models was used to test model's generalization ability on the Pod Telegrafem dataset. The efficiency of the model was satisfying, so it can be used in automatic semantic building segmentation. Then, the process of dividing the images can be reversed and complete classification mask retrieved. This mask can be used for area of the buildings calculations and urban sprawl monitoring, if the research would be repeated for GIS data from wider time horizon.Since the dataset was collected from Kielce GIS portal, as the part of the Polish Main Office of Geodesy and Cartography data resource, it may be used only for non-profit and non-commertial purposes, in private or scientific applications, under the law "Ustawa z dnia 4 lutego 1994 r. o prawie autorskim i prawach pokrewnych (Dz.U. z 2006 r. nr 90 poz 631 z późn. zm.)". There are no other legal or ethical considerations in reuse potential.Data information is presented below.wietrznia_2019.jpg - orthophotomap of Wietrznia districtmodel's - used for training, as an explanatory imagewietrznia_2019.png - classification mask of Wietrznia district - used for model's training, as a target imagewietrznia_2019_validation.jpg - one image from Wietrznia district - used for model's validation during training phasepod_telegrafem_2019.jpg - orthophotomap of Pod Telegrafem district - used for model's evaluation after training phasewietrznia_2019 - folder with wietrznia_2019.jpg (image) and wietrznia_2019.png (annotation) images, divided into 810 tiles (512 x 512 pixels each), tiles with no information were manually removed, so the training data would contain only informative tilestiles presented - used for the model during training (images and annotations for fitting the model to the data)wietrznia_2019_vaidation - folder with wietrznia_2019_validation.jpg image divided into 16 tiles (256 x 256 pixels each) - tiles were presented to the model during training (images for validation model's efficiency); it was not the part of the training datapod_telegrafem_2019 - folder with pod_telegrafem.jpg image divided into 196 tiles (256 x 265 pixels each) - tiles were presented to the model during inference (images for evaluation model's robustness)Dataset was created as described below.Firstly, the orthophotomaps were collected from Kielce Geoportal (https://gis.kielce.eu). Kielce Geoportal offers a .pst recent map from April 2019. It is an orthophotomap with a resolution of 5 x 5 pixels, constructed from a plane flight at 700 meters over ground height, taken with a camera for vertical photos. Downloading was done by WMS in open-source QGIS software (https://www.qgis.org), as a 1:500 scale map, then converted to a 1200 dpi PNG image.Secondly, the map from Wietrznia residential district was manually labelled, also in QGIS, in the same scope, as the orthophotomap. Annotation based on land cover map information was also obtained from Kielce Geoportal. There are two classes - residential building and surrounding. Second map, from Pod Telegrafem district was not annotated, since it was used in the testing phase and imitates situation, where there is no annotation for the new data presented to the model.Next, the images was converted to an RGB JPG images, and the annotation map was converted to 8-bit GRAY PNG image.Finally, Wietrznia data files were tiled to 512 x 512 pixels tiles, in Python PIL library. Tiles with no information or a relatively small amount of information (only white background or mostly white background) were manually removed. So, from the 29113 x 15938 pixels orthophotomap, only 810 tiles with corresponding annotations were left, ready to train the machine learning model for the semantic segmentation task. Pod Telegrafem orthophotomap was tiled with no manual removing, so from the 7168 x 7168 pixels ortophotomap were created 197 tiles with 256 x 256 pixels resolution. There was also image of one residential building, used for model's validation during training phase, it was not the part of the training data, but was a part of Wietrznia residential area. It was 2048 x 2048 pixel ortophotomap, tiled to 16 tiles 256 x 265 pixels each.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Taro Mieno (2024). Datasets for R-as-GIS book, lectures, and workshops [Dataset]. http://doi.org/10.6084/m9.figshare.24529897.v1
Organization logo

Datasets for R-as-GIS book, lectures, and workshops

Explore at:
txtAvailable download formats
Dataset updated
Apr 26, 2024
Dataset provided by
Figsharehttp://figshare.com/
Authors
Taro Mieno
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

This data repository hosts datasets that are used for students to practice spatial operations introduced in R-as-GIS lectures and workshops.

Search
Clear search
Close search
Google apps
Main menu