17 datasets found
  1. q

    Large Datasets in R - Plant Phenology & Temperature Data from NEON

    • qubeshub.org
    Updated May 10, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Megan Jones Patterson; Lee Stanish; Natalie Robinson; Katherine Jones; Cody Flagg (2018). Large Datasets in R - Plant Phenology & Temperature Data from NEON [Dataset]. http://doi.org/10.25334/Q4DQ3F
    Explore at:
    Dataset updated
    May 10, 2018
    Dataset provided by
    QUBES
    Authors
    Megan Jones Patterson; Lee Stanish; Natalie Robinson; Katherine Jones; Cody Flagg
    Description

    This module series covers how to import, manipulate, format and plot time series data stored in .csv format in R. Originally designed to teach researchers to use NEON plant phenology and air temperature data; has been used in undergraduate classrooms.

  2. f

    Petre_Slide_CategoricalScatterplotFigShare.pptx

    • figshare.com
    pptx
    Updated Sep 19, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Benj Petre; Aurore Coince; Sophien Kamoun (2016). Petre_Slide_CategoricalScatterplotFigShare.pptx [Dataset]. http://doi.org/10.6084/m9.figshare.3840102.v1
    Explore at:
    pptxAvailable download formats
    Dataset updated
    Sep 19, 2016
    Dataset provided by
    figshare
    Authors
    Benj Petre; Aurore Coince; Sophien Kamoun
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Categorical scatterplots with R for biologists: a step-by-step guide

    Benjamin Petre1, Aurore Coince2, Sophien Kamoun1

    1 The Sainsbury Laboratory, Norwich, UK; 2 Earlham Institute, Norwich, UK

    Weissgerber and colleagues (2015) recently stated that ‘as scientists, we urgently need to change our practices for presenting continuous data in small sample size studies’. They called for more scatterplot and boxplot representations in scientific papers, which ‘allow readers to critically evaluate continuous data’ (Weissgerber et al., 2015). In the Kamoun Lab at The Sainsbury Laboratory, we recently implemented a protocol to generate categorical scatterplots (Petre et al., 2016; Dagdas et al., 2016). Here we describe the three steps of this protocol: 1) formatting of the data set in a .csv file, 2) execution of the R script to generate the graph, and 3) export of the graph as a .pdf file.

    Protocol

    • Step 1: format the data set as a .csv file. Store the data in a three-column excel file as shown in Powerpoint slide. The first column ‘Replicate’ indicates the biological replicates. In the example, the month and year during which the replicate was performed is indicated. The second column ‘Condition’ indicates the conditions of the experiment (in the example, a wild type and two mutants called A and B). The third column ‘Value’ contains continuous values. Save the Excel file as a .csv file (File -> Save as -> in ‘File Format’, select .csv). This .csv file is the input file to import in R.

    • Step 2: execute the R script (see Notes 1 and 2). Copy the script shown in Powerpoint slide and paste it in the R console. Execute the script. In the dialog box, select the input .csv file from step 1. The categorical scatterplot will appear in a separate window. Dots represent the values for each sample; colors indicate replicates. Boxplots are superimposed; black dots indicate outliers.

    • Step 3: save the graph as a .pdf file. Shape the window at your convenience and save the graph as a .pdf file (File -> Save as). See Powerpoint slide for an example.

    Notes

    • Note 1: install the ggplot2 package. The R script requires the package ‘ggplot2’ to be installed. To install it, Packages & Data -> Package Installer -> enter ‘ggplot2’ in the Package Search space and click on ‘Get List’. Select ‘ggplot2’ in the Package column and click on ‘Install Selected’. Install all dependencies as well.

    • Note 2: use a log scale for the y-axis. To use a log scale for the y-axis of the graph, use the command line below in place of command line #7 in the script.

    7 Display the graph in a separate window. Dot colors indicate

    replicates

    graph + geom_boxplot(outlier.colour='black', colour='black') + geom_jitter(aes(col=Replicate)) + scale_y_log10() + theme_bw()

    References

    Dagdas YF, Belhaj K, Maqbool A, Chaparro-Garcia A, Pandey P, Petre B, et al. (2016) An effector of the Irish potato famine pathogen antagonizes a host autophagy cargo receptor. eLife 5:e10856.

    Petre B, Saunders DGO, Sklenar J, Lorrain C, Krasileva KV, Win J, et al. (2016) Heterologous Expression Screens in Nicotiana benthamiana Identify a Candidate Effector of the Wheat Yellow Rust Pathogen that Associates with Processing Bodies. PLoS ONE 11(2):e0149035

    Weissgerber TL, Milic NM, Winham SJ, Garovic VD (2015) Beyond Bar and Line Graphs: Time for a New Data Presentation Paradigm. PLoS Biol 13(4):e1002128

    https://cran.r-project.org/

    http://ggplot2.org/

  3. Data from: Data and code from: Environmental influences on drying rate of...

    • catalog.data.gov
    • s.cnmilf.com
    • +1more
    Updated Apr 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Agricultural Research Service (2025). Data and code from: Environmental influences on drying rate of spray applied disinfestants from horticultural production services [Dataset]. https://catalog.data.gov/dataset/data-and-code-from-environmental-influences-on-drying-rate-of-spray-applied-disinfestants-
    Explore at:
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    Agricultural Research Servicehttps://www.ars.usda.gov/
    Description

    This dataset includes all the data and R code needed to reproduce the analyses in a forthcoming manuscript:Copes, W. E., Q. D. Read, and B. J. Smith. Environmental influences on drying rate of spray applied disinfestants from horticultural production services. PhytoFrontiers, DOI pending.Study description: Instructions for disinfestants typically specify a dose and a contact time to kill plant pathogens on production surfaces. A problem occurs when disinfestants are applied to large production areas where the evaporation rate is affected by weather conditions. The common contact time recommendation of 10 min may not be achieved under hot, sunny conditions that promote fast drying. This study is an investigation into how the evaporation rates of six commercial disinfestants vary when applied to six types of substrate materials under cool to hot and cloudy to sunny weather conditions. Initially, disinfestants with low surface tension spread out to provide 100% coverage and disinfestants with high surface tension beaded up to provide about 60% coverage when applied to hard smooth surfaces. Disinfestants applied to porous materials were quickly absorbed into the body of the material, such as wood and concrete. Even though disinfestants evaporated faster under hot sunny conditions than under cool cloudy conditions, coverage was reduced considerably in the first 2.5 min under most weather conditions and reduced to less than or equal to 50% coverage by 5 min. Dataset contents: This dataset includes R code to import the data and fit Bayesian statistical models using the model fitting software CmdStan, interfaced with R using the packages brms and cmdstanr. The models (one for 2022 and one for 2023) compare how quickly different spray-applied disinfestants dry, depending on what chemical was sprayed, what surface material it was sprayed onto, and what the weather conditions were at the time. Next, the statistical models are used to generate predictions and compare mean drying rates between the disinfestants, surface materials, and weather conditions. Finally, tables and figures are created. These files are included:Drying2022.csv: drying rate data for the 2022 experimental runWeather2022.csv: weather data for the 2022 experimental runDrying2023.csv: drying rate data for the 2023 experimental runWeather2023.csv: weather data for the 2023 experimental rundisinfestant_drying_analysis.Rmd: RMarkdown notebook with all data processing, analysis, and table creation codedisinfestant_drying_analysis.html: rendered output of notebookMS_figures.R: additional R code to create figures formatted for journal requirementsfit2022_discretetime_weather_solar.rds: fitted brms model object for 2022. This will allow users to reproduce the model prediction results without having to refit the model, which was originally fit on a high-performance computing clusterfit2023_discretetime_weather_solar.rds: fitted brms model object for 2023data_dictionary.xlsx: descriptions of each column in the CSV data files

  4. w

    Randomized Hourly Load Data for use with Taxonomy Distribution Feeders

    • data.wu.ac.at
    application/unknown
    Updated Aug 29, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Energy (2017). Randomized Hourly Load Data for use with Taxonomy Distribution Feeders [Dataset]. https://data.wu.ac.at/schema/data_gov/NWYwYmFmYTItOWRkMC00OWM0LTk3OGYtZDcyYzZiOWY5N2Ez
    Explore at:
    application/unknownAvailable download formats
    Dataset updated
    Aug 29, 2017
    Dataset provided by
    Department of Energy
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    This dataset was developed by NREL's distributed energy systems integration group as part of a study on high penetrations of distributed solar PV [1]. It consists of hourly load data in CSV format for use with the PNNL taxonomy of distribution feeders [2]. These feeders were developed in the open source GridLAB-D modelling language [3]. In this dataset each of the load points in the taxonomy feeders is populated with hourly averaged load data from a utility in the feeder’s geographical region, scaled and randomized to emulate real load profiles. For more information on the scaling and randomization process, see [1].

    The taxonomy feeders are statistically representative of the various types of distribution feeders found in five geographical regions of the U.S. Efforts are underway (possibly complete) to translate these feeders into the OpenDSS modelling language.

    This data set consists of one large CSV file for each feeder. Within each CSV, each column represents one load bus on the feeder. The header row lists the name of the load bus. The subsequent 8760 rows represent the loads for each hour of the year. The loads were scaled and randomized using a Python script, so each load series represents only one of many possible randomizations. In the header row, "rl" = residential load and "cl" = commercial load. Commercial loads are followed by a phase letter (A, B, or C). For regions 1-3, the data is from 2009. For regions 4-5, the data is from 2000.

    For use in GridLAB-D, each column will need to be separated into its own CSV file without a header. The load value goes in the second column, and corresponding datetime values go in the first column, as shown in the sample file, sample_individual_load_file.csv. Only the first value in the time column needs to written as an absolute time; subsequent times may be written in relative format (i.e. "+1h", as in the sample). The load should be written in P+Qj format, as seen in the sample CSV, in units of Watts (W) and Volt-amps reactive (VAr). This dataset was derived from metered load data and hence includes only real power; reactive power can be generated by assuming an appropriate power factor. These loads were used with GridLAB-D version 2.2.

    Browse files in this dataset, accessible as individual files and as a single ZIP file. This dataset is approximately 242MB compressed or 475MB uncompressed.

    For questions about this dataset, contact andy.hoke@nrel.gov.

    If you find this dataset useful, please mention NREL and cite [1] in your work.

    References:

    [1] A. Hoke, R. Butler, J. Hambrick, and B. Kroposki, “Steady-State Analysis of Maximum Photovoltaic Penetration Levels on Typical Distribution Feeders,” IEEE Transactions on Sustainable Energy, April 2013, available at http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6357275 .

    [2] K. Schneider, D. P. Chassin, R. Pratt, D. Engel, and S. Thompson, “Modern Grid Initiative Distribution Taxonomy Final Report”, PNNL, Nov. 2008. Accessed April 27, 2012: http://www.gridlabd.org/models/feeders/taxonomy of prototypical feeders.pdf

    [3] K. Schneider, D. Chassin, Y. Pratt, and J. C. Fuller, “Distribution power flow for smart grid technologies”, IEEE/PES Power Systems Conference and Exposition, Seattle, WA, Mar. 2009, pp. 1-7, 15-18.

  5. H

    Consumer Expenditure Survey (CE)

    • dataverse.harvard.edu
    Updated May 30, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anthony Damico (2013). Consumer Expenditure Survey (CE) [Dataset]. http://doi.org/10.7910/DVN/UTNJAH
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 30, 2013
    Dataset provided by
    Harvard Dataverse
    Authors
    Anthony Damico
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    analyze the consumer expenditure survey (ce) with r the consumer expenditure survey (ce) is the primo data source to understand how americans spend money. participating households keep a running diary about every little purchase over the year. those diaries are then summed up into precise expenditure categories. how else are you gonna know that the average american household spent $34 (±2) on bacon, $826 (±17) on cellular phones, and $13 (±2) on digital e-readers in 2011? an integral component of the market basket calculation in the consumer price index, this survey recently became available as public-use microdata and they're slowly releasing historical files back to 1996. hooray! for a t aste of what's possible with ce data, look at the quick tables listed on their main page - these tables contain approximately a bazillion different expenditure categories broken down by demographic groups. guess what? i just learned that americans living in households with $5,000 to $9,999 of annual income spent an average of $283 (±90) on pets, toys, hobbies, and playground equipment (pdf page 3). you can often get close to your statistic of interest from these web tables. but say you wanted to look at domestic pet expenditure among only households with children between 12 and 17 years old. another one of the thirteen web tables - the consumer unit composition table - shows a few different breakouts of households with kids, but none matching that exact population of interest. the bureau of labor statistics (bls) (the survey's designers) and the census bureau (the survey's administrators) have provided plenty of the major statistics and breakouts for you, but they're not psychic. if you want to comb through this data for specific expenditure categories broken out by a you-defined segment of the united states' population, then let a little r into your life. fun starts now. fair warning: only analyze t he consumer expenditure survey if you are nerd to the core. the microdata ship with two different survey types (interview and diary), each containing five or six quarterly table formats that need to be stacked, merged, and manipulated prior to a methodologically-correct analysis. the scripts in this repository contain examples to prepare 'em all, just be advised that magnificent data like this will never be no-assembly-required. the folks at bls have posted an excellent summary of what's av ailable - read it before anything else. after that, read the getting started guide. don't skim. a few of the descriptions below refer to sas programs provided by the bureau of labor statistics. you'll find these in the C:\My Directory\CES\2011\docs directory after you run the download program. this new github repository contains three scripts: 2010-2011 - download all microdata.R lo op through every year and download every file hosted on the bls's ce ftp site import each of the comma-separated value files into r with read.csv depending on user-settings, save each table as an r data file (.rda) or stat a-readable file (.dta) 2011 fmly intrvw - analysis examples.R load the r data files (.rda) necessary to create the 'fmly' table shown in the ce macros program documentation.doc file construct that 'fmly' table, using five quarters of interviews (q1 2011 thru q1 2012) initiate a replicate-weighted survey design object perform some lovely li'l analysis examples replicate the %mean_variance() macro found in "ce macros.sas" and provide some examples of calculating descriptive statistics using unimputed variables replicate the %compare_groups() macro found in "ce macros.sas" and provide some examples of performing t -tests using unimputed variables create an rsqlite database (to minimize ram usage) containing the five imputed variable files, after identifying which variables were imputed based on pdf page 3 of the user's guide to income imputation initiate a replicate-weighted, database-backed, multiply-imputed survey design object perform a few additional analyses that highlight the modified syntax required for multiply-imputed survey designs replicate the %mean_variance() macro found in "ce macros.sas" and provide some examples of calculating descriptive statistics using imputed variables repl icate the %compare_groups() macro found in "ce macros.sas" and provide some examples of performing t-tests using imputed variables replicate the %proc_reg() and %proc_logistic() macros found in "ce macros.sas" and provide some examples of regressions and logistic regressions using both unimputed and imputed variables replicate integrated mean and se.R match each step in the bls-provided sas program "integr ated mean and se.sas" but with r instead of sas create an rsqlite database when the expenditure table gets too large for older computers to handle in ram export a table "2011 integrated mean and se.csv" that exactly matches the contents of the sas-produced "2011 integrated mean and se.lst" text file click here to view these three scripts for...

  6. H

    Syria town database

    • dataverse.harvard.edu
    Updated Nov 22, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kheder Khaddour; Kevin Mazur (2018). Syria town database [Dataset]. http://doi.org/10.7910/DVN/YQQ07L
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Nov 22, 2018
    Dataset provided by
    Harvard Dataverse
    Authors
    Kheder Khaddour; Kevin Mazur
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Syria
    Description

    The purpose of this dataset is to provide a detailed picture of the characteristics of Syrian towns in the years preceding the 2011 Syrian uprising and ensuing civil war. It incorporates the 2004 national census, the last before the uprising, and a newly collected set of data on ethnic identity. The level of analysis is the town (the Syrian Census Bureau’s fourth administrative level). TECHNICAL NOTE: The .csv files in this data package contain both Arabic and English, so are encoded in UTF-8. The Arabic script should render if opened directly in Open Office, Numbers, Google Drive, or R statistical software. To read the Arabic in Excel, you can open the .csv file in any of these applications and save it as an .xlsx file, or open it through Excel using the following steps: (1) open a blank excel document (2) import the data using “Data -> Get External Data -> Import text file” (3) select “File Origin: Unicode (UTF-8)” (4) select “Delimiters: comma” (5) select the top left cell to place the data See the following post for further details: https://stackoverflow.com/questions/6002256/is-it-possible-to-force-excel-recognize-utf-8-csv-files-automatically

  7. h

    journal-entries-emotion-detection-vad

    • huggingface.co
    Updated Jul 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Maya Markus-Malone (2025). journal-entries-emotion-detection-vad [Dataset]. https://huggingface.co/datasets/mmarkusmalone/journal-entries-emotion-detection-vad
    Explore at:
    Dataset updated
    Jul 24, 2025
    Authors
    Maya Markus-Malone
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    Reddit Diary of a Redditor VAD Dataset Dataset Creation Process

    Scraping Reddit Posts

    Posts were scraped from the r/diaryofaredditor subreddit using the Reddit API. The script used for scraping is shown below:import requests import csv import time

    access_token = "" headers = { "Authorization": f"bearer {access_token}", "User-Agent": "ChangeMeClient/0.1" }

    url = "https://oauth.reddit.com/r/diaryofaredditor/new" params = {"limit": 100} after = None

    csv_path =… See the full description on the dataset page: https://huggingface.co/datasets/mmarkusmalone/journal-entries-emotion-detection-vad.

  8. [Dataset] Does Volunteer Engagement Pay Off? An Analysis of User...

    • data.europa.eu
    • recerca.uoc.edu
    • +1more
    unknown
    Updated Jul 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zenodo (2025). [Dataset] Does Volunteer Engagement Pay Off? An Analysis of User Participation in Online Citizen Science Projects [Dataset]. https://data.europa.eu/data/datasets/oai-zenodo-org-7357747?locale=cs
    Explore at:
    unknown(10386572)Available download formats
    Dataset updated
    Jul 3, 2025
    Dataset authored and provided by
    Zenodohttp://zenodo.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Explanation/Overview: Corresponding dataset for the analyses and results achieved in the CS Track project in the research line on participation analyses, which is also reported in the publication "Does Volunteer Engagement Pay Off? An Analysis of User Participation in Online Citizen Science Projects", a conference paper for the conference CollabTech 2022: Collaboration Technologies and Social Computing and published as part of the Lecture Notes in Computer Science book series (LNCS,volume 13632) here. The usernames have been anonymised. Purpose: The purpose of this dataset is to provide the basis to reproduce the results reported in the associated deliverable, and in the above-mentioned publication. As such, it does not represent raw data, but rather files that already include certain analysis steps (like calculated degrees or other SNA-related measures), ready for analysis, visualisation and interpretation with R. Relatedness: The data of the different projects was derived from the forums of 7 Zooniverse projects based on similar discussion board features. The projects are: 'Galaxy Zoo', 'Gravity Spy', 'Seabirdwatch', 'Snapshot Wisconsin', 'Wildwatch Kenya', 'Galaxy Nurseries', 'Penguin Watch'. Content: In this Zenodo entry, several files can be found. The structure is as follows (files and folders and descriptions). corresponding_calculations.html Quarto-notebook to view in browser corresponding_calculations.qmd Quarto-notebook to view in RStudio assets data annotations annotations.csv List of annotations made per day for each of the analysed projects comments comments.csv Total list of comments with several data fields (i.e., comment id, text, reply_user_id) rolechanges 478_rolechanges.csv List of roles per user to determine number of role changes 1104_rolechanges.csv ... ... totalnetworkdata Edges 478_edges.csv Network data (edge set) for the given projects (without time slices) 1104_edges.csv ... ... Nodes 478_nodes.csv Network data (node set) for the given projects (without time slices) 1104_nodes.csv ... ... trajectories Network data (edge and node sets) for the given projects and all time slices (Q1 2016 - Q4 2021) 478 Edges edges_4782016_q1.csv edges_4782016_q2.csv edges_4782016_q3.csv edges_4782016_q4.csv ... Nodes nodes_4782016_q1.csv nodes_4782016_q4.csv nodes_4782016_q3.csv nodes_4782016_q2.csv ... 1104 Edges ... Nodes ... ... scripts datavizfuncs.R script for the data visualisation functions, automatically executed from within corresponding_calculations.qmd import.R script for the import of data, automatically executed from within corresponding_calculations.qmd corresponding_calculations_files files for the html/qmd view in the browser/RStudio Grouping: The data is grouped according to given criteria (e.g., project_title or time). Accordingly, the respective files can be found in the data structure

  9. case study 1 bike share

    • kaggle.com
    Updated Oct 8, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    mohamed osama (2022). case study 1 bike share [Dataset]. https://www.kaggle.com/ososmm/case-study-1-bike-share/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Oct 8, 2022
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    mohamed osama
    Description

    Cyclistic: Google Data Analytics Capstone Project

    Cyclistic - Google Data Analytics Certification Capstone Project Moirangthem Arup Singh How Does a Bike-Share Navigate Speedy Success? Background: This project is for the Google Data Analytics Certification capstone project. I am wearing the hat of a junior data analyst working in the marketing analyst team at Cyclistic, a bike-share company in Chicago. Cyclistic is a bike-share program that features more than 5,800 bicycles and 600 docking stations. Cyclistic sets itself apart by also offering reclining bikes, hand tricycles, and cargo bikes, making bike-share more inclusive to people with disabilities and riders who can’t use a standard two-wheeled bike. The majority of riders opt for traditional bikes; about 8% of riders use the assistive options. Cyclistic users are more likely to ride for leisure, but about 30% use them to commute to work each day. Customers who purchase single-ride or full-day passes are referred to as casual riders. Customers who purchase annual memberships are Cyclistic members. The director of marketing believes the company’s future success depends on maximizing the number of annual memberships. Therefore,my team wants to understand how casual riders and annual members use Cyclistic bikes differently. From these insights, my team will design a new marketing strategy to convert casual riders into annual members. But first, Cyclistic executives must approve the recommendations, so they must be backed up with compelling data insights and professional data visualizations. This project will be completed by using the 6 Data Analytics stages: Ask: Identify the business task and determine the key stakeholders. Prepare: Collect the data, identify how it’s organized, determine the credibility of the data. Process: Select the tool for data cleaning, check for errors and document the cleaning process. Analyze: Organize and format the data, aggregate the data so that it’s useful, perform calculations and identify trends and relationships. Share: Use design thinking principles and data-driven storytelling approach, present the findings with effective visualization. Ensure the analysis has answered the business task. Act: Share the final conclusion and the recommendations. Ask: Business Task: Recommend marketing strategies aimed at converting casual riders into annual members by better understanding how annual members and casual riders use Cyclistic bikes differently. Stakeholders: Lily Moreno: The director of marketing and my manager. Cyclistic executive team: A detail-oriented executive team who will decide whether to approve the recommended marketing program. Cyclistic marketing analytics team: A team of data analysts responsible for collecting, analyzing, and reporting data that helps guide Cyclistic’s marketing strategy. Prepare: For this project, I will use the public data of Cyclistic’s historical trip data to analyze and identify trends. The data has been made available by Motivate International Inc. under the license. I downloaded the ZIP files containing the csv files from the above link but while uploading the files in kaggle (as I am using kaggle notebook), it gave me a warning that the dataset is already available in kaggle. So I will be using the dataset cyclictic-bike-share dataset from kaggle. The dataset has 13 csv files from April 2020 to April 2021. For the purpose of my analysis I will use the csv files from April 2020 to March 2021. The source csv files are in Kaggle so I can rely on it's integrity. I am using Microsoft Excel to get a glimpse of the data. There is one csv file for each month and has information about the bike ride which contain details of the ride id, rideable type, start and end time, start and end station, latitude and longitude of the start and end stations. Process: I will use R as language in kaggle to import the dataset to check how it’s organized, whether all the columns have appropriate data type, find outliers and if any of these data have sampling bias. I will be using below R libraries

    Load the tidyverse, lubridate, ggplot2, sqldf and psych libraries

    library(tidyverse) library(lubridate) library(ggplot2) library(plotrix) ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.1 ──

    ✔ ggplot2 3.3.5 ✔ purrr 0.3.4 ✔ tibble 3.1.4 ✔ dplyr 1.0.7 ✔ tidyr 1.1.3 ✔ stringr 1.4.0 ✔ readr 2.0.1 ✔ forcats 0.5.1

    ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ── ✖ dplyr::filter() masks stats::filter() ✖ dplyr::lag() masks stats::lag()

    Attaching package: ‘lubridate’

    The following objects are masked from ‘package:base’:

    date, intersect, setdiff, union
    

    Set the working directory

    setwd("/kaggle/input/cyclistic-bike-share")

    Import the csv files

    r_202004 <- read.csv("202004-divvy-tripdata.csv") r_202005 <- read.csv("20...

  10. Market Basket Analysis

    • kaggle.com
    Updated Dec 9, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aslan Ahmedov (2021). Market Basket Analysis [Dataset]. https://www.kaggle.com/datasets/aslanahmedov/market-basket-analysis
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 9, 2021
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Aslan Ahmedov
    Description

    Market Basket Analysis

    Market basket analysis with Apriori algorithm

    The retailer wants to target customers with suggestions on itemset that a customer is most likely to purchase .I was given dataset contains data of a retailer; the transaction data provides data around all the transactions that have happened over a period of time. Retailer will use result to grove in his industry and provide for customer suggestions on itemset, we be able increase customer engagement and improve customer experience and identify customer behavior. I will solve this problem with use Association Rules type of unsupervised learning technique that checks for the dependency of one data item on another data item.

    Introduction

    Association Rule is most used when you are planning to build association in different objects in a set. It works when you are planning to find frequent patterns in a transaction database. It can tell you what items do customers frequently buy together and it allows retailer to identify relationships between the items.

    An Example of Association Rules

    Assume there are 100 customers, 10 of them bought Computer Mouth, 9 bought Mat for Mouse and 8 bought both of them. - bought Computer Mouth => bought Mat for Mouse - support = P(Mouth & Mat) = 8/100 = 0.08 - confidence = support/P(Mat for Mouse) = 0.08/0.09 = 0.89 - lift = confidence/P(Computer Mouth) = 0.89/0.10 = 8.9 This just simple example. In practice, a rule needs the support of several hundred transactions, before it can be considered statistically significant, and datasets often contain thousands or millions of transactions.

    Strategy

    • Data Import
    • Data Understanding and Exploration
    • Transformation of the data – so that is ready to be consumed by the association rules algorithm
    • Running association rules
    • Exploring the rules generated
    • Filtering the generated rules
    • Visualization of Rule

    Dataset Description

    • File name: Assignment-1_Data
    • List name: retaildata
    • File format: . xlsx
    • Number of Row: 522065
    • Number of Attributes: 7

      • BillNo: 6-digit number assigned to each transaction. Nominal.
      • Itemname: Product name. Nominal.
      • Quantity: The quantities of each product per transaction. Numeric.
      • Date: The day and time when each transaction was generated. Numeric.
      • Price: Product price. Numeric.
      • CustomerID: 5-digit number assigned to each customer. Nominal.
      • Country: Name of the country where each customer resides. Nominal.

    imagehttps://user-images.githubusercontent.com/91852182/145270162-fc53e5a3-4ad1-4d06-b0e0-228aabcf6b70.png">

    Libraries in R

    First, we need to load required libraries. Shortly I describe all libraries.

    • arules - Provides the infrastructure for representing, manipulating and analyzing transaction data and patterns (frequent itemsets and association rules).
    • arulesViz - Extends package 'arules' with various visualization. techniques for association rules and item-sets. The package also includes several interactive visualizations for rule exploration.
    • tidyverse - The tidyverse is an opinionated collection of R packages designed for data science.
    • readxl - Read Excel Files in R.
    • plyr - Tools for Splitting, Applying and Combining Data.
    • ggplot2 - A system for 'declaratively' creating graphics, based on "The Grammar of Graphics". You provide the data, tell 'ggplot2' how to map variables to aesthetics, what graphical primitives to use, and it takes care of the details.
    • knitr - Dynamic Report generation in R.
    • magrittr- Provides a mechanism for chaining commands with a new forward-pipe operator, %>%. This operator will forward a value, or the result of an expression, into the next function call/expression. There is flexible support for the type of right-hand side expressions.
    • dplyr - A fast, consistent tool for working with data frame like objects, both in memory and out of memory.
    • tidyverse - This package is designed to make it easy to install and load multiple 'tidyverse' packages in a single step.

    imagehttps://user-images.githubusercontent.com/91852182/145270210-49c8e1aa-9753-431b-a8d5-99601bc76cb5.png">

    Data Pre-processing

    Next, we need to upload Assignment-1_Data. xlsx to R to read the dataset.Now we can see our data in R.

    imagehttps://user-images.githubusercontent.com/91852182/145270229-514f0983-3bbb-4cd3-be64-980e92656a02.png"> imagehttps://user-images.githubusercontent.com/91852182/145270251-6f6f6472-8817-435c-a995-9bc4bfef10d1.png">

    After we will clear our data frame, will remove missing values.

    imagehttps://user-images.githubusercontent.com/91852182/145270286-05854e1a-2b6c-490e-ab30-9e99e731eacb.png">

    To apply Association Rule mining, we need to convert dataframe into transaction data to make all items that are bought together in one invoice will be in ...

  11. Z

    Supplementary Data and Code: Determinants of range sizes pinpoint...

    • data.niaid.nih.gov
    Updated Jan 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fišer, Cene (2023). Supplementary Data and Code: Determinants of range sizes pinpoint vulnerability of groundwater species to climate change: a case study on subterranean amphipods from the Dinarides [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_7529465
    Explore at:
    Dataset updated
    Jan 31, 2023
    Dataset provided by
    Zagmajster, Maja
    Premate, Ester
    Borko, Špela
    Fišer, Cene
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Dinaric Alps
    Description

    Supplementary Data and R code for phylogenetic analyses for manuscript entitled Determinants of range sizes pinpoint vulnerability of groundwater species to climate change: a case study on subterranean amphipods from the Dinarides.

    The dataset contains

    beast.tree → data for import into R: maximum credibility phylogeny data_lambert.csv → data for import into R: data on habitat and distribution for 52 Niphargus species morpho.csv → data for import into R: morphometric data (body length) for 52 Niphargus species niphargus_ranges.Rmd → fully reproducible R markdown file niphargus_ranges.html → html output of Rmd file

    To be able to run the analysis put the data files into folder and run the Rmd script.

  12. Students Test Data

    • kaggle.com
    Updated Sep 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ATHARV BHARASKAR (2023). Students Test Data [Dataset]. https://www.kaggle.com/datasets/atharvbharaskar/students-test-data
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 12, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    ATHARV BHARASKAR
    License

    ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
    License information was derived automatically

    Description

    Dataset Overview: This dataset pertains to the examination results of students who participated in a series of academic assessments at a fictitious educational institution named "University of Exampleville." The assessments were administered across various courses and academic levels, with a focus on evaluating students' performance in general management and domain-specific topics.

    Columns: The dataset comprises 12 columns, each representing specific attributes and performance indicators of the students. These columns encompass information such as the students' names (which have been anonymized), their respective universities, academic program names (including BBA and MBA), specializations, the semester of the assessment, the type of examination domain (general management or domain-specific), general management scores (out of 50), domain-specific scores (out of 50), total scores (out of 100), student ranks, and percentiles.

    Data Collection: The examination data was collected during a standardized assessment process conducted by the University of Exampleville. The exams were designed to assess students' knowledge and skills in general management and their chosen domain-specific subjects. It involved students from both BBA and MBA programs who were in their final year of study.

    Data Format: The dataset is available in a structured format, typically as a CSV file. Each row represents a unique student's performance in the examination, while columns contain specific information about their results and academic details.

    Data Usage: This dataset is valuable for analyzing and gaining insights into the academic performance of students pursuing BBA and MBA degrees. It can be used for various purposes, including statistical analysis, performance trend identification, program assessment, and comparison of scores across domains and specializations. Furthermore, it can be employed in predictive modeling or decision-making related to curriculum development and student support.

    Data Quality: The dataset has undergone preprocessing and anonymization to protect the privacy of individual students. Nevertheless, it is essential to use the data responsibly and in compliance with relevant data protection regulations when conducting any analysis or research.

    Data Format: The exam data is typically provided in a structured format, commonly as a CSV (Comma-Separated Values) file. Each row in the dataset represents a unique student's examination performance, and each column contains specific attributes and scores related to the examination. The CSV format allows for easy import and analysis using various data analysis tools and programming languages like Python, R, or spreadsheet software like Microsoft Excel.

    Here's a column-wise description of the dataset:

    Name OF THE STUDENT: The full name of the student who took the exam. (Anonymized)

    UNIVERSITY: The university where the student is enrolled.

    PROGRAM NAME: The name of the academic program in which the student is enrolled (BBA or MBA).

    Specialization: If applicable, the specific area of specialization or major that the student has chosen within their program.

    Semester: The semester or academic term in which the student took the exam.

    Domain: Indicates whether the exam was divided into two parts: general management and domain-specific.

    GENERAL MANAGEMENT SCORE (OUT of 50): The score obtained by the student in the general management part of the exam, out of a maximum possible score of 50.

    Domain-Specific Score (Out of 50): The score obtained by the student in the domain-specific part of the exam, also out of a maximum possible score of 50.

    TOTAL SCORE (OUT of 100): The total score obtained by adding the scores from the general management and domain-specific parts, out of a maximum possible score of 100.

  13. H

    Time-Series Matrix (TSMx): A visualization tool for plotting multiscale...

    • dataverse.harvard.edu
    Updated Jul 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgios Boumis; Brad Peter (2024). Time-Series Matrix (TSMx): A visualization tool for plotting multiscale temporal trends [Dataset]. http://doi.org/10.7910/DVN/ZZDYM9
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 8, 2024
    Dataset provided by
    Harvard Dataverse
    Authors
    Georgios Boumis; Brad Peter
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Time-Series Matrix (TSMx): A visualization tool for plotting multiscale temporal trends TSMx is an R script that was developed to facilitate multi-temporal-scale visualizations of time-series data. The script requires only a two-column CSV of years and values to plot the slope of the linear regression line for all possible year combinations from the supplied temporal range. The outputs include a time-series matrix showing slope direction based on the linear regression, slope values plotted with colors indicating magnitude, and results of a Mann-Kendall test. The start year is indicated on the y-axis and the end year is indicated on the x-axis. In the example below, the cell in the top-right corner is the direction of the slope for the temporal range 2001–2019. The red line corresponds with the temporal range 2010–2019 and an arrow is drawn from the cell that represents that range. One cell is highlighted with a black border to demonstrate how to read the chart—that cell represents the slope for the temporal range 2004–2014. This publication entry also includes an excel template that produces the same visualizations without a need to interact with any code, though minor modifications will need to be made to accommodate year ranges other than what is provided. TSMx for R was developed by Georgios Boumis; TSMx was originally conceptualized and created by Brad G. Peter in Microsoft Excel. Please refer to the associated publication: Peter, B.G., Messina, J.P., Breeze, V., Fung, C.Y., Kapoor, A. and Fan, P., 2024. Perspectives on modifiable spatiotemporal unit problems in remote sensing of agriculture: evaluating rice production in Vietnam and tools for analysis. Frontiers in Remote Sensing, 5, p.1042624. https://www.frontiersin.org/journals/remote-sensing/articles/10.3389/frsen.2024.1042624 TSMx sample chart from the supplied Excel template. Data represent the productivity of rice agriculture in Vietnam as measured via EVI (enhanced vegetation index) from the NASA MODIS data product (MOD13Q1.V006). TSMx R script: # import packages library(dplyr) library(readr) library(ggplot2) library(tibble) library(tidyr) library(forcats) library(Kendall) options(warn = -1) # disable warnings # read data (.csv file with "Year" and "Value" columns) data <- read_csv("EVI.csv") # prepare row/column names for output matrices years <- data %>% pull("Year") r.names <- years[-length(years)] c.names <- years[-1] years <- years[-length(years)] # initialize output matrices sign.matrix <- matrix(data = NA, nrow = length(years), ncol = length(years)) pval.matrix <- matrix(data = NA, nrow = length(years), ncol = length(years)) slope.matrix <- matrix(data = NA, nrow = length(years), ncol = length(years)) # function to return remaining years given a start year getRemain <- function(start.year) { years <- data %>% pull("Year") start.ind <- which(data[["Year"]] == start.year) + 1 remain <- years[start.ind:length(years)] return (remain) } # function to subset data for a start/end year combination splitData <- function(end.year, start.year) { keep <- which(data[['Year']] >= start.year & data[['Year']] <= end.year) batch <- data[keep,] return(batch) } # function to fit linear regression and return slope direction fitReg <- function(batch) { trend <- lm(Value ~ Year, data = batch) slope <- coefficients(trend)[[2]] return(sign(slope)) } # function to fit linear regression and return slope magnitude fitRegv2 <- function(batch) { trend <- lm(Value ~ Year, data = batch) slope <- coefficients(trend)[[2]] return(slope) } # function to implement Mann-Kendall (MK) trend test and return significance # the test is implemented only for n>=8 getMann <- function(batch) { if (nrow(batch) >= 8) { mk <- MannKendall(batch[['Value']]) pval <- mk[['sl']] } else { pval <- NA } return(pval) } # function to return slope direction for all combinations given a start year getSign <- function(start.year) { remaining <- getRemain(start.year) combs <- lapply(remaining, splitData, start.year = start.year) signs <- lapply(combs, fitReg) return(signs) } # function to return MK significance for all combinations given a start year getPval <- function(start.year) { remaining <- getRemain(start.year) combs <- lapply(remaining, splitData, start.year = start.year) pvals <- lapply(combs, getMann) return(pvals) } # function to return slope magnitude for all combinations given a start year getMagn <- function(start.year) { remaining <- getRemain(start.year) combs <- lapply(remaining, splitData, start.year = start.year) magns <- lapply(combs, fitRegv2) return(magns) } # retrieve slope direction, MK significance, and slope magnitude signs <- lapply(years, getSign) pvals <- lapply(years, getPval) magns <- lapply(years, getMagn) # fill-in output matrices dimension <- nrow(sign.matrix) for (i in 1:dimension) { sign.matrix[i, i:dimension] <- unlist(signs[i]) pval.matrix[i, i:dimension] <- unlist(pvals[i]) slope.matrix[i, i:dimension] <- unlist(magns[i]) } sign.matrix <-...

  14. Z

    Dataset for Repeated double cross validation applied to the PCA-LDA...

    • data.niaid.nih.gov
    • zenodo.org
    Updated Dec 2, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bonifacio, Alois (2020). Dataset for Repeated double cross validation applied to the PCA-LDA classification of SERS spectra: a case study with serum samples from hepatocellular carcinoma patients [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_4277796
    Explore at:
    Dataset updated
    Dec 2, 2020
    Dataset provided by
    Di Silvestre, Alessia
    Crocè, Lory Saveria
    Mitri, Elisa
    Pascut, Devis
    Bonifacio, Alois
    Gurian, Elisa
    Sergo, Valter
    Tiribelli, Claudio
    Giuffrè, Mauro
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset contains all the spectra used in the paper "Repeated double cross validation applied to the PCA-LDA classification of SERS spectra: a case study with serum samples from hepatocellular carcinoma patients", plus the R code to import the TXT (ASCII) files into a dataset, preprocess data, set-up and cross validate the PCA-LDA model and generate the figures shown in the paper.

    Data are available in 2 different formats:

    • 1 compressed archive ("dataset.zip") containing all the 144 TXT files (1 file = 1 spectrum)

    • 1 single CSV file (“dataset.csv”) with all the 144 spectra in the form of a table. The data are structured as follow, with each row being 1 spectrum, preceded by metadata: "acquisition_date", "substrate_batch", "class", "sample_code".

    The code for R is available as a single file "Rcode.R".

  15. Database of Uniaxial Cyclic and Tensile Coupon Tests for Structural Metallic...

    • zenodo.org
    • data.niaid.nih.gov
    bin, csv, zip
    Updated Dec 24, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alexander R. Hartloper; Alexander R. Hartloper; Selimcan Ozden; Albano de Castro e Sousa; Dimitrios G. Lignos; Dimitrios G. Lignos; Selimcan Ozden; Albano de Castro e Sousa (2022). Database of Uniaxial Cyclic and Tensile Coupon Tests for Structural Metallic Materials [Dataset]. http://doi.org/10.5281/zenodo.6965147
    Explore at:
    bin, zip, csvAvailable download formats
    Dataset updated
    Dec 24, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Alexander R. Hartloper; Alexander R. Hartloper; Selimcan Ozden; Albano de Castro e Sousa; Dimitrios G. Lignos; Dimitrios G. Lignos; Selimcan Ozden; Albano de Castro e Sousa
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Database of Uniaxial Cyclic and Tensile Coupon Tests for Structural Metallic Materials

    Background

    This dataset contains data from monotonic and cyclic loading experiments on structural metallic materials. The materials are primarily structural steels and one iron-based shape memory alloy is also included. Summary files are included that provide an overview of the database and data from the individual experiments is also included.

    The files included in the database are outlined below and the format of the files is briefly described. Additional information regarding the formatting can be found through the post-processing library (https://github.com/ahartloper/rlmtp/tree/master/protocols).

    Usage

    • The data is licensed through the Creative Commons Attribution 4.0 International.
    • If you have used our data and are publishing your work, we ask that you please reference both:
      1. this database through its DOI, and
      2. any publication that is associated with the experiments. See the Overall_Summary and Database_References files for the associated publication references.

    Included Files

    • Overall_Summary_2022-08-25_v1-0-0.csv: summarises the specimen information for all experiments in the database.
    • Summarized_Mechanical_Props_Campaign_2022-08-25_v1-0-0.csv: summarises the average initial yield stress and average initial elastic modulus per campaign.
    • Unreduced_Data-#_v1-0-0.zip: contain the original (not downsampled) data
      • Where # is one of: 1, 2, 3, 4, 5, 6. The unreduced data is broken into separate archives because of upload limitations to Zenodo. Together they provide all the experimental data.
      • We recommend you un-zip all the folders and place them in one "Unreduced_Data" directory similar to the "Clean_Data"
      • The experimental data is provided through .csv files for each test that contain the processed data. The experiments are organised by experimental campaign and named by load protocol and specimen. A .pdf file accompanies each test showing the stress-strain graph.
      • There is a "db_tag_clean_data_map.csv" file that is used to map the database summary with the unreduced data.
      • The computed yield stresses and elastic moduli are stored in the "yield_stress" directory.
    • Clean_Data_v1-0-0.zip: contains all the downsampled data
      • The experimental data is provided through .csv files for each test that contain the processed data. The experiments are organised by experimental campaign and named by load protocol and specimen. A .pdf file accompanies each test showing the stress-strain graph.
      • There is a "db_tag_clean_data_map.csv" file that is used to map the database summary with the clean data.
      • The computed yield stresses and elastic moduli are stored in the "yield_stress" directory.
    • Database_References_v1-0-0.bib
      • Contains a bibtex reference for many of the experiments in the database. Corresponds to the "citekey" entry in the summary files.

    File Format: Downsampled Data

    These are the "LP_

    • The header of the first column is empty: the first column corresponds to the index of the sample point in the original (unreduced) data
    • Time[s]: time in seconds since the start of the test
    • e_true: true strain
    • Sigma_true: true stress in MPa
    • (optional) Temperature[C]: the surface temperature in degC

    These data files can be easily loaded using the pandas library in Python through:

    import pandas
    data = pandas.read_csv(data_file, index_col=0)

    The data is formatted so it can be used directly in RESSPyLab (https://github.com/AlbanoCastroSousa/RESSPyLab). Note that the column names "e_true" and "Sigma_true" were kept for backwards compatibility reasons with RESSPyLab.

    File Format: Unreduced Data

    These are the "LP_

    • The first column is the index of each data point
    • S/No: sample number recorded by the DAQ
    • System Date: Date and time of sample
    • Time[s]: time in seconds since the start of the test
    • C_1_Force[kN]: load cell force
    • C_1_Déform1[mm]: extensometer displacement
    • C_1_Déplacement[mm]: cross-head displacement
    • Eng_Stress[MPa]: engineering stress
    • Eng_Strain[]: engineering strain
    • e_true: true strain
    • Sigma_true: true stress in MPa
    • (optional) Temperature[C]: specimen surface temperature in degC

    The data can be loaded and used similarly to the downsampled data.

    File Format: Overall_Summary

    The overall summary file provides data on all the test specimens in the database. The columns include:

    • hidden_index: internal reference ID
    • grade: material grade
    • spec: specifications for the material
    • source: base material for the test specimen
    • id: internal name for the specimen
    • lp: load protocol
    • size: type of specimen (M8, M12, M20)
    • gage_length_mm_: unreduced section length in mm
    • avg_reduced_dia_mm_: average measured diameter for the reduced section in mm
    • avg_fractured_dia_top_mm_: average measured diameter of the top fracture surface in mm
    • avg_fractured_dia_bot_mm_: average measured diameter of the bottom fracture surface in mm
    • fy_n_mpa_: nominal yield stress
    • fu_n_mpa_: nominal ultimate stress
    • t_a_deg_c_: ambient temperature in degC
    • date: date of test
    • investigator: person(s) who conducted the test
    • location: laboratory where test was conducted
    • machine: setup used to conduct test
    • pid_force_k_p, pid_force_t_i, pid_force_t_d: PID parameters for force control
    • pid_disp_k_p, pid_disp_t_i, pid_disp_t_d: PID parameters for displacement control
    • pid_extenso_k_p, pid_extenso_t_i, pid_extenso_t_d: PID parameters for extensometer control
    • citekey: reference corresponding to the Database_References.bib file
    • yield_stress_mpa_: computed yield stress in MPa
    • elastic_modulus_mpa_: computed elastic modulus in MPa
    • fracture_strain: computed average true strain across the fracture surface
    • c,si,mn,p,s,n,cu,mo,ni,cr,v,nb,ti,al,b,zr,sn,ca,h,fe: chemical compositions in units of %mass
    • file: file name of corresponding clean (downsampled) stress-strain data

    File Format: Summarized_Mechanical_Props_Campaign

    Meant to be loaded in Python as a pandas DataFrame with multi-indexing, e.g.,

    tab1 = pd.read_csv('Summarized_Mechanical_Props_Campaign_' + date + version + '.csv',
              index_col=[0, 1, 2, 3], skipinitialspace=True, header=[0, 1],
              keep_default_na=False, na_values='')
    • citekey: reference in "Campaign_References.bib".
    • Grade: material grade.
    • Spec.: specifications (e.g., J2+N).
    • Yield Stress [MPa]: initial yield stress in MPa
      • size, count, mean, coefvar: number of experiments in campaign, number of experiments in mean, mean value for campaign, coefficient of variation for campaign
    • Elastic Modulus [MPa]: initial elastic modulus in MPa
      • size, count, mean, coefvar: number of experiments in campaign, number of experiments in mean, mean value for campaign, coefficient of variation for campaign

    Caveats

    • The files in the following directories were tested before the protocol was established. Therefore, only the true stress-strain is available for each:
      • A500
      • A992_Gr50
      • BCP325
      • BCR295
      • HYP400
      • S460NL
      • S690QL/25mm
      • S355J2_Plates/S355J2_N_25mm and S355J2_N_50mm
  16. Annotated 12 lead ECG dataset

    • zenodo.org
    zip
    Updated Jun 7, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Antonio H Ribeiro; Antonio H Ribeiro; Manoel Horta Ribeiro; Manoel Horta Ribeiro; Gabriela M. Paixão; Gabriela M. Paixão; Derick M. Oliveira; Derick M. Oliveira; Paulo R. Gomes; Paulo R. Gomes; Jéssica A. Canazart; Jéssica A. Canazart; Milton P. Ferreira; Milton P. Ferreira; Carl R. Andersson; Carl R. Andersson; Peter W. Macfarlane; Peter W. Macfarlane; Wagner Meira Jr.; Wagner Meira Jr.; Thomas B. Schön; Thomas B. Schön; Antonio Luiz P. Ribeiro; Antonio Luiz P. Ribeiro (2021). Annotated 12 lead ECG dataset [Dataset]. http://doi.org/10.5281/zenodo.3625007
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jun 7, 2021
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Antonio H Ribeiro; Antonio H Ribeiro; Manoel Horta Ribeiro; Manoel Horta Ribeiro; Gabriela M. Paixão; Gabriela M. Paixão; Derick M. Oliveira; Derick M. Oliveira; Paulo R. Gomes; Paulo R. Gomes; Jéssica A. Canazart; Jéssica A. Canazart; Milton P. Ferreira; Milton P. Ferreira; Carl R. Andersson; Carl R. Andersson; Peter W. Macfarlane; Peter W. Macfarlane; Wagner Meira Jr.; Wagner Meira Jr.; Thomas B. Schön; Thomas B. Schön; Antonio Luiz P. Ribeiro; Antonio Luiz P. Ribeiro
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description
    # Annotated 12 lead ECG dataset
    
    Contain 827 ECG tracings from different patients, annotated by several cardiologists, residents and medical students.
    It is used as test set on the paper:
    "Automatic Diagnosis of the Short-Duration12-Lead ECG using a Deep Neural Network".
    
    It contain annotations about 6 different ECGs abnormalities:
    - 1st degree AV block (1dAVb);
    - right bundle branch block (RBBB);
    - left bundle branch block (LBBB);
    - sinus bradycardia (SB);
    - atrial fibrillation (AF); and,
    - sinus tachycardia (ST).
    
    ## Folder content:
    
    - `ecg_tracings.hdf5`: HDF5 file containing a single dataset named `tracings`. This dataset is a 
    `(827, 4096, 12)` tensor. The first dimension correspond to the 827 different exams from different 
    patients; the second dimension correspond to the 4096 signal samples; the third dimension to the 12
    different leads of the ECG exam. 
    
    The signals are sampled at 400 Hz. Some signals originally have a duration of 
    10 seconds (10 * 400 = 4000 samples) and others of 7 seconds (7 * 400 = 2800 samples).
    In order to make them all have the same size (4096 samples) we fill them with zeros
    on both sizes. For instance, for a 7 seconds ECG signal with 2800 samples we include 648
    samples at the beginning and 648 samples at the end, yielding 4096 samples that are them saved
    in the hdf5 dataset. All signal are represented as floating point numbers at the scale 1e-4V: so it should
    be multiplied by 1000 in order to obtain the signals in V.
    
    In python, one can read this file using the following sequence:
    ```python
    import h5py
    with h5py.File(args.tracings, "r") as f:
      x = np.array(f['tracings'])
    ```
    
    - The file `attributes.csv` contain basic patient attributes: sex (M or F) and age. It
    contain 827 lines (plus the header). The i-th tracing in `ecg_tracings.hdf5` correspond to the i-th line.
    - `annotations/`: folder containing annotations csv format. Each csv file contain 827 lines (plus the header).
    The i-th line correspond to the i-th tracing in `ecg_tracings.hdf5` correspond to the in all csv files.
    The csv files all have 6 columns `1dAVb, RBBB, LBBB, SB, AF, ST`
    corresponding to weather the annotator have detect the abnormality in the ECG (`=1`) or not (`=0`).
     1. `cardiologist[1,2].csv` contain annotations from two different cardiologist.
     2. `gold_standard.csv` gold standard annotation for this test dataset. When the cardiologist 1 and cardiologist 2
     agree, the common diagnosis was considered as gold standard. In cases where there was any disagreement, a 
     third senior specialist, aware of the annotations from the other two, decided the diagnosis. 
     3. `dnn.csv` prediction from the deep neural network described in 
     "Automatic Diagnosis of the Short-Duration 12-Lead ECG using a Deep Neural Network". The threshold is set in such way 
     it maximizes the F1 score.
     4. `cardiology_residents.csv` annotations from two 4th year cardiology residents (each annotated half of the dataset).
     5. `emergency_residents.csv` annotations from two 3rd year emergency residents (each annotated half of the dataset).
     6. `medical_students.csv` annotations from two 5th year medical students (each annotated half of the dataset).
    
  17. Data files for: Huston, D.C. et al. 2021. Stable isotope signatures of an...

    • zenodo.org
    bin, csv
    Updated Sep 20, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Daniel Colgan Huston; Daniel Colgan Huston (2021). Data files for: Huston, D.C. et al. 2021. Stable isotope signatures of an acanthocephalan and trematode from the herbivorous marine fish Kyphosus bigibbus (Perciformes: Kyphosidae). Journal of Parasitology. 107: 726–730 [Dataset]. http://doi.org/10.5281/zenodo.4886698
    Explore at:
    csv, binAvailable download formats
    Dataset updated
    Sep 20, 2021
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Daniel Colgan Huston; Daniel Colgan Huston
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Data files for the paper: Huston, D.C. et al. 2021. Stable isotope signatures of an acanthocephalan and trematode from the herbivorous marine fish Kyphosus bigibbus (Perciformes: Kyphosidae). Journal of Parasitology. 107(5) 726–730

    Includes raw data, .csv files for import of data into R, R script file, and excel spreadsheet file used to create Figure 1.

  18. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Megan Jones Patterson; Lee Stanish; Natalie Robinson; Katherine Jones; Cody Flagg (2018). Large Datasets in R - Plant Phenology & Temperature Data from NEON [Dataset]. http://doi.org/10.25334/Q4DQ3F

Large Datasets in R - Plant Phenology & Temperature Data from NEON

Explore at:
Dataset updated
May 10, 2018
Dataset provided by
QUBES
Authors
Megan Jones Patterson; Lee Stanish; Natalie Robinson; Katherine Jones; Cody Flagg
Description

This module series covers how to import, manipulate, format and plot time series data stored in .csv format in R. Originally designed to teach researchers to use NEON plant phenology and air temperature data; has been used in undergraduate classrooms.

Search
Clear search
Close search
Google apps
Main menu