Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Categorical scatterplots with R for biologists: a step-by-step guide
Benjamin Petre1, Aurore Coince2, Sophien Kamoun1
1 The Sainsbury Laboratory, Norwich, UK; 2 Earlham Institute, Norwich, UK
Weissgerber and colleagues (2015) recently stated that ‘as scientists, we urgently need to change our practices for presenting continuous data in small sample size studies’. They called for more scatterplot and boxplot representations in scientific papers, which ‘allow readers to critically evaluate continuous data’ (Weissgerber et al., 2015). In the Kamoun Lab at The Sainsbury Laboratory, we recently implemented a protocol to generate categorical scatterplots (Petre et al., 2016; Dagdas et al., 2016). Here we describe the three steps of this protocol: 1) formatting of the data set in a .csv file, 2) execution of the R script to generate the graph, and 3) export of the graph as a .pdf file.
Protocol
• Step 1: format the data set as a .csv file. Store the data in a three-column excel file as shown in Powerpoint slide. The first column ‘Replicate’ indicates the biological replicates. In the example, the month and year during which the replicate was performed is indicated. The second column ‘Condition’ indicates the conditions of the experiment (in the example, a wild type and two mutants called A and B). The third column ‘Value’ contains continuous values. Save the Excel file as a .csv file (File -> Save as -> in ‘File Format’, select .csv). This .csv file is the input file to import in R.
• Step 2: execute the R script (see Notes 1 and 2). Copy the script shown in Powerpoint slide and paste it in the R console. Execute the script. In the dialog box, select the input .csv file from step 1. The categorical scatterplot will appear in a separate window. Dots represent the values for each sample; colors indicate replicates. Boxplots are superimposed; black dots indicate outliers.
• Step 3: save the graph as a .pdf file. Shape the window at your convenience and save the graph as a .pdf file (File -> Save as). See Powerpoint slide for an example.
Notes
• Note 1: install the ggplot2 package. The R script requires the package ‘ggplot2’ to be installed. To install it, Packages & Data -> Package Installer -> enter ‘ggplot2’ in the Package Search space and click on ‘Get List’. Select ‘ggplot2’ in the Package column and click on ‘Install Selected’. Install all dependencies as well.
• Note 2: use a log scale for the y-axis. To use a log scale for the y-axis of the graph, use the command line below in place of command line #7 in the script.
replicates
graph + geom_boxplot(outlier.colour='black', colour='black') + geom_jitter(aes(col=Replicate)) + scale_y_log10() + theme_bw()
References
Dagdas YF, Belhaj K, Maqbool A, Chaparro-Garcia A, Pandey P, Petre B, et al. (2016) An effector of the Irish potato famine pathogen antagonizes a host autophagy cargo receptor. eLife 5:e10856.
Petre B, Saunders DGO, Sklenar J, Lorrain C, Krasileva KV, Win J, et al. (2016) Heterologous Expression Screens in Nicotiana benthamiana Identify a Candidate Effector of the Wheat Yellow Rust Pathogen that Associates with Processing Bodies. PLoS ONE 11(2):e0149035
Weissgerber TL, Milic NM, Winham SJ, Garovic VD (2015) Beyond Bar and Line Graphs: Time for a New Data Presentation Paradigm. PLoS Biol 13(4):e1002128
https://www.gnu.org/licenses/old-licenses/gpl-2.0-standalone.htmlhttps://www.gnu.org/licenses/old-licenses/gpl-2.0-standalone.html
Replication pack, FSE2018 submission #164: ------------------------------------------
**Working title:** Ecosystem-Level Factors Affecting the Survival of Open-Source Projects: A Case Study of the PyPI Ecosystem **Note:** link to data artifacts is already included in the paper. Link to the code will be included in the Camera Ready version as well. Content description =================== - **ghd-0.1.0.zip** - the code archive. This code produces the dataset files described below - **settings.py** - settings template for the code archive. - **dataset_minimal_Jan_2018.zip** - the minimally sufficient version of the dataset. This dataset only includes stats aggregated by the ecosystem (PyPI) - **dataset_full_Jan_2018.tgz** - full version of the dataset, including project-level statistics. It is ~34Gb unpacked. This dataset still doesn't include PyPI packages themselves, which take around 2TB. - **build_model.r, helpers.r** - R files to process the survival data (`survival_data.csv` in **dataset_minimal_Jan_2018.zip**, `common.cache/survival_data.pypi_2008_2017-12_6.csv` in **dataset_full_Jan_2018.tgz**) - **Interview protocol.pdf** - approximate protocol used for semistructured interviews. - LICENSE - text of GPL v3, under which this dataset is published - INSTALL.md - replication guide (~2 pages)
Replication guide ================= Step 0 - prerequisites ---------------------- - Unix-compatible OS (Linux or OS X) - Python interpreter (2.7 was used; Python 3 compatibility is highly likely) - R 3.4 or higher (3.4.4 was used, 3.2 is known to be incompatible) Depending on detalization level (see Step 2 for more details): - up to 2Tb of disk space (see Step 2 detalization levels) - at least 16Gb of RAM (64 preferable) - few hours to few month of processing time Step 1 - software ---------------- - unpack **ghd-0.1.0.zip**, or clone from gitlab: git clone https://gitlab.com/user2589/ghd.git git checkout 0.1.0 `cd` into the extracted folder. All commands below assume it as a current directory. - copy `settings.py` into the extracted folder. Edit the file: * set `DATASET_PATH` to some newly created folder path * add at least one GitHub API token to `SCRAPER_GITHUB_API_TOKENS` - install docker. For Ubuntu Linux, the command is `sudo apt-get install docker-compose` - install libarchive and headers: `sudo apt-get install libarchive-dev` - (optional) to replicate on NPM, install yajl: `sudo apt-get install yajl-tools` Without this dependency, you might get an error on the next step, but it's safe to ignore. - install Python libraries: `pip install --user -r requirements.txt` . - disable all APIs except GitHub (Bitbucket and Gitlab support were not yet implemented when this study was in progress): edit `scraper/init.py`, comment out everything except GitHub support in `PROVIDERS`. Step 2 - obtaining the dataset ----------------------------- The ultimate goal of this step is to get output of the Python function `common.utils.survival_data()` and save it into a CSV file: # copy and paste into a Python console from common import utils survival_data = utils.survival_data('pypi', '2008', smoothing=6) survival_data.to_csv('survival_data.csv') Since full replication will take several months, here are some ways to speedup the process: ####Option 2.a, difficulty level: easiest Just use the precomputed data. Step 1 is not necessary under this scenario. - extract **dataset_minimal_Jan_2018.zip** - get `survival_data.csv`, go to the next step ####Option 2.b, difficulty level: easy Use precomputed longitudinal feature values to build the final table. The whole process will take 15..30 minutes. - create a folder `
This child page contains a zipped folder which contains all items necessary to run trend models and produce results published in U.S. Geological Scientific Investigations Report 2021–XXXX [Tatge, W.S., Nustad, R.A., and Galloway, J.M., 2021, Evaluation of Salinity and Nutrient Conditions in the Heart River Basin, North Dakota, 1970-2020: U.S. Geological Survey Scientific Investigations Report 2021-XXXX, XX p.]. To run the R-QWTREND program in R 6 files are required and each is included in this child page: prepQWdataV4.txt, runQWmodelV4XXUEP.txt, plotQWtrendV4XXUEP.txt, qwtrend2018v4.exe, salflibc.dll, and StartQWTrendV4.R (Vecchia and Nustad, 2020). The folder contains: six items required to run the R–QWTREND trend analysis tool; a readme.txt file; a flowtrendData.RData file; an allsiteinfo.table.csv file, a folder called "scripts", and a folder called "waterqualitydata". The "scripts" folder contains the scripts that can be used to reproduce the results found in the USGS Scientific Investigations Report referenced above. The "waterqualitydata" folder contains .csv files with the naming convention of site_ions or site_nuts for major ions and nutrients constituents and contains machine readable files with the water-quality data used for the trend analysis at each site. R–QWTREND is a software package for analyzing trends in stream-water quality. The package is a collection of functions written in R (R Development Core Team, 2019), an open source language and a general environment for statistical computing and graphics. The following system requirements are necessary for using R–QWTREND: • Windows 10 operating system • R (version 3.4 or later; 64 bit recommended) • RStudio (version 1.1.456 or later). An accompanying report (Vecchia and Nustad, 2020) serves as the formal documentation for R–QWTREND. Vecchia, A.V., and Nustad, R.A., 2020, Time-series model, statistical methods, and software documentation for R–QWTREND—An R package for analyzing trends in stream-water quality: U.S. Geological Survey Open-File Report 2020–1014, 51 p., https://doi.org/10.3133/ofr20201014 R Development Core Team, 2019, R—A language and environment for statistical computing: Vienna, Austria, R Foundation for Statistical Computing, accessed December 7, 2020, at https://www.r-project.org.
This reference contains the R-code for the analysis and summary of detections of Bachman's sparrow, bobwhite quail and brown-headed nuthatch through 2020. Specifically generates probability of detection and occupancy of the species based on call counts and elicited calls with playback. The code loads raw point count (CSV files) and fire history data (CSV) and cleans/transforms into a tidy format for occupancy analysis. It then creates the necessary data structure for occupancy analysis, performs the analysis for the three focal species, and provides functionality for generating tables and figures summarizing the key findings of the occupancy analysis. The raw data, point count locations and other spatial data (ShapeFiles) are contained in the dataset.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is the replication package for the paper titled "How Do Requirements Evolve During Elicitation? An Empirical Study Combining Interviews and App Store Analysis", by Alessio Ferrari, Paola Spoletini and Sourav Debnath.
The package contains the following folders and files.
/R-analysis
This is a folder containing all the R implementations of the the statistical tests included in the paper, together with the source .csv file used to produce the results. Each R file has the same title as the associated .csv file. The titles of the files reflect the RQs as they appear in the paper. The association between R files and Tables in the paper is as follows:
- RQ1-1-analyse-story-rates.R: Tabe 1, user story rates
- RQ1-1-analyse-role-rates.R: Table 1, role rates
- RQ1-2-analyse-story-category-phase-1.R: Table 3, user story category rates in phase 1 compared to original rates
- RQ1-2-analyse-role-category-phase-1.R: Table 5, role category rates in phase 1 compared to original rates
- RQ2.1-analysis-app-store-rates-phase-2.R: Table 8, user story and role rates in phase 2
- RQ2.2-analysis-percent-three-CAT-groups-ph1-ph2.R: Table 9, comparison of the categories of user stories in phase 1 and 2
- RQ2.2-analysis-percent-two-CAT-roles-ph1-ph2.R: Table 10, comparison of the categories of roles in phase 1 and 2.
The .csv files used for statistical tests are also used to produce boxplots. The association betwee boxplot figures and files is as follows.
- RQ1-1-story-rates.csv: Figure 4
- RQ1-1-role-rates.csv: Figure 5
- RQ1-2-categories-phase-1.csv: Figure 8
- RQ1-2-role-category-phase-1.csv: Figure 9
- RQ2-1-user-story-and-roles-phase-2.csv: Figure 13
- RQ2.2-percent-three-CAT-groups-ph1-ph2.csv: Figure 14
- RQ2.2-percent-two-CAT-roles-ph1-ph2.csv: Figure 17
- IMG-only-RQ2.2-us-category-comparison-ph1-ph2.csv: Figure 15
- IMG-only-RQ2.2-frequent-roles.csv: Figure 18
NOTE: The last two .csv files do not have an associated statistical tests, but are used solely to produce boxplots.
/Data-Analysis
This folder contains all the data used to answer the research questions.
RQ1.xlsx: includes all the data associated to RQ1 subquestions, two tabs for each subquestion (one for user stories and one for roles). The names of the tabs are self-explanatory of their content.
RQ2.1.xlsx: includes all the data for the RQ1.1 subquestion. Specifically, it includes the following tabs:
- Data Source-US-category: for each category of user story, and for each analyst, there are two lines.
The first one reports the number of user stories in that category for phase 1, and the second one reports the
number of user stories in that category for phase 2, considering the specific analyst.
- Data Source-role: for each category of role, and for each analyst, there are two lines.
The first one reports the number of user stories in that role for phase 1, and the second one reports the
number of user stories in that role for phase 2, considering the specific analyst.
- RQ2.1 rates: reports the final rates for RQ2.1.
NOTE: The other tabs are used to support the computation of the final rates.
RQ2.2.xlsx: includes all the data for the RQ2.2 subquestion. Specifically, it includes the following tabs:
- Data Source-US-category: same as RQ2.1.xlsx
- Data Source-role: same as RQ2.1.xlsx
- RQ2.2-category-group: comparison between groups of categories in the different phases, used to produce Figure 14
- RQ2.2-role-group: comparison between role groups in the different phases, used to produce Figure 17
- RQ2.2-specific-roles-diff: difference between specific roles, used to produce Figure 18
NOTE: the other tabs are used to support the computation of the values reported in the tabs above.
RQ2.2-single-US-category.xlsx: includes the data for the RQ2.2 subquestion associated to single categories of user stories.
A separate tab is used given the complexity of the computations.
- Data Source-US-category: same as RQ2.1.xlsx
- Totals: total number of user stories for each analyst in phase 1 and phase 2
- Results-Rate-Comparison: difference between rates of user stories in phase 1 and phase 2, used to produce the file
"img/IMG-only-RQ2.2-us-category-comparison-ph1-ph2.csv", which is in turn used to produce Figure 15
- Results-Analysts: number of analysts using each novel category produced in phase 2, used to produce Figure 16.
NOTE: the other tabs are used to support the computation of the values reported in the tabs above.
RQ2.3.xlsx: includes the data for the RQ2.3 subquestion. Specifically, it includes the following tabs:
- Data Source-US-category: same as RQ2.1.xlsx
- Data Source-role: same as RQ2.1.xlsx
- RQ2.3-categories: novel categories produced in phase 2, used to produce Figure 19
- RQ2-3-most-frequent-categories: most frequent novel categories
/Raw-Data-Phase-I
The folder contains one Excel file for each analyst, s1.xlsx...s30.xlsx, plus the file of the original user stories with annotations (original-us.xlsx). Each file contains two tabs:
- Evaluation: includes the annotation of the user stories as existing user story in the original categories (annotated with "E"), novel user story in a certain category (refinement, annotated with "N"), and novel user story in novel category (Name of the category in column "New Feature"). **NOTE 1:** It should be noticed that in the paper the case "refinement" is said to be annotated with "R" (instead of "N", as in the files) to make the paper clearer and easy to read.
- Roles: roles used in the user stories, and count of the user stories belonging to a certain role.
/Raw-Data-Phaes-II
The folder contains one Excel file for each analyst, s1.xlsx...s30.xlsx. Each file contains two tabs:
- Analysis: includes the annotation of the user stories as belonging to existing original
category (X), or to categories introduced after interviews, or to categories introduced
after app store inspired elicitation (name of category in "Cat. Created in PH1"), or to
entirely novel categories (name of category in "New Category").
- Roles: roles used in the user stories, and count of the user stories belonging to a certain role.
/Figures
This folder includes the figures reported in the paper. The boxplots are generated from the
data using the tool http://shiny.chemgrid.org/boxplotr/. The histograms and other plots are
produced with Excel, and are also reported in the excel files listed above.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This figshare item provides data and R code to reproduce the analysis in the following paper:Weller, DE; ME Baker, and RS King. 2023. New methods for quantifying the effects of catchment spatial patterns on aquatic responses. Landscape Ecology. https://doi.org/10.1007/s10980-023-01706-xThis figshare item provides 14 files: five data files (.csv files), a list of models to be fitted by the R code (Modlist.csv), and seven files of R code (.R files). The file 0SpatialAnalysis.txt provides more information on the spatial analysis we used to generate distance distributions.Data filesThe five data files are· subestPCB.csv· cdist.csv· hdist.csv· ldist.csv· tdist.csvThe file subestPCB.csv provides catchment id numbers, names, and average measured PCB concentrations from fish tissues for 14 study subestuaries. The remaining four files provide the distance distributions for commercial land, high-density residential land, low-density residential land, and all land. Each distance file has four columns, junk, count, catchment id, and distance. Information in the junk column is not used. Count provides land area as the number of 30 by 30 meter (0.09 hectare) pixels. The variable called distance provides the distance to the subestuary shoreline in decameters.R codeThe R codes reproduce the statistical analysis and most of the tables and figures from the published paper.We ran the codes using Rstudio. We invoked Rstudio’s New Project … > Existing Directory option to establish the directory containing the data files and R codes files as an Rstudio project. Then we ran five R codes in sequence according to the initial numbers in the file names (1ReadData.R, 2FitModels.R, 3Tables.R, 4Figures.R, and 5FigureS3.R). Each program adds to the objects saved in the R workspace within the Rstudio project. Figures and tables are saved in the subdirectory FiguresTables.The five numbered R files also use functions from two other files: DistWeightFunctionsV01.R and AuxillaryFunctionsV01.R.The first R program expects the five data files (subestPCB.csv, cdist.csv, hdist.csv, ldist.csv, and tdist.csv) to reside in the same directory as the program and the Rstudio project.Comments in the R files provide additional information on how each one works.
Attribution 2.5 (CC BY 2.5)https://creativecommons.org/licenses/by/2.5/
License information was derived automatically
Abstract The dataset was derived by the Bioregional Assessment Programme from multiple source datasets. The source datasets are identified in the Lineage field in this metadata statement. The …Show full descriptionAbstract The dataset was derived by the Bioregional Assessment Programme from multiple source datasets. The source datasets are identified in the Lineage field in this metadata statement. The processes undertaken to produce this derived dataset are described in the History field in this metadata statement. This dataset contains all the scripts used to carry out the uncertainty analysis for the maximum drawdown and time to maximum drawdown at the groundwater receptors in the Hunter bioregion and all the resulting posterior predictions. This is described in product 2.6.2 Groundwater numerical modelling (Herron et al. 2016). See History for a detailed explanation of the dataset contents. References: Herron N, Crosbie R, Peeters L, Marvanek S, Ramage A and Wilkins A (2016) Groundwater numerical modelling for the Hunter subregion. Product 2.6.2 for the Hunter subregion from the Northern Sydney Basin Bioregional Assessment. Department of the Environment, Bureau of Meteorology, CSIRO and Geoscience Australia, Australia. Dataset History This dataset uses the results of the design of experiment runs of the groundwater model of the Hunter subregion to train emulators to (a) constrain the prior parameter ensembles into the posterior parameter ensembles and to (b) generate the predictive posterior ensembles of maximum drawdown and time to maximum drawdown. This is described in product 2.6.2 Groundwater numerical modelling (Herron et al. 2016). A flow chart of the way the various files and scripts interact is provided in HUN_GW_UA_Flowchart.png (editable version in HUN_GW_UA_Flowchart.gliffy). R-script HUN_DoE_Parameters.R creates the set of parameters for the design of experiment in HUN_DoE_Parameters.csv. Each of these parameter combinations is evaluated with the groundwater model (dataset HUN GW Model v01). Associated with this spreadsheet is file HUN_GW_Parameters.csv. This file contains, for each parameter, if it is included in the sensitivity analysis, tied to another parameters, the initial value and range, the transformation, the type of prior distribution with its mean and covariance structure. The results of the design of experiment model runs are summarised in files HUN_GW_dmax_DoE_Predictions.csv, HUN_GW_tmax_DoE_Predictions.csv, HUN_GW_DoE_Observations.csv, HUN_GW_DoE_mean_BL_BF_hist.csv which have the maximum additional drawdown, the time to maximum additional drawdown for each receptor and the simulated equivalents to observed groundwater levels and SW-GW fluxes respectively. These are generated with post-processing scripts in dataset HUN GW Model v01 from the output (as exemplified in dataset HUN GW Model simulate ua999 pawsey v01). Spreadsheets HUN_GW_dmax_Predictions.csv and HUN_GW_tmax_Predictions.csv capture additional information on each prediction; the name of the prediction, transformation, min, max and median of design of experiment, a boolean to indicate the prediction is to be included in the uncertainty analysis, the layer it is assigned to and which objective function to use to constrain the prediction. Spreadsheet HUN_GW_Observations.csv has additional information on each observation; the name of the observation, a boolean to indicate to use the observation, the min and max of the design of experiment, a metadata statement describing the observation, the spatial coordinates, the observed value and the number of observations at this location (from dataset HUN bores v01). Further it has the distance of each bore to the nearest blue line network and the distance to each prediction (both in km). Spreadsheet HUN_GW_mean_BL_BF_hist.csv has similar information, but on the SW-GW flux. The observed values are from dataset HUN Groundwater Flowrate Time Series v01 These files are used in script HUN_GW_SI.py to generate sensitivity indices (based on the Plischke et al. (2013) method) for each group of observations and predictions. These indices are saved in spreadsheets HUN_GW_dmax_SI.csv, HUN_GW_tmax_SI.csv, HUN_GW_hobs_SI.py, HUN_GW_mean_BF_hist_SI.csv Script HUN_GW_dmax_ObjFun.py calculates the objective function values for the design of experiment runs. Each prediction has a tailored objective function which is a weighted sum of the residuals between observations and predictions with weights based on the distance between observation and prediction. In addition to that there is an objective function for the baseflow rates. The results are stored in HUN_GW_DoE_ObjFun.csv and HUN_GW_ObjFun.csv. The latter files are used in scripts HUN_GW_dmax_CreatePosteriorParameters.R to carry out the Monte Carlo sampling of the prior parameter distributions with the Approximate Bayesian Computation methodology as described in Herron et al (2016) by generating and applying emulators for each objective function. The scripts use the scripts in dataset R-scripts for uncertainty analysis v01. These files are run on the high performance computation cluster machines with batch file HUN_GW_dmax_CreatePosterior.slurm. These scripts result in posterior parameter combinations for each objective function, stored in directory PosteriorParameters, with filename convention HUN_GW_dmax_Posterior_Parameters_OO_$OFName$.csv where $OFName$ is the name of the objective function. Python script HUN_GW_PosteriorParameters_Percentiles.py summarizes these posterior parameter combinations and stores the results in HUN_GW_PosteriorParameters_Percentiles.csv. The same set of spreadsheets is used to test convergence of the emulator performance with script HUN_GW_emulator_convergence.R and batch file HUN_GW_emulator_convergence.slurm to produce spreadsheet HUN_GW_convergence_objfun_BF.csv. The posterior parameter distributions are sampled with scripts HUN_GW_dmax_tmax_MCsampler.R and associated .slurm batch file. The script create and apply an emulator for each prediction. The emulator and results are stored in directory Emulators. This directory is not part of the this dataset but can be regenerated by running the scripts on the high performance computation clusters. A single emulator and associated output is included for illustrative purposes. Script HUN_GW_collate_predictions.csv collates all posterior predictive distributions in spreadsheets HUN_GW_dmax_PosteriorPredictions.csv and HUN_GW_tmax_PosteriorPredictions.csv. These files are further summarised in spreadsheet HUN_GW_dmax_tmax_excprob.csv with script HUN_GW_exc_prob. This spreadsheet contains for all predictions the coordinates, layer, number of samples in the posterior parameter distribution and the 5th, 50th and 95th percentile of dmax and tmax, the probability of exceeding 1 cm and 20 cm drawdown, the maximum dmax value from the design of experiment and the threshold of the objective function and the acceptance rate. The script HUN_GW_dmax_tmax_MCsampler.R is also used to evaluate parameter distributions HUN_GW_dmax_Posterior_Parameters_HUN_OF_probe439.csv and HUN_GW_dmax_Posterior_Parameters_Mackie_OF_probe439.csv. These are, for one predictions, different parameter distributions, in which the latter represents local information. The corresponding dmax values are stored in HUN_GW_dmax_probe439_HUN.csv and HUN_GW_dmax_probe439_Mackie.csv Dataset Citation Bioregional Assessment Programme (XXXX) HUN GW Uncertainty Analysis v01. Bioregional Assessment Derived Dataset. Viewed 13 March 2019, http://data.bioregionalassessments.gov.au/dataset/c25db039-5082-4dd6-bb9d-de7c37f6949a. Dataset Ancestors Derived From HUN GW Model code v01 Derived From Hydstra Groundwater Measurement Update - NSW Office of Water, Nov2013 Derived From Groundwater Economic Elements Hunter NSW 20150520 PersRem v02 Derived From NSW Office of Water - National Groundwater Information System 20140701 Derived From Travelling Stock Route Conservation Values Derived From HUN GW Model v01 Derived From NSW Wetlands Derived From Climate Change Corridors Coastal North East NSW Derived From Communities of National Environmental Significance Database - RESTRICTED - Metadata only Derived From Climate Change Corridors for Nandewar and New England Tablelands Derived From National Groundwater Dependent Ecosystems (GDE) Atlas Derived From Fauna Corridors for North East NSW Derived From R-scripts for uncertainty analysis v01 Derived From Asset database for the Hunter subregion on 27 August 2015 Derived From Hunter CMA GDEs (DRAFT DPI pre-release) Derived From Estuarine Macrophytes of Hunter Subregion NSW DPI Hunter 2004 Derived From Birds Australia - Important Bird Areas (IBA) 2009 Derived From Camerons Gorge Grassy White Box Endangered Ecological Community (EEC) 2008 Derived From Asset database for the Hunter subregion on 16 June 2015 Derived From Spatial Threatened Species and Communities (TESC) NSW 20131129 Derived From Gippsland Project boundary Derived From Bioregional Assessment areas v04 Derived From Asset database for the Hunter subregion on 24 February 2016 Derived From Natural Resource Management (NRM) Regions 2010 Derived From Gosford Council Endangered Ecological Communities (Umina woodlands) EEC3906 Derived From NSW Office of Water Surface Water Offtakes - Hunter v1 24102013 Derived From National Groundwater Dependent Ecosystems (GDE) Atlas (including WA) Derived From Bioregional Assessment areas v03 Derived From HUN groundwater flow rate time series v01 Derived From Asset list for Hunter - CURRENT Derived From NSW Office of Water Surface Water Entitlements Locations v1_Oct2013 Derived From Species Profile and Threats Database (SPRAT) - Australia - Species of National Environmental Significance Database (BA subset - RESTRICTED - Metadata only) Derived From HUN GW Model simulate ua999 pawsey v01 Derived From Northern Rivers CMA GDEs (DRAFT DPI
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This data and code archive provides all the data and code for replicating the empirical analysis that is presented in the journal article "A Ray-Based Input Distance Function to Model Zero-Valued Output Quantities: Derivation and an Empirical Application" authored by Juan José Price and Arne Henningsen and published in the Journal of Productivity Analysis (DOI: 10.1007/s11123-023-00684-1).
We conducted the empirical analysis with the "R" statistical software (version 4.3.0) using the add-on packages "combinat" (version 0.0.8), "miscTools" (version 0.6.28), "quadprog" (version 1.5.8), sfaR (version 1.0.0), stargazer (version 5.2.3), and "xtable" (version 1.8.4) that are available at CRAN. We created the R package "micEconDistRay" that provides the functions for empirical analyses with ray-based input distance functions that we developed for the above-mentioned paper. Also this R package is available at CRAN (https://cran.r-project.org/package=micEconDistRay).
This replication package contains the following files and folders:
README This file
MuseumsDk.csv The original data obtained from the Danish Ministry of Culture and from Statistics Denmark. It includes the following variables:
museum: Name of the museum.
type: Type of museum (Kulturhistorisk museum = cultural history museum; Kunstmuseer = arts museum; Naturhistorisk museum = natural history museum; Blandet museum = mixed museum).
munic: Municipality, in which the museum is located.
yr: Year of the observation.
units: Number of visit sites.
resp: Whether or not the museum has special responsibilities (0 = no special responsibilities; 1 = at least one special responsibility).
vis: Number of (physical) visitors.
aarc: Number of articles published (archeology).
ach: Number of articles published (cultural history).
aah: Number of articles published (art history).
anh: Number of articles published (natural history).
exh: Number of temporary exhibitions.
edu: Number of primary school classes on educational visits to the museum.
ev: Number of events other than exhibitions.
ftesc: Scientific labor (full-time equivalents).
ftensc: Non-scientific labor (full-time equivalents).
expProperty: Running and maintenance costs [1,000 DKK].
expCons: Conservation expenditure [1,000 DKK].
ipc: Consumer Price Index in Denmark (the value for year 2014 is set to 1).
prepare_data.R This R script imports the data set MuseumsDk.csv, prepares it for the empirical analysis (e.g., removing unsuitable observations, preparing variables), and saves the resulting data set as DataPrepared.csv.
DataPrepared.csv This data set is prepared and saved by the R script prepare_data.R. It is used for the empirical analysis.
make_table_descriptive.R This R script imports the data set DataPrepared.csv and creates the LaTeX table /tables/table_descriptive.tex, which provides summary statistics of the variables that are used in the empirical analysis.
IO_Ray.R This R script imports the data set DataPrepared.csv, estimates a ray-based Translog input distance functions with the 'optimal' ordering of outputs, imposes monotonicity on this distance function, creates the LaTeX table /tables/idfRes.tex that presents the estimated parameters of this function, and creates several figures in the folder /figures/ that illustrate the results.
IO_Ray_ordering_outputs.R This R script imports the data set DataPrepared.csv, estimates a ray-based Translog input distance functions, imposes monotonicity for each of the 720 possible orderings of the outputs, and saves all the estimation results as (a huge) R object allOrderings.rds.
allOrderings.rds (not included in the ZIP file, uploaded separately) This is a saved R object created by the R script IO_Ray_ordering_outputs.R that contains the estimated ray-based Translog input distance functions (with and without monotonicity imposed) for each of the 720 possible orderings.
IO_Ray_model_averaging.R This R script loads the R object allOrderings.rds that contains the estimated ray-based Translog input distance functions for each of the 720 possible orderings, does model averaging, and creates several figures in the folder /figures/ that illustrate the results.
/tables/ This folder contains the two LaTeX tables table_descriptive.tex and idfRes.tex (created by R scripts make_table_descriptive.R and IO_Ray.R, respectively) that provide summary statistics of the data set and the estimated parameters (without and with monotonicity imposed) for the 'optimal' ordering of outputs.
/figures/ This folder contains 48 figures (created by the R scripts IO_Ray.R and IO_Ray_model_averaging.R) that illustrate the results obtained with the 'optimal' ordering of outputs and the model-averaged results and that compare these two sets of results.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
{# General information# The script runs with R (Version 3.1.1; 2014-07-10) and packages plyr (Version 1.8.1), XLConnect (Version 0.2-9), utilsMPIO (Version 0.0.25), sp (Version 1.0-15), rgdal (Version 0.8-16), tools (Version 3.1.1) and lattice (Version 0.20-29)# --------------------------------------------------------------------------------------------------------# Questions can be directed to: Martin Bulla (bulla.mar@gmail.com)# -------------------------------------------------------------------------------------------------------- # Data collection and how the individual variables were derived is described in: #Steiger, S.S., et al., When the sun never sets: diverse activity rhythms under continuous daylight in free-living arctic-breeding birds. Proceedings of the Royal Society B: Biological Sciences, 2013. 280(1764): p. 20131016-20131016. # Dale, J., et al., The effects of life history and sexual selection on male and female plumage colouration. Nature, 2015. # Data are available as Rdata file # Missing values are NA. # --------------------------------------------------------------------------------------------------------# For better readability the subsections of the script can be collapsed # --------------------------------------------------------------------------------------------------------}{# Description of the method # 1 - data are visualized in an interactive actogram with time of day on x-axis and one panel for each day of data # 2 - red rectangle indicates the active field, clicking with the mouse in that field on the depicted light signal generates a data point that is automatically (via custom made function) saved in the csv file. For this data extraction I recommend, to click always on the bottom line of the red rectangle, as there is always data available due to a dummy variable ("lin") that creates continuous data at the bottom of the active panel. The data are captured only if greenish vertical bar appears and if new line of data appears in R console). # 3 - to extract incubation bouts, first click in the new plot has to be start of incubation, then next click depict end of incubation and the click on the same stop start of the incubation for the other sex. If the end and start of incubation are at different times, the data will be still extracted, but the sex, logger and bird_ID will be wrong. These need to be changed manually in the csv file. Similarly, the first bout for a given plot will be always assigned to male (if no data are present in the csv file) or based on previous data. Hence, whenever a data from a new plot are extracted, at a first mouse click it is worth checking whether the sex, logger and bird_ID information is correct and if not adjust it manually. # 4 - if all information from one day (panel) is extracted, right-click on the plot and choose "stop". This will activate the following day (panel) for extraction. # 5 - If you wish to end extraction before going through all the rectangles, just press "escape". }{# Annotations of data-files from turnstone_2009_Barrow_nest-t401_transmitter.RData dfr-- contains raw data on signal strength from radio tag attached to the rump of female and male, and information about when the birds where captured and incubation stage of the nest1. who: identifies whether the recording refers to female, male, capture or start of hatching2. datetime_: date and time of each recording3. logger: unique identity of the radio tag 4. signal_: signal strength of the radio tag5. sex: sex of the bird (f = female, m = male)6. nest: unique identity of the nest7. day: datetime_ variable truncated to year-month-day format8. time: time of day in hours9. datetime_utc: date and time of each recording, but in UTC time10. cols: colors assigned to "who"--------------------------------------------------------------------------------------------------------m-- contains metadata for a given nest1. sp: identifies species (RUTU = Ruddy turnstone)2. nest: unique identity of the nest3. year_: year of observation4. IDfemale: unique identity of the female5. IDmale: unique identity of the male6. lat: latitude coordinate of the nest7. lon: longitude coordinate of the nest8. hatch_start: date and time when the hatching of the eggs started 9. scinam: scientific name of the species10. breeding_site: unique identity of the breeding site (barr = Barrow, Alaska)11. logger: type of device used to record incubation (IT - radio tag)12. sampling: mean incubation sampling interval in seconds--------------------------------------------------------------------------------------------------------s-- contains metadata for the incubating parents1. year_: year of capture2. species: identifies species (RUTU = Ruddy turnstone)3. author: identifies the author who measured the bird4. nest: unique identity of the nest5. caught_date_time: date and time when the bird was captured6. recapture: was the bird capture before? (0 - no, 1 - yes)7. sex: sex of the bird (f = female, m = male)8. bird_ID: unique identity of the bird9. logger: unique identity of the radio tag --------------------------------------------------------------------------------------------------------}
A machine learning streamflow (MLFLOW) model was developed in R (model is in the Rscripts folder) for modeling monthly streamflow from 2012 to 2017 in three watersheds on the Wyoming Range in the upper Green River basin. Geospatial information for 125 site features (vector data are in the Sites.shp file) and discrete streamflow observation data and environmental predictor data were used in fitting the MLFLOW model and predicting with the fitted model. Tabular calibration and validation data are in the Model_Fitting_Site_Data.csv file, totaling 971 discrete observations and predictions of monthly streamflow. Geospatial information for 17,518 stream grid cells (raster data are in the Streams.tif file) and environmental predictor data were used for continuous streamflow predictions with the MLFLOW model. Tabular prediction data for all the study area (17,518 stream grid cells) and study period (72 months; 2012–17) are in the Model_Prediction_Stream_Data.csv file, totaling 1,261,296 predictions of spatially and temporally continuous monthly streamflow. Additional information about the datasets is in the metadata included in the four zipped dataset files and about the MLFLOW model is in the readme included in the zipped model archive folder.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
UCS-JSpOC-soy-panel-22.csv
. This dataset combines and cleans data from the Union of Concerned Scientists and Space-Track.org to create a panel of satellites, operators, and years. This dataset is used in the paper "Oligopoly competition between satellite constellations will reduce economic welfare from orbit use". The final dataset can also be downloaded from the replication files for that paper: https://doi.org/10.57968/Middlebury.23816994.v1A "living" version of this repository can be found at: https://github.com/akhilrao/orbital-ownership-data# Repository structure* /UCS data
contains Excel and CSV data files from the Union of Concerned Scientists, as well as output files generated from data cleaning. You can find the UCS Satellite Database here: https://www.ucsusa.org/resources/satellite-database . Historical data was obtained from Dr. Teri Grimwood.* /Space-Track data
contains JSON data from Space-Track.org, files to help identify operator names for harmonization in UCS_text_cleaner.R
, and output generated from cleaning and merging data. * API queries to generate the JSON files can be found in json_cleaned_script.R. They are restated below for convenience. These queries were run on January 1, 2023 to produce the data used in "Oligopoly competition between satellite constellations will reduce economic welfare from orbit use". * 33999/OBJECT_TYPE/PAYLOAD/orderby/INTLDES asc/emptyresult/show* /Current R scripts
contains R scripts to process the data. * combined_scripts.R
loads and cleans UCS data. It takes the raw CSV files from /UCS data
as input and produces UCS_Combined_Data.csv
as output. * UCS_text_cleaner.R
harmonizes various text fields in the UCS data, including operator and owner names. Best efforts were made to ensure correctness and completeness, but some gaps may remain. * json_cleaned_script.R
loads and cleans Space-Track data, and merges it with the cleaned and combined UCS data. * panel_builder.R
uses the cleaned and merged files to construct the satellite-operator-year panel dataset with annual satellite histories and operator information. The logic behind the dataset construction approach is described in this blog post: https://akhilrao.github.io/blog//data/2020/08/20/build_stencil_cut/* /Output_figures
contains figures produced by the scripts. Some are diagnostic, some are just interesting.* /Output_data
contains the final data outputs.* /data-cleaning-notes
contains Excel and CSV files used to assist in harmonizing text fields in UCS_text_cleaner.R
. They are included here for completeness.# Creating the datasetTo reproduce the UCS-JSpOC-soy-panel-22.csv
dataset:1. Ensure R
is installed along with the required packages2. Run the scripts in /Current R scripts
in the following order: * combined_scripts.R
(this will call UCS_text_cleaner.R
) * json_cleaned_script.R
* panel_builder.R
3. The output file UCS-JSpOC-soy-panel-22.csv
, along with several intermediate files used to create it, will be generated in /Output data
This dataset contains all data and code necessary to reproduce the analysis presented in the manuscript: Winzeler, H.E., Owens, P.R., Read Q.D.., Libohova, Z., Ashworth, A., Sauer, T. 2022. 2022. Topographic wetness index as a proxy for soil moisture in a hillslope catena: flow algorithms and map generalization. Land 11:2018. DOI: 10.3390/land11112018. There are several steps to this analysis. The relevant scripts for each are listed below. The first step is to use the raw digital elevation data (DEM) to produce different versions of the topographic wetness index (TWI) for the study region (Calculating TWI). Then, these TWI output files are processed, along with soil moisture (volumetric water content or VWC) time series data from a number of sensors located within the study region, to create analysis-ready data objects (Processing TWI and VWC). Next, models are fit relating TWI to soil moisture (Model fitting) and results are plotted (Visualizing main results). A number of additional analyses were also done (Additional analyses). Input data The DEM of the study region is archived in this dataset as SourceDem.zip. This contains the DEM of the study region (DEM1.sgrd) and associated auxiliary files all called DEM1.* with different extensions. In addition, the DEM is provided as a .tif file called USGS_one_meter_x39y400_AR_R6_WashingtonCO_2015.tif. The remaining data and code files are archived in the repository created with a GitHub release on 2022-10-11, twi-moisture-0.1.zip. The data are found in a subfolder called data. 2017_LoggerData_HEW.csv through 2021_HEW.csv: Soil moisture (VWC) logger data for each year 2017-2021 (5 files total). 2882174.csv: weather data from a nearby station. DryPeriods2017-2021.csv: starting and ending days for dry periods 2017-2021. LoggerLocations.csv: Geographic locations and metadata for each VWC logger. Logger_Locations_TWI_2017-2021.xlsx: 546 topographic wetness indexes calculated at each VWC logger location. note: This is intermediate input created in the first step of the pipeline. Code pipeline To reproduce the analysis in the manuscript run these scripts in the following order. The scripts are all found in the root directory of the repository. See the manuscript for more details on the methods. Calculating TWI TerrainAnalysis.R: Taking the DEM file as input, calculates 546 different topgraphic wetness indexes using a variety of different algorithms. Each algorithm is run multiple times with different input parameters, as described in more detail in the manuscript. After performing this step, it is necessary to use the SAGA-GIS GUI to extract the TWI values for each of the sensor locations. The output generated in this way is included in this repository as Logger_Locations_TWI_2017-2021.xlsx. Therefore it is not necessary to rerun this step of the analysis but the code is provided for completeness. Processing TWI and VWC read_process_data.R: Takes raw TWI and moisture data files and processes them into analysis-ready format, saving the results as CSV. qc_avg_moisture.R: Does additional quality control on the moisture data and averages it across different time periods. Model fitting Models were fit regressing soil moisture (average VWC for a certain time period) against a TWI index, with and without soil depth as a covariate. In each case, for both the model without depth and the model with depth, prediction performance was calculated with and without spatially-blocked cross-validation. Where cross validation wasn't used, we simply used the predictions from the model fit to all the data. fit_combos.R: Models were fit to each combination of soil moisture averaged over 57 months (all months from April 2017-December 2021) and 546 TWI indexes. In addition models were fit to soil moisture averaged over years, and to the grand mean across the full study period. fit_dryperiods.R: Models were fit to soil moisture averaged over previously identified dry periods within the study period (each 1 or 2 weeks in length), again for each of the 546 indexes. fit_summer.R: Models were fit to the soil moisture average for the months of June-September for each of the five years, again for each of the 546 indexes. Visualizing main results Preliminary visualization of results was done in a series of RMarkdown notebooks. All the notebooks follow the same general format, plotting model performance (observed-predicted correlation) across different combinations of time period and characteristics of the TWI indexes being compared. The indexes are grouped by SWI versus TWI, DEM filter used, flow algorithm, and any other parameters that varied. The notebooks show the model performance metrics with and without the soil depth covariate, and with and without spatially-blocked cross-validation. Crossing those two factors, there are four values for model performance for each combination of time period and TWI index presented. performance_plots_bymonth.Rmd: Using the results from the models fit to each month of data separately, prediction performance was averaged by month across the five years of data to show within-year trends. performance_plots_byyear.Rmd: Using the results from the models fit to each month of data separately, prediction performance was averaged by year to show trends across multiple years. performance_plots_dry_periods.Rmd: Prediction performance was presented for the models fit to the previously identified dry periods. performance_plots_summer.Rmd: Prediction performance was presented for the models fit to the June-September moisture averages. Additional analyses Some additional analyses were done that may not be published in the final manuscript but which are included here for completeness. 2019dryperiod.Rmd: analysis, done separately for each day, of a specific dry period in 2019. alldryperiodsbyday.Rmd: analysis, done separately for each day, of the same dry periods discussed above. best_indices.R: after fitting models, this script was used to quickly identify some of the best-performing indexes for closer scrutiny. wateryearfigs.R: exploratory figures showing median and quantile interval of VWC for sensors in low and high TWI locations for each water year. Resources in this dataset:Resource Title: Digital elevation model of study region. File Name: SourceDEM.zipResource Description: .zip archive containing digital elevation model files for the study region. See dataset description for more details.Resource Title: twi-moisture-0.1: Archived git repository containing all other necessary data and code . File Name: twi-moisture-0.1.zipResource Description: .zip archive containing all data and code, other than the digital elevation model archived as a separate file. This file was generated by a GitHub release made on 2022-10-11 of the git repository hosted at https://github.com/qdread/twi-moisture (private repository). See dataset description and README file contained within this archive for more details.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
LScD (Leicester Scientific Dictionary)April 2020 by Neslihan Suzen, PhD student at the University of Leicester (ns433@leicester.ac.uk/suzenneslihan@hotmail.com)Supervised by Prof Alexander Gorban and Dr Evgeny Mirkes[Version 3] The third version of LScD (Leicester Scientific Dictionary) is created from the updated LSC (Leicester Scientific Corpus) - Version 2*. All pre-processing steps applied to build the new version of the dictionary are the same as in Version 2** and can be found in description of Version 2 below. We did not repeat the explanation. After pre-processing steps, the total number of unique words in the new version of the dictionary is 972,060. The files provided with this description are also same as described as for LScD Version 2 below.* Suzen, Neslihan (2019): LSC (Leicester Scientific Corpus). figshare. Dataset. https://doi.org/10.25392/leicester.data.9449639.v2** Suzen, Neslihan (2019): LScD (Leicester Scientific Dictionary). figshare. Dataset. https://doi.org/10.25392/leicester.data.9746900.v2[Version 2] Getting StartedThis document provides the pre-processing steps for creating an ordered list of words from the LSC (Leicester Scientific Corpus) [1] and the description of LScD (Leicester Scientific Dictionary). This dictionary is created to be used in future work on the quantification of the meaning of research texts. R code for producing the dictionary from LSC and instructions for usage of the code are available in [2]. The code can be also used for list of texts from other sources, amendments to the code may be required.LSC is a collection of abstracts of articles and proceeding papers published in 2014 and indexed by the Web of Science (WoS) database [3]. Each document contains title, list of authors, list of categories, list of research areas, and times cited. The corpus contains only documents in English. The corpus was collected in July 2018 and contains the number of citations from publication date to July 2018. The total number of documents in LSC is 1,673,824.LScD is an ordered list of words from texts of abstracts in LSC.The dictionary stores 974,238 unique words, is sorted by the number of documents containing the word in descending order. All words in the LScD are in stemmed form of words. The LScD contains the following information:1.Unique words in abstracts2.Number of documents containing each word3.Number of appearance of a word in the entire corpusProcessing the LSCStep 1.Downloading the LSC Online: Use of the LSC is subject to acceptance of request of the link by email. To access the LSC for research purposes, please email to ns433@le.ac.uk. The data are extracted from Web of Science [3]. You may not copy or distribute these data in whole or in part without the written consent of Clarivate Analytics.Step 2.Importing the Corpus to R: The full R code for processing the corpus can be found in the GitHub [2].All following steps can be applied for arbitrary list of texts from any source with changes of parameter. The structure of the corpus such as file format and names (also the position) of fields should be taken into account to apply our code. The organisation of CSV files of LSC is described in README file for LSC [1].Step 3.Extracting Abstracts and Saving Metadata: Metadata that include all fields in a document excluding abstracts and the field of abstracts are separated. Metadata are then saved as MetaData.R. Fields of metadata are: List_of_Authors, Title, Categories, Research_Areas, Total_Times_Cited and Times_cited_in_Core_Collection.Step 4.Text Pre-processing Steps on the Collection of Abstracts: In this section, we presented our approaches to pre-process abstracts of the LSC.1.Removing punctuations and special characters: This is the process of substitution of all non-alphanumeric characters by space. We did not substitute the character “-” in this step, because we need to keep words like “z-score”, “non-payment” and “pre-processing” in order not to lose the actual meaning of such words. A processing of uniting prefixes with words are performed in later steps of pre-processing.2.Lowercasing the text data: Lowercasing is performed to avoid considering same words like “Corpus”, “corpus” and “CORPUS” differently. Entire collection of texts are converted to lowercase.3.Uniting prefixes of words: Words containing prefixes joined with character “-” are united as a word. The list of prefixes united for this research are listed in the file “list_of_prefixes.csv”. The most of prefixes are extracted from [4]. We also added commonly used prefixes: ‘e’, ‘extra’, ‘per’, ‘self’ and ‘ultra’.4.Substitution of words: Some of words joined with “-” in the abstracts of the LSC require an additional process of substitution to avoid losing the meaning of the word before removing the character “-”. Some examples of such words are “z-test”, “well-known” and “chi-square”. These words have been substituted to “ztest”, “wellknown” and “chisquare”. Identification of such words is done by sampling of abstracts form LSC. The full list of such words and decision taken for substitution are presented in the file “list_of_substitution.csv”.5.Removing the character “-”: All remaining character “-” are replaced by space.6.Removing numbers: All digits which are not included in a word are replaced by space. All words that contain digits and letters are kept because alphanumeric characters such as chemical formula might be important for our analysis. Some examples are “co2”, “h2o” and “21st”.7.Stemming: Stemming is the process of converting inflected words into their word stem. This step results in uniting several forms of words with similar meaning into one form and also saving memory space and time [5]. All words in the LScD are stemmed to their word stem.8.Stop words removal: Stop words are words that are extreme common but provide little value in a language. Some common stop words in English are ‘I’, ‘the’, ‘a’ etc. We used ‘tm’ package in R to remove stop words [6]. There are 174 English stop words listed in the package.Step 5.Writing the LScD into CSV Format: There are 1,673,824 plain processed texts for further analysis. All unique words in the corpus are extracted and written in the file “LScD.csv”.The Organisation of the LScDThe total number of words in the file “LScD.csv” is 974,238. Each field is described below:Word: It contains unique words from the corpus. All words are in lowercase and their stem forms. The field is sorted by the number of documents that contain words in descending order.Number of Documents Containing the Word: In this content, binary calculation is used: if a word exists in an abstract then there is a count of 1. If the word exits more than once in a document, the count is still 1. Total number of document containing the word is counted as the sum of 1s in the entire corpus.Number of Appearance in Corpus: It contains how many times a word occurs in the corpus when the corpus is considered as one large document.Instructions for R CodeLScD_Creation.R is an R script for processing the LSC to create an ordered list of words from the corpus [2]. Outputs of the code are saved as RData file and in CSV format. Outputs of the code are:Metadata File: It includes all fields in a document excluding abstracts. Fields are List_of_Authors, Title, Categories, Research_Areas, Total_Times_Cited and Times_cited_in_Core_Collection.File of Abstracts: It contains all abstracts after pre-processing steps defined in the step 4.DTM: It is the Document Term Matrix constructed from the LSC[6]. Each entry of the matrix is the number of times the word occurs in the corresponding document.LScD: An ordered list of words from LSC as defined in the previous section.The code can be used by:1.Download the folder ‘LSC’, ‘list_of_prefixes.csv’ and ‘list_of_substitution.csv’2.Open LScD_Creation.R script3.Change parameters in the script: replace with the full path of the directory with source files and the full path of the directory to write output files4.Run the full code.References[1]N. Suzen. (2019). LSC (Leicester Scientific Corpus) [Dataset]. Available: https://doi.org/10.25392/leicester.data.9449639.v1[2]N. Suzen. (2019). LScD-LEICESTER SCIENTIFIC DICTIONARY CREATION. Available: https://github.com/neslihansuzen/LScD-LEICESTER-SCIENTIFIC-DICTIONARY-CREATION[3]Web of Science. (15 July). Available: https://apps.webofknowledge.com/[4]A. Thomas, "Common Prefixes, Suffixes and Roots," Center for Development and Learning, 2013.[5]C. Ramasubramanian and R. Ramya, "Effective pre-processing activities in text mining using improved porter’s stemming algorithm," International Journal of Advanced Research in Computer and Communication Engineering, vol. 2, no. 12, pp. 4536-4538, 2013.[6]I. Feinerer, "Introduction to the tm Package Text Mining in R," Accessible en ligne: https://cran.r-project.org/web/packages/tm/vignettes/tm.pdf, 2013.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This replication package contains datasets and scripts related to the paper: "*How do Hugging Face Models Document Datasets, Bias, and Licenses? An Empirical Study*"
## Root directory
- `statistics.r`: R script used to compute the correlation between usage and downloads, and the RQ1/RQ2 inter-rater agreements
- `modelsInfo.zip`: zip file containing all the downloaded model cards (in JSON format)
- `script`: directory containing all the scripts used to collect and process data. For further details, see README file inside the script directory.
## Dataset
- `Dataset/Dataset_HF-models-list.csv`: list of HF models analyzed
- `Dataset/Dataset_github-prj-list.txt`: list of GitHub projects using the *transformers* library
- `Dataset/Dataset_github-Prj_model-Used.csv`: contains usage pairs: project, model
- `Dataset/Dataset_prj-num-models-reused.csv`: number of models used by each GitHub project
- `Dataset/Dataset_model-download_num-prj_correlation.csv` contains, for each model used by GitHub projects: the name, the task, the number of reusing projects, and the number of downloads
## RQ1
- `RQ1/RQ1_dataset-list.txt`: list of HF datasets
- `RQ1/RQ1_datasetSample.csv`: sample set of models used for the manual analysis of datasets
- `RQ1/RQ1_analyzeDatasetTags.py`: Python script to analyze model tags for the presence of datasets. it requires to unzip the `modelsInfo.zip` in a directory with the same name (`modelsInfo`) at the root of the replication package folder. Produces the output to stdout. To redirect in a file fo be analyzed by the `RQ2/countDataset.py` script
- `RQ1/RQ1_countDataset.py`: given the output of `RQ2/analyzeDatasetTags.py` (passed as argument) produces, for each model, a list of Booleans indicating whether (i) the model only declares HF datasets, (ii) the model only declares external datasets, (iii) the model declares both, and (iv) the model is part of the sample for the manual analysis
- `RQ1/RQ1_datasetTags.csv`: output of `RQ2/analyzeDatasetTags.py`
- `RQ1/RQ1_dataset_usage_count.csv`: output of `RQ2/countDataset.py`
## RQ2
- `RQ2/tableBias.pdf`: table detailing the number of occurrences of different types of bias by model Task
- `RQ2/RQ2_bias_classification_sheet.csv`: results of the manual labeling
- `RQ2/RQ2_isBiased.csv`: file to compute the inter-rater agreement of whether or not a model documents Bias
- `RQ2/RQ2_biasAgrLabels.csv`: file to compute the inter-rater agreement related to bias categories
- `RQ2/RQ2_final_bias_categories_with_levels.csv`: for each model in the sample, this file lists (i) the bias leaf category, (ii) the first-level category, and (iii) the intermediate category
## RQ3
- `RQ3/RQ3_LicenseValidation.csv`: manual validation of a sample of licenses
- `RQ3/RQ3_{NETWORK-RESTRICTIVE|RESTRICTIVE|WEAK-RESTRICTIVE|PERMISSIVE}-license-list.txt`: lists of licenses with different permissiveness
- `RQ3/RQ3_prjs_license.csv`: for each project linked to models, among other fields it indicates the license tag and name
- `RQ3/RQ3_models_license.csv`: for each model, indicates among other pieces of info, whether the model has a license, and if yes what kind of license
- `RQ3/RQ3_model-prj-license_contingency_table.csv`: usage contingency table between projects' licenses (columns) and models' licenses (rows)
- `RQ3/RQ3_models_prjs_licenses_with_type.csv`: pairs project-model, with their respective licenses and permissiveness level
## scripts
Contains the scripts used to mine Hugging Face and GitHub. Details are in the enclosed README
This dataset contains (a) a script “R_met_integrated_for_modeling.R”, and (b) associated input CSV files: 3 CSV files per location to create a 5-variable integrated meteorological dataset file (air temperature, precipitation, wind speed, relative humidity, and solar radiation) for 19 meteorological stations and 1 location within Trail Creek from the modeling team within the East River Community Observatory as part of the Watershed Function Scientific Focus Area (SFA). As meteorological forcings varied across the watershed, a high-frequency database is needed to ensure consistency in the data analysis and modeling. We evaluated several data sources, including gridded meteorological products and field data from meteorological stations. We determined that our modeling efforts required multiple data sources to meet all their needs. As output, this dataset contains (c) a single CSV data file (*_1981-2022.csv) for each location (20 CSV output files total) containing hourly time series data for 1981 to 2022 and (d) five PNG files of time series and density plots for each variable per location (100 PNG files). Detailed location metadata is contained within the Integrated_Met_Database_Locations.csv file for each point location included within this dataset, obtained from Varadharajan et al., 2023 doi:10.15485/1660962. This dataset also includes (e) a file-level metadata (flmd.csv) file that lists each file contained in the dataset with associated metadata and (f) a data dictionary (dd.csv) file that contains column/row headers used throughout the files along with a definition, units, and data type. Review the (g) ReadMe_Integrated_Met_Database.pdf file for additional details on the script, methods, and structure of the dataset. The script integrates Northwest Alliance for Computational Science and Engineering’s PRISM gridded data product, National Oceanic and Atmospheric Administration’s NCEP-NCAR Reanalysis 1 gridded data product (through the RCNEP
R package, Kemp et al., doi:10.32614/CRAN.package.RNCEP), and analytical-based calculations. Further, this script downscales the input data into hourly frequency, which is necessary for the modeling efforts.
A routine was developed in R ('bathy_plots.R') to plot bathymetry data over time during individual CEAMARC events. This is so we can analyse benthic data in relation to habitat, ie. did we trawl over a slope or was the sea floor relatively flat. Note that the depth range in the plots is autoscaled to the data, so a small range in depths appears as a scatetring of points. As long as you look at the depth scale though interpretation will be ok.
The R files need a file of bathymetry data in '200708V3_one_minute.csv' which is a file containing a data export from the underway PostgreSQL ship database and 'events.csv' which is a stripped down version of the events export from the ship board events database export. If you wish to run the code again you may need to change the pathnames in the R script to relevant locations. If you have opened the csv files in excel at any stage and the R script gets an error you may need to format the date/time columns as yyyy-mm-dd hh;mm:ss, save and close the file as csv without opening it again and then run the R script.
However, all output files are here for every CEAMARC event. Filenames contain a reference to CEAMARC event id. Files are in eps format and can be viewed using Ghostview which is available as a free download on the internet.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset also contains participantCharacteristics.csv that povides basic information about participants and read_a_binFile_share.R that is a short R code aiming at converting and saving accelerometer data from .bin files in 1 second epoch .csv files (consider the Methods section).
Participant characteristics: 10 to 16 years old students and some parents.
Number of participants: 231 (206 adolescents + 25 adults).
Year of the study: 2018 - 2019.
Place of the study: New Caledonia.
The accelerometer .csv files with a 1 second epoch and extracted from raw .bin files are available in open datasets:
The accelerometer raw .bin files are available in restricted datasets:
Other participant characteristics (age, place of living, cultural community and socio-economic status) are available in a https://doi.org/10.5281/zenodo.12195186" target="_blank" rel="noopener">restricted non-anonymized dataset.
When using this dataset, please cite the following reference:
https://doi.org/10.1016/j.dib.2024.111228" target="_blank" rel="noopener">G. Wattelez, S. Frayon, O. Galy, Assessing physical activity/behavior of adolescents living in the Pacific with accelerometer data: 231 GENEActiv records in New Caledonia, Data in Brief 58 (2025) 111228, doi: 10.1016/j.dib.2024.111228
Sediment diatoms are widely used to track environmental histories of lakes and their watersheds, but merging datasets generated by different researchers for further large-scale studies is challenging because of the taxonomic discrepancies caused by rapidly evolving diatom nomenclature and taxonomic concepts. Here we collated five datasets of lake sediment diatoms from the northeastern USA using a harmonization process which included updating synonyms, tracking the identity of inconsistently identified taxa and grouping those that could not be resolved taxonomically. The Dataset consists of a Portable Document Format (.pdf) file of the Voucher Flora, six Microsoft Excel (.xlsx) data files, an R script, and five output Comma Separated Values (.csv) files.
The Voucher Flora documents the morphological species concepts in the dataset using diatom images compiled into plates (NE_Lakes_Voucher_Flora_102421.pdf) and the translation scheme of the OTU codes to diatom scientific or provisional names with identification sources, references, and notes (VoucherFloraTranslation_102421.xlsx).
The file Slide_accession_numbers_102421.xlsx has slide accession numbers in the ANS Diatom Herbarium.
The “DiatomHarmonization_032222_files for R.zip” archive contains four Excel input data files, the R code, and a subfolder “OUTPUT” with five .csv files. The file Counts_original_long_102421.xlsx contains original diatom count data in long format. The file Harmonization_102421.xlsx is the taxonomic harmonization scheme with notes and references. The file SiteInfo_031922.xlsx contains sampling site- and sample-level information. WaterQualityData_021822.xlsx is a supplementary file with water quality data. R code (DiatomHarmonization_032222.R) was used to apply the harmonization scheme to the original diatom counts to produce the output files. The resulting output files are five wide format files containing diatom count data at different harmonization steps (Counts_1327_wide.csv, Step1_1327_wide.csv, Step2_1327_wide.csv, Step3_1327_wide.csv) and the summary of the Indicator Species Analysis (INDVAL_RESULT.csv). The harmonization scheme (Harmonization_102421.xlsx) can be further modified based on additional taxonomic investigations, while the associated R code (DiatomHarmonization_032222.R) provides a straightforward mechanism to diatom data versioning.
This dataset is associated with the following publication: Potapova, M., S. Lee, S. Spaulding, and N. Schulte. A harmonized dataset of sediment diatoms from hundreds of lakes in the northeastern United States. Scientific Data. Springer Nature, New York, NY, 9(540): 1-8, (2022).
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This child page contains a zipped folder which contains all of the items necessary to run load estimation using R-LOADEST to produce results that are published in U.S. Geological Survey Investigations Report 2021-XXXX [Tatge, W.S., Nustad, R.A., and Galloway, J.M., 2021, Evaluation of Salinity and Nutrient Conditions in the Heart River Basin, North Dakota, 1970-2020: U.S. Geological Survey Scientific Investigations Report 2021-XXXX, XX p]. The folder contains an allsiteinfo.table.csv file, a "datain" folder, and a "scripts" folder. The allsiteinfo.table.csv file can be used to cross reference the sites with the main report (Tatge and others, 2021). The "datain" folder contains all the input data necessary to reproduce the load estimation results. The naming convention in the "datain" folder is site_MI_rloadest or site_NUT_rloadest for either the major ion loads or the nutrient loads. The .Rdata files are used in the scripts to run the estimations and the .csv files can be used to ...
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Pathogen diversity resulting in quasispecies can enable persistence and adaptation to host defenses and therapies. However, accurate quasispecies characterization can be impeded by errors introduced during sample handling and sequencing which can require extensive optimizations to overcome. We present complete laboratory and bioinformatics workflows to overcome many of these hurdles. The Pacific Biosciences single molecule real-time platform was used to sequence PCR amplicons derived from cDNA templates tagged with universal molecular identifiers (SMRT-UMI). Optimized laboratory protocols were developed through extensive testing of different sample preparation conditions to minimize between-template recombination during PCR and the use of UMI allowed accurate template quantitation as well as removal of point mutations introduced during PCR and sequencing to produce a highly accurate consensus sequence from each template. Handling of the large datasets produced from SMRT-UMI sequencing was facilitated by a novel bioinformatic pipeline, Probabilistic Offspring Resolver for Primer IDs (PORPIDpipeline), that automatically filters and parses reads by sample, identifies and discards reads with UMIs likely created from PCR and sequencing errors, generates consensus sequences, checks for contamination within the dataset, and removes any sequence with evidence of PCR recombination or early cycle PCR errors, resulting in highly accurate sequence datasets. The optimized SMRT-UMI sequencing method presented here represents a highly adaptable and established starting point for accurate sequencing of diverse pathogens. These methods are illustrated through characterization of human immunodeficiency virus (HIV) quasispecies.
Methods
This serves as an overview of the analysis performed on PacBio sequence data that is summarized in Analysis Flowchart.pdf and was used as primary data for the paper by Westfall et al. "Optimized SMRT-UMI protocol produces highly accurate sequence datasets from diverse populations – application to HIV-1 quasispecies"
Five different PacBio sequencing datasets were used for this analysis: M027, M2199, M1567, M004, and M005
For the datasets which were indexed (M027, M2199), CCS reads from PacBio sequencing files and the chunked_demux_config files were used as input for the chunked_demux pipeline. Each config file lists the different Index primers added during PCR to each sample. The pipeline produces one fastq file for each Index primer combination in the config. For example, in dataset M027 there were 3–4 samples using each Index combination. The fastq files from each demultiplexed read set were moved to the sUMI_dUMI_comparison pipeline fastq folder for further demultiplexing by sample and consensus generation with that pipeline. More information about the chunked_demux pipeline can be found in the README.md file on GitHub.
The demultiplexed read collections from the chunked_demux pipeline or CCS read files from datasets which were not indexed (M1567, M004, M005) were each used as input for the sUMI_dUMI_comparison pipeline along with each dataset's config file. Each config file contains the primer sequences for each sample (including the sample ID block in the cDNA primer) and further demultiplexes the reads to prepare data tables summarizing all of the UMI sequences and counts for each family (tagged.tar.gz) as well as consensus sequences from each sUMI and rank 1 dUMI family (consensus.tar.gz). More information about the sUMI_dUMI_comparison pipeline can be found in the paper and the README.md file on GitHub.
The consensus.tar.gz and tagged.tar.gz files were moved from sUMI_dUMI_comparison pipeline directory on the server to the Pipeline_Outputs folder in this analysis directory for each dataset and appended with the dataset name (e.g. consensus_M027.tar.gz). Also in this analysis directory is a Sample_Info_Table.csv containing information about how each of the samples was prepared, such as purification methods and number of PCRs. There are also three other folders: Sequence_Analysis, Indentifying_Recombinant_Reads, and Figures. Each has an .Rmd
file with the same name inside which is used to collect, summarize, and analyze the data. All of these collections of code were written and executed in RStudio to track notes and summarize results.
Sequence_Analysis.Rmd
has instructions to decompress all of the consensus.tar.gz files, combine them, and create two fasta files, one with all sUMI and one with all dUMI sequences. Using these as input, two data tables were created, that summarize all sequences and read counts for each sample that pass various criteria. These are used to help create Table 2 and as input for Indentifying_Recombinant_Reads.Rmd
and Figures.Rmd
. Next, 2 fasta files containing all of the rank 1 dUMI sequences and the matching sUMI sequences were created. These were used as input for the python script compare_seqs.py which identifies any matched sequences that are different between sUMI and dUMI read collections. This information was also used to help create Table 2. Finally, to populate the table with the number of sequences and bases in each sequence subset of interest, different sequence collections were saved and viewed in the Geneious program.
To investigate the cause of sequences where the sUMI and dUMI sequences do not match, tagged.tar.gz was decompressed and for each family with discordant sUMI and dUMI sequences the reads from the UMI1_keeping directory were aligned using geneious. Reads from dUMI families failing the 0.7 filter were also aligned in Genious. The uncompressed tagged folder was then removed to save space. These read collections contain all of the reads in a UMI1 family and still include the UMI2 sequence. By examining the alignment and specifically the UMI2 sequences, the site of the discordance and its case were identified for each family as described in the paper. These alignments were saved as "Sequence Alignments.geneious". The counts of how many families were the result of PCR recombination were used in the body of the paper.
Using Identifying_Recombinant_Reads.Rmd
, the dUMI_ranked.csv file from each sample was extracted from all of the tagged.tar.gz files, combined and used as input to create a single dataset containing all UMI information from all samples. This file dUMI_df.csv was used as input for Figures.Rmd.
Figures.Rmd
used dUMI_df.csv, sequence_counts.csv, and read_counts.csv as input to create draft figures and then individual datasets for eachFigure. These were copied into Prism software to create the final figures for the paper.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Categorical scatterplots with R for biologists: a step-by-step guide
Benjamin Petre1, Aurore Coince2, Sophien Kamoun1
1 The Sainsbury Laboratory, Norwich, UK; 2 Earlham Institute, Norwich, UK
Weissgerber and colleagues (2015) recently stated that ‘as scientists, we urgently need to change our practices for presenting continuous data in small sample size studies’. They called for more scatterplot and boxplot representations in scientific papers, which ‘allow readers to critically evaluate continuous data’ (Weissgerber et al., 2015). In the Kamoun Lab at The Sainsbury Laboratory, we recently implemented a protocol to generate categorical scatterplots (Petre et al., 2016; Dagdas et al., 2016). Here we describe the three steps of this protocol: 1) formatting of the data set in a .csv file, 2) execution of the R script to generate the graph, and 3) export of the graph as a .pdf file.
Protocol
• Step 1: format the data set as a .csv file. Store the data in a three-column excel file as shown in Powerpoint slide. The first column ‘Replicate’ indicates the biological replicates. In the example, the month and year during which the replicate was performed is indicated. The second column ‘Condition’ indicates the conditions of the experiment (in the example, a wild type and two mutants called A and B). The third column ‘Value’ contains continuous values. Save the Excel file as a .csv file (File -> Save as -> in ‘File Format’, select .csv). This .csv file is the input file to import in R.
• Step 2: execute the R script (see Notes 1 and 2). Copy the script shown in Powerpoint slide and paste it in the R console. Execute the script. In the dialog box, select the input .csv file from step 1. The categorical scatterplot will appear in a separate window. Dots represent the values for each sample; colors indicate replicates. Boxplots are superimposed; black dots indicate outliers.
• Step 3: save the graph as a .pdf file. Shape the window at your convenience and save the graph as a .pdf file (File -> Save as). See Powerpoint slide for an example.
Notes
• Note 1: install the ggplot2 package. The R script requires the package ‘ggplot2’ to be installed. To install it, Packages & Data -> Package Installer -> enter ‘ggplot2’ in the Package Search space and click on ‘Get List’. Select ‘ggplot2’ in the Package column and click on ‘Install Selected’. Install all dependencies as well.
• Note 2: use a log scale for the y-axis. To use a log scale for the y-axis of the graph, use the command line below in place of command line #7 in the script.
replicates
graph + geom_boxplot(outlier.colour='black', colour='black') + geom_jitter(aes(col=Replicate)) + scale_y_log10() + theme_bw()
References
Dagdas YF, Belhaj K, Maqbool A, Chaparro-Garcia A, Pandey P, Petre B, et al. (2016) An effector of the Irish potato famine pathogen antagonizes a host autophagy cargo receptor. eLife 5:e10856.
Petre B, Saunders DGO, Sklenar J, Lorrain C, Krasileva KV, Win J, et al. (2016) Heterologous Expression Screens in Nicotiana benthamiana Identify a Candidate Effector of the Wheat Yellow Rust Pathogen that Associates with Processing Bodies. PLoS ONE 11(2):e0149035
Weissgerber TL, Milic NM, Winham SJ, Garovic VD (2015) Beyond Bar and Line Graphs: Time for a New Data Presentation Paradigm. PLoS Biol 13(4):e1002128