Community Specific Profiles are grouped by race and ethnicity. We measure by race, ethnicity, and other demographics to understand the specific needs of different communities and evaluate effective service delivery and accountability. This dataset is the groupings used to combine projects with multiple levels and types of data standards. These include the minimum and comprehensive race and ethnicity categories from the City of Portland Rescue Plan Data Standards. They also include race and ethnicity categories in the HUD HMIS data standards.-- Additional Information: Category: ARPA Update Frequency: As Necessary-- Metadata Link: https://www.portlandmaps.com/metadata/index.cfm?&action=DisplayLayer&LayerID=60968
This report summarizes data on COVID-19 cases and COVID-19 associated deaths by race/ethnicity for the state of Connecticut and the 10 largest Connecticut towns. Data on race/ethnicity are missing on almost half (47%) of reported COVID-19 cases. CT DPH has urged healthcare providers and laboratories to complete information on race/ethnicity for all COVID-19 cases. All data in this report are preliminary; data will be updated as new COVID-19 case reports are received and data errors are corrected. Data on COVID-19 cases and COVID-19-associated deaths were last updated on April 20, 2020 at 3 PM. Information about race and ethnicity are collected on the Connecticut Department of Public Health (DPH) COVID-19 case report form, which is completed by healthcare providers for laboratory-confirmed COVID-19 cases. Information about the race/ethnicity of COVID-19-associated deaths also are collected by the Connecticut Office of the Chief Medical Examiner and shared with DPH. Race/ethnicity categories used in this report are mutually exclusive. People answering ‘yes’ to more than one race category are counted as ‘other’.
TO DOWNLOAD THE DATASET, CLICK ON THE "Download" BUTTON
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This article uses a recent first name list to develop an improvement to an existing Bayesian classifier, namely the Bayesian Improved Surname Geocoding (BISG) method, which combines surname and geography information to impute missing race/ethnicity. The new Bayesian Improved First Name Surname Geocoding (BIFSG) method is validated using a large sample of mortgage applicants who self-report their race/ethnicity. BIFSG outperforms BISG, in terms of accuracy and coverage, for all major racial/ethnic categories. Although the overall magnitude of improvement is somewhat small, the largest improvements occur for non-Hispanic Blacks, a group for which the BISG performance is weakest. When estimating the race/ethnicity effects on mortgage pricing and underwriting decisions with regression models, estimation biases from both BIFSG and BISG are very small, with BIFSG generally having smaller biases, and the maximum a posteriori classifier resulting in smaller biases than through use of estimated probabilities. Robustness checks using voter registration data confirm BIFSG's improved performance vis-a-vis BISG and illustrate BIFSG's applicability to areas other than mortgage lending. Finally, I demonstrate an application of the BIFSG to the imputation of missing race/ethnicity in the Home Mortgage Disclosure Act data, and in the process, offer novel evidence that the incidence of missing race/ethnicity information is correlated with race/ethnicity.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of East Mountain by race. It includes the population of East Mountain across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to understand the population distribution of East Mountain across relevant racial categories.
Key observations
The percent distribution of East Mountain population by race (across all racial categories recognized by the U.S. Census Bureau): 77.85% are white, 4.23% are Black or African American, 3.58% are some other race and 14.33% are multiracial.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for East Mountain Population by Race & Ethnicity. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of East Longmeadow town by race. It includes the population of East Longmeadow town across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to understand the population distribution of East Longmeadow town across relevant racial categories.
Key observations
The percent distribution of East Longmeadow town population by race (across all racial categories recognized by the U.S. Census Bureau): 85.78% are white, 2.60% are Black or African American, 1.83% are Asian, 3.04% are some other race and 6.76% are multiracial.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for East Longmeadow town Population by Race & Ethnicity. You can refer the same here
This dataset includes race/ethnicity of newly Medi-Cal eligible individuals who identified their race/ethnicity as Hispanic, White, Other Asian or Pacific Islander, Black, Chinese, Filipino, Vietnamese, Asian Indian, Korean, Alaskan Native or American Indian, Japanese, Cambodian, Samoan, Laotian, Hawaiian, Guamanian, Amerasian, or Other, by reporting period. The race/ethnicity data is from the Medi-Cal Eligibility Data System (MEDS) and includes eligible individuals without prior Medi-Cal Eligibility. This dataset is part of the public reporting requirements set forth in California Welfare and Institutions Code 14102.5.
This map uses an archive of Version 1.0 of the CEJST data as a fully functional GIS layer. See an archive of the latest version of the CEJST tool using Version 2.0 of the data released in December 2024 here.This map shows Census tracts throughout the US based on if they are considered disadvantaged or partially disadvantaged according to Justice40 Initiative criteria. This is overlaid with the most recent American Community Survey (ACS) figures from the U.S. Census Bureau to communicate the predominant race that lives within these disadvantaged or partially disadvantaged tracts. Predominance helps us understand the group of population which has the largest count within an area. Colors are more transparent if the predominant race has a similar count to another race/ethnicity group. The colors on the map help us better understand the predominant race or ethnicity:Hispanic or LatinoWhite Alone, not HispanicBlack or African American Alone, not HispanicAsian Alone, not HispanicAmerican Indian and Alaska Native Alone, not HispanicTwo or more races, not HispanicNative Hawaiian and Other Pacific Islander, not HispanicSome other race, not HispanicSearch for any region, city, or neighborhood throughout the US, DC, and Puerto Rico to learn more about the population in the disadvantaged tracts. Click on any tract to learn more. Zoom to your area, filter to your county or state, and save this web map focused on your area to share the pattern with others. You can also use this web map within an ArcGIS app such as a dashboard, instant app, or story. This map uses these hosted feature layers containing the most recent American Community Survey data. These layers are part of the ArcGIS Living Atlas, and are updated every year when the American Community Survey releases new estimates, so values in the map always reflect the newest data available.Note: Justice40 tracts use 2010-based boundaries, while the most recent ACS figures are offered on 2020-based boundaries. When you click on an area, there will be multiple pop-ups returned due to the differences in these boundaries. From Justice40 data source:"Census tract geographical boundaries are determined by the U.S. Census Bureau once every ten years. This tool utilizes the census tract boundaries from 2010 because they match the datasets used in the tool. The U.S. Census Bureau will update these tract boundaries in 2020.Under the current formula, a census tract will be identified as disadvantaged in one or more categories of criteria:IF the tract is above the threshold for one or more environmental or climate indicators AND the tract is above the threshold for the socioeconomic indicatorsCommunities are identified as disadvantaged by the current version of the tool for the purposes of the Justice40 Initiative if they are located in census tracts that are at or above the combined thresholds in one or more of eight categories of criteria.The goal of the Justice40 Initiative is to provide 40 percent of the overall benefits of certain Federal investments in [eight] key areas to disadvantaged communities. These [eight] key areas are: climate change, clean energy and energy efficiency, clean transit, affordable and sustainable housing, training and workforce development, the remediation and reduction of legacy pollution, [health burdens] and the development of critical clean water infrastructure." Source: Climate and Economic Justice Screening toolPurpose"Sec. 219. Policy. To secure an equitable economic future, the United States must ensure that environmental and economic justice are key considerations in how we govern. That means investing and building a clean energy economy that creates well‑paying union jobs, turning disadvantaged communities — historically marginalized and overburdened — into healthy, thriving communities, and undertaking robust actions to mitigate climate change while preparing for the impacts of climate change across rural, urban, and Tribal areas. Agencies shall make achieving environmental justice part of their missions by developing programs, policies, and activities to address the disproportionately high and adverse human health, environmental, climate-related and other cumulative impacts on disadvantaged communities, as well as the accompanying economic challenges of such impacts. It is therefore the policy of my Administration to secure environmental justice and spur economic opportunity for disadvantaged communities that have been historically marginalized and overburdened by pollution and underinvestment in housing, transportation, water and wastewater infrastructure, and health care." Source: Executive Order on Tackling the Climate Crisis at Home and AbroadUse of this Data"The pilot identifies 21 priority programs to immediately begin enhancing benefits for disadvantaged communities. These priority programs will provide a blueprint for other agencies to help inform their work to implement the Justice40 Initiative across government." Source: The Path to Achieving Justice 40
Includes self-identified race/ethnicity and gender information for current employees. Information about current city employees as of "Data Last Updated" date (usually first Monday of the month). This information is collected and reported to U.S. Equal Employment Opportunity Commission (EEOC). Race/Ethnicity categories are defined by EEOC (see pages 2-3 of the document the Attachments section below). See EEO-4 State and Local Government Information Report.
Race categories for White, Black, Asian, American Indian or Alaska Native, Native Hawaiian or Pacific Islander, other race, and two or more races are non-Hispanic. Due to rounding, race and ethnicity categories may not sum to 100%. Estimates are based on provisional data and subject to change.For more information about the Community Health Profiles Data Initiative, please see the initiative homepage.
Minimum and comprehensive race and ethnicity categories in the City of Portland Rescue Plan Data Standards.-- Additional Information: Category: ARPA Update Frequency: As Necessary-- Metadata Link: https://www.portlandmaps.com/metadata/index.cfm?&action=DisplayLayer&LayerID=60969
Knowing the racial and ethnic composition of a community is often one of the first steps in understanding, serving, and advocating for various groups. This information can help enforce laws, policies, and regulations against discrimination based on race and ethnicity. These statistics can also help tailor services to accommodate cultural differences.This multi-scale map shows the most common race/ethnicity living within an area. Map opens at tract-level in Los Angeles, CA but has national coverage. Zoom out to see counties and states.This map uses these hosted feature layers containing the most recent American Community Survey data. These layers are part of the ArcGIS Living Atlas, and are updated every year when the American Community Survey releases new estimates, so values in the map always reflect the newest data available. The data on race were derived from answers to the question on race that was asked of individuals in the United States. The Census Bureau collects racial data in accordance with guidelines provided by the U.S. Office of Management and Budget (OMB), and these data are based on self-identification. The racial categories included in the census questionnaire generally reflect a social definition of race recognized in this country and not an attempt to define race biologically, anthropologically, or genetically. The categories represent a social-political construct designed for collecting data on the race and ethnicity of broad population groups in this country, and are not anthropologically or scientifically based. Learn more here.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Sharon by race. It includes the population of Sharon across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to understand the population distribution of Sharon across relevant racial categories.
Key observations
The percent distribution of Sharon population by race (across all racial categories recognized by the U.S. Census Bureau): 80.19% are white, 13.75% are Black or African American, 0.17% are American Indian and Alaska Native, 0.29% are Asian, 0.51% are some other race and 5.10% are multiracial.
https://i.neilsberg.com/ch/sharon-pa-population-by-race.jpeg" alt="Sharon population by race">
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Sharon Population by Race & Ethnicity. You can refer the same here
This layer shows the population broken down by race and Hispanic origin. Data is from US Census American Community Survey (ACS) 5-year estimates.To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right (in ArcGIS Online). A ‘Null’ entry in the estimate indicates that data for this geographic area cannot be displayed because the number of sample cases is too small (per the U.S. Census).Vintage: 2018-2022ACS Table(s): B03002 (Not all lines of this ACS table are available in this feature layer.)Data downloaded from: Census Bureau's API for American Community Survey Data Preparation: Data table was downloaded and joined with Zip Code boundaries in the City of Tempe.Date of Census update: December 15, 2023National Figures: data.census.gov
This dataset includes live births, birth rates, and fertility rates by race of mother in the United States since 1960. Data availability varies by race and ethnicity groups. All birth data by race before 1980 are based on race of the child. Since 1980, birth data by race are based on race of the mother. For race, data are available for Black and White births since 1960, and for American Indians/Alaska Native and Asian/Pacific Islander births since 1980. Data on Hispanic origin are available since 1989. Teen birth rates for specific racial and ethnic categories are also available since 1989. From 2003 through 2015, the birth data by race were based on the “bridged” race categories (5). Starting in 2016, the race categories for reporting birth data changed; the new race and Hispanic origin categories are: Non-Hispanic, Single Race White; Non-Hispanic, Single Race Black; Non-Hispanic, Single Race American Indian/Alaska Native; Non-Hispanic, Single Race Asian; and, Non-Hispanic, Single Race Native Hawaiian/Pacific Islander (5,6). Birth data by the prior, “bridged” race (and Hispanic origin) categories are included through 2018 for comparison. SOURCES NCHS, National Vital Statistics System, birth data (see https://www.cdc.gov/nchs/births.htm); public-use data files (see https://www.cdc.gov/nchs/data_access/VitalStatsOnline.htm); and CDC WONDER (see http://wonder.cdc.gov/). REFERENCES National Office of Vital Statistics. Vital Statistics of the United States, 1950, Volume I. 1954. Available from: https://www.cdc.gov/nchs/data/vsus/vsus_1950_1.pdf. Hetzel AM. U.S. vital statistics system: major activities and developments, 1950-95. National Center for Health Statistics. 1997. Available from: https://www.cdc.gov/nchs/data/misc/usvss.pdf. National Center for Health Statistics. Vital Statistics of the United States, 1967, Volume I–Natality. 1969. Available from: https://www.cdc.gov/nchs/data/vsus/nat67_1.pdf. Martin JA, Hamilton BE, Osterman MJK, et al. Births: Final data for 2015. National vital statistics reports; vol 66 no 1. Hyattsville, MD: National Center for Health Statistics. 2017. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr66/nvsr66_01.pdf. Martin JA, Hamilton BE, Osterman MJK, Driscoll AK, Drake P. Births: Final data for 2016. National Vital Statistics Reports; vol 67 no 1. Hyattsville, MD: National Center for Health Statistics. 2018. Available from: https://www.cdc.gov/nvsr/nvsr67/nvsr67_01.pdf. Martin JA, Hamilton BE, Osterman MJK, Driscoll AK, Births: Final data for 2018. National vital statistics reports; vol 68 no 13. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_13.pdf.
Table published by the Connecticut Department of Public Health that contains reportable disease data. Each row of data represents a case of disease in a person with their reported race/ethnicity. Information on race/ethnicity is gathered from individuals during case interviews. Reported race and ethnicity information is used create a single race/ethnicity variable. People with more than one race are classified as two or more races. People with Hispanic ethnicity are classified as Hispanic regardless of reported race(s). People with a missing ethnicity are classified as non-Hispanic. All data are preliminary; data for previous weeks are routinely updated as new reports are received, duplicate records are removed, and data errors are corrected. The following disease(s) are included in this table: MPOX (previously called Monkeypox), Influenza
Includes self-identified race/ethnicity and gender information for current employees only. The value "Redacted" is used as department name where there are fewer than 10 employees. Information about current city employees as of "Data Last Updated" date (usually monthly). This information is collected and reported to U.S. Equal Employment Opportunity Commission (EEOC). Race/Ethnicity categories are defined by EEOC (see pages 2-3 of the document the Attachments section below). See EEO-4 State and Local Government Information Report.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘ACS and LTDB Race Data by Community Reporting Area’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/d8e11059-8f97-42b5-986f-9dd40a5fba03 on 27 January 2022.
--- Dataset description provided by original source is as follows ---
Abstract: Census tract-based race and ethnicity data aggregated to City of Seattle Community Reporting Areas (CRAs) from the 1990 and 2010 Brown University Longitudinal Database (LTDB), 2010 decennial census and the 2014-2018 5-year American Community Survey (ACS). Brown University researchers created the LTDB to allow for comparing census data over time (see https://s4.ad.brown.edu/projects/diversity/Researcher/Bridging.htm). The race and ethnicity categories in the 2010 LTDB have been modified from those in the 2010 census to more closely match the 1990 race categories. (Before 2000, census questionnaires allowed respondents to identify as one race only. The LTDB allocates mixed-race people in post-1990 census estimates to non-white categories.) Please remember that the ACS data carry margins of error, and for small racial/ethnic groups they can be significant. The numeric and percentage changes overtime are also included. There is also a polygon representation for the City of Seattle as a whole.
Purpose: Census data of racial and ethnic categories from 1990 and 2010 Brown University LTDB, 2010 decennial and 2018 American Community Survey (ACS). Data is for the City of Seattle Community Reporting Areas as well as a polygon representation for the City of Seattle as a whole. Numeric and percentage changes over time are also included.
--- Original source retains full ownership of the source dataset ---
https://data-seattlecitygis.opendata.arcgis.com/datasets/c66ae5121051454d8d88349c86b5ce31_0/license.jsonhttps://data-seattlecitygis.opendata.arcgis.com/datasets/c66ae5121051454d8d88349c86b5ce31_0/license.json
Abstract: Census tract-based race and ethnicity data aggregated to City of Seattle Community Reporting Areas (CRAs) from the 1990 and 2010 Brown University Longitudinal Database (LTDB), 2010 decennial census and the 2014-2018 5-year American Community Survey (ACS). Brown University researchers created the LTDB to allow for comparing census data over time (see https://s4.ad.brown.edu/projects/diversity/Researcher/Bridging.htm). The race and ethnicity categories in the 2010 LTDB have been modified from those in the 2010 census to more closely match the 1990 race categories. (Before 2000, census questionnaires allowed respondents to identify as one race only. The LTDB allocates mixed-race people in post-1990 census estimates to non-white categories.) Please remember that the ACS data carry margins of error, and for small racial/ethnic groups they can be significant. The numeric and percentage changes overtime are also included. There is also a polygon representation for the City of Seattle as a whole.
Purpose: Census data of racial and ethnic categories from 1990 and 2010 Brown University LTDB, 2010 decennial and 2018 American Community Survey (ACS). Data is for the City of Seattle Community Reporting Areas as well as a polygon representation for the City of Seattle as a whole. Numeric and percentage changes over time are also included.
This dataset contains statistically weighted estimates of the Race & Ethnicity of 47 key health workforce professions actively licensed in California as of July 1st, 2023. These metrics can be compared by workforce category, license type, time since license issue date (in years), and CHIS region.
Community Specific Profiles are grouped by race and ethnicity. We measure by race, ethnicity, and other demographics to understand the specific needs of different communities and evaluate effective service delivery and accountability. This dataset is the groupings used to combine projects with multiple levels and types of data standards. These include the minimum and comprehensive race and ethnicity categories from the City of Portland Rescue Plan Data Standards. They also include race and ethnicity categories in the HUD HMIS data standards.-- Additional Information: Category: ARPA Update Frequency: As Necessary-- Metadata Link: https://www.portlandmaps.com/metadata/index.cfm?&action=DisplayLayer&LayerID=60968