100+ datasets found
  1. h

    The impact of ethnicity and multi-morbidity on C19 hospitalised outcomes

    • healthdatagateway.org
    unknown
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    This publication uses data from PIONEER, an ethically approved database and analytical environment (East Midlands Derby Research Ethics 20/EM/0158), The impact of ethnicity and multi-morbidity on C19 hospitalised outcomes [Dataset]. https://healthdatagateway.org/dataset/143
    Explore at:
    unknownAvailable download formats
    Dataset authored and provided by
    This publication uses data from PIONEER, an ethically approved database and analytical environment (East Midlands Derby Research Ethics 20/EM/0158)
    License

    https://www.pioneerdatahub.co.uk/data/data-request-process/https://www.pioneerdatahub.co.uk/data/data-request-process/

    Description

    PIONEER: The impact of ethnicity and multi-morbidity on COVID-related outcomes; a primary care supplemented hospitalised dataset Dataset number 3.0

    Coronavirus disease 2019 (COVID-19) was identified in January 2020. Currently, there have been more than 65million cases and more than 1.5 million deaths worldwide. Some individuals experience severe manifestations of infection, including viral pneumonia, adult respiratory distress syndrome (ARDS) and death. Evidence suggests that older patients, those from some ethnic minority groups and those with multiple long-term health conditions have worse outcomes. This secondary care COVID dataset contains granular demographic and morbidity data, supplemented from primary care records, to add to the understanding of patient factors on disease outcomes.

    PIONEER geography The West Midlands (WM) has a population of 5.9 million & includes a diverse ethnic & socio-economic mix. There is a higher than average percentage of minority ethnic groups. WM has a large number of elderly residents but is the youngest population in the UK. Each day >100,000 people are treated in hospital, see their GP or are cared for by the NHS. The West Midlands was one of the hardest hit regions for COVID admissions in both wave 1 and 2.

    EHR. University Hospitals Birmingham NHS Foundation Trust (UHB) is one of the largest NHS Trusts in England, providing direct acute services & specialist care across four hospital sites, with 2.2 million patient episodes per year, 2750 beds & 100 ITU beds. UHB runs a fully electronic healthcare record (EHR) (PICS; Birmingham Systems), a shared primary & secondary care record (Your Care Connected) & a patient portal “My Health”. UHB has cared for >5000 COVID admissions to date.

    Scope: All COVID swab confirmed hospitalised patients to UHB from January – May 2020. The dataset includes highly granular patient demographics & co-morbidities taken from ICD-10 & SNOMED-CT codes but also primary care records and clinic letters. Serial, structured data pertaining to care process (timings, staff grades, specialty review, wards), presenting complaint, acuity, all physiology readings (pulse, blood pressure, respiratory rate, oxygen saturations), all blood results, microbiology, all prescribed & administered treatments (fluids, antibiotics, inotropes, vasopressors, organ support), all outcomes. Linked images available (radiographs, CT, MRI, ultrasound).

    Available supplementary data: Health data preceding and following admission event. Matched “non-COVID” controls; ambulance, 111, 999 data, synthetic data.

    Available supplementary support: Analytics, Model build, validation & refinement; A.I.; Data partner support for ETL (extract, transform & load) process, Clinical expertise, Patient & end-user access, Purchaser access, Regulatory requirements, Data-driven trials, “fast screen” services.

  2. Racial and ethnic disparities across health and healthcare measures U.S....

    • statista.com
    Updated Apr 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Racial and ethnic disparities across health and healthcare measures U.S. 2023 [Dataset]. https://www.statista.com/statistics/1356219/healthcare-measure-for-select-ethnic-groups-vs-white-in-us/
    Explore at:
    Dataset updated
    Apr 15, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2022
    Area covered
    United States
    Description

    As of 2023, across 70 measures assessing health and healthcare in the U.S., the Black, AI/AN, and Hispanic populations fare worse than the White population. The racial/ethnic disparity was largest comparing Black and White populations. The Black population fared worse than the White population across 55 health and healthcare measures, while they only fared better than the White population for 12 of them.

    On the other hand, the Asian population did not fare worse than White people across most examined measures. Nonetheless, these measures cover aspects of health coverage, access, and use; health status, outcomes, and behaviors; and social determinants of health, yet more is needed to provide the full scope of healthcare disparities.

  3. ARCHIVED: COVID-19 Testing by Race/Ethnicity Over Time

    • healthdata.gov
    • data.sfgov.org
    • +1more
    application/rdfxml +5
    Updated Apr 8, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.sfgov.org (2025). ARCHIVED: COVID-19 Testing by Race/Ethnicity Over Time [Dataset]. https://healthdata.gov/dataset/ARCHIVED-COVID-19-Testing-by-Race-Ethnicity-Over-T/ntmc-mxb8
    Explore at:
    tsv, csv, json, application/rssxml, application/rdfxml, xmlAvailable download formats
    Dataset updated
    Apr 8, 2025
    Dataset provided by
    data.sfgov.org
    Description

    A. SUMMARY This dataset includes San Francisco COVID-19 tests by race/ethnicity and by date. This dataset represents the daily count of tests collected, and the breakdown of test results (positive, negative, or indeterminate). Tests in this dataset include all those collected from persons who listed San Francisco as their home address at the time of testing. It also includes tests that were collected by San Francisco providers for persons who were missing a locating address. This dataset does not include tests for residents listing a locating address outside of San Francisco, even if they were tested in San Francisco.

    The data were de-duplicated by individual and date, so if a person gets tested multiple times on different dates, all tests will be included in this dataset (on the day each test was collected). If a person tested multiple times on the same date, only one test is included from that date. When there are multiple tests on the same date, a positive result, if one exists, will always be selected as the record for the person. If a PCR and antigen test are taken on the same day, the PCR test will supersede. If a person tests multiple times on the same day and the results are all the same (e.g. all negative or all positive) then the first test done is selected as the record for the person.

    The total number of positive test results is not equal to the total number of COVID-19 cases in San Francisco.

    When a person gets tested for COVID-19, they may be asked to report information about themselves. One piece of information that might be requested is a person's race and ethnicity. These data are often incomplete in the laboratory and provider reports of the test results sent to the health department. The data can be missing or incomplete for several possible reasons:

    • The person was not asked about their race and ethnicity.
    • The person was asked, but refused to answer.
    • The person answered, but the testing provider did not include the person's answers in the reports.
    • The testing provider reported the person's answers in a format that could not be used by the health department.
    

    For any of these reasons, a person's race/ethnicity will be recorded in the dataset as “Unknown.”

    B. NOTE ON RACE/ETHNICITY The different values for Race/Ethnicity in this dataset are "Asian;" "Black or African American;" "Hispanic or Latino/a, all races;" "American Indian or Alaska Native;" "Native Hawaiian or Other Pacific Islander;" "White;" "Multi-racial;" "Other;" and “Unknown."

    The Race/Ethnicity categorization increases data clarity by emulating the methodology used by the U.S. Census in the American Community Survey. Specifically, persons who identify as "Asian," "Black or African American," "American Indian or Alaska Native," "Native Hawaiian or Other Pacific Islander," "White," "Multi-racial," or "Other" do NOT include any person who identified as Hispanic/Latino at any time in their testing reports that either (1) identified them as SF residents or (2) as someone who tested without a locating address by an SF provider. All persons across all races who identify as Hispanic/Latino are recorded as “"Hispanic or Latino/a, all races." This categorization increases data accuracy by correcting the way “Other” persons were counted. Previously, when a person reported “Other” for Race/Ethnicity, they would be recorded “Unknown.” Under the new categorization, they are counted as “Other” and are distinct from “Unknown.”

    If a person records their race/ethnicity as “Asian,” “Black or African American,” “American Indian or Alaska Native,” “Native Hawaiian or Other Pacific Islander,” “White,” or “Other” for their first COVID-19 test, then this data will not change—even if a different race/ethnicity is reported for this person for any future COVID-19 test. There are two exceptions to this rule. The first exception is if a person’s race/ethnicity value i

  4. A

    ‘Covid-19 Tests by Race Ethnicity and Date’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Jan 27, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2022). ‘Covid-19 Tests by Race Ethnicity and Date’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/data-gov-covid-19-tests-by-race-ethnicity-and-date-f47f/e38e3d0a/?iid=004-383&v=presentation
    Explore at:
    Dataset updated
    Jan 27, 2022
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘Covid-19 Tests by Race Ethnicity and Date’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/68410b4b-052f-4ce3-8d0c-873b5664f1a4 on 27 January 2022.

    --- Dataset description provided by original source is as follows ---

    Note: As of April 16, 2021, this dataset will update daily with a five-day data lag.

    A. SUMMARY This dataset includes San Francisco COVID-19 tests by race/ ethnicity and date. For each day, this dataset represents the daily count of tests collected by race/ethnicity, and how many of those were positive, negative, and indeterminate. Tests in this dataset include all tests collected from San Francisco residents who listed a San Francisco home address at the time of testing, and tests that were collected in San Francisco but had a missing home address. Data are based on information collected at the time of testing.

    For recent data, about 25-30% of tests are missing race/ ethnicity information. Tests where the race/ ethnicity of the patient is unknown are included in the dataset under the "Unknown" category.

    This data was de-duplicated by individual and date, so if a person gets tested multiple times on different dates, all tests will be included in this dataset (on the day each test was collected).

    The total number of positive test results is not equal to the total number of COVID-19 cases in San Francisco. Each positive test result is investigated. During this investigation, some test results are found to be for persons living outside of San Francisco and some people in San Francisco may be tested multiple times. In both cases, these results are not included in San Francisco’s total COVID-19 case count. To track the number of cases by race/ ethnicity, see this dashboard: https://data.sfgov.org/stories/s/w6za-6st8

    B. HOW THE DATASET IS CREATED COVID-19 laboratory test data is based on electronic laboratory test reports. Deduplication, quality assurance measures and other data verification processes maximize accuracy of laboratory test information.

    C. UPDATE PROCESS Updates automatically at 05:00 Pacific Time each day. Redundant runs are scheduled at 07:00 and 09:00 in case of pipeline failure.

    D. HOW TO USE THIS DATASET Due to the high degree of variation in the time needed to complete tests by different labs there is a delay in this reporting. On March 24 the Health Officer ordered all labs in the City to report complete COVID-19 testing information to the local and state health departments.

    In order to track trends over time, a data user can analyze this data by "specimen_collection_date".

    Calculating Percent Positivity: The positivity rate is the percentage of tests that return a positive result for COVID-19 (positive tests divided by the sum of positive and negative tests). Indeterminate results, which could not conclusively determine whether COVID-19 virus was present, are not included in the calculation of percent positive. When there are fewer than 20 positives tests for a given race/ethnicity and time period, the positivity rate is not calculated for the public tracker because rates of small test counts are less reliable.

    Calculating Testing Rates: To calculate the testing rate per 10,000 residents, divide the total number of tests collected (positive, negative, and indeterminate results) for the specified race/ ethnicity by the total number of residents who identify as that race/ ethnicity (according to the 2018 5-year estimates from the American Community Survey), then multiply by 10,000. When there are fewer than 20 total tests for a given race/ethnicity and time period, the testing rate is not calculated for the public tracker because rates of small test counts are less reliable.

    Read more about how this data is updated and validated daily: https://data.sfgov.org/stories/s/nudz-9tg2

    There are two other datasets related to tests: 1. COVID-19 Tests 2. <a href="https://data.sfgov.org/dataset/Covid-19-Testing-by

    --- Original source retains full ownership of the source dataset ---

  5. I

    Data from: Temporal variations in the severity of COVID-19 illness by race...

    • data.niaid.nih.gov
    • immport.org
    url
    Updated Feb 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Temporal variations in the severity of COVID-19 illness by race and ethnicity [Dataset]. http://doi.org/10.21430/M3U0J3FOKP
    Explore at:
    urlAvailable download formats
    Dataset updated
    Feb 29, 2024
    License

    https://www.immport.org/agreementhttps://www.immport.org/agreement

    Description

    Introduction: Early reports highlighted racial/ethnic disparities in the severity of COVID-19 seen across the USA; the extent to which these disparities have persisted over time remains unclear. Our research objective was to understand temporal trends in racial/ethnic variation in severity of COVID-19 illness presenting over time. Methods: We conducted a retrospective cohort analysis using longitudinal data from Cedars-Sinai Medical Center, a high-volume health system in Southern California. We studied patients admitted to the hospital with COVID-19 illness from 4 March 2020 through 5 December 2020. Our primary outcome was COVID-19 severity of illness among hospitalised patients, assessed by racial/ethnic group status. We defined overall illness severity as an ordinal outcome: hospitalisation but no intensive care unit (ICU) admission; admission to the ICU but no intubation; and intubation or death. Results: A total of 1584 patients with COVID-19 with available demographic and clinical data were included. Hispanic/Latinx compared with non-Hispanic white patients had higher odds of experiencing more severe illness among hospitalised patients (OR 2.28, 95% CI 1.62 to 3.22) and this disparity persisted over time. During the initial 2 months of the pandemic, non-Hispanic blacks were more likely to suffer severe illness than non-Hispanic whites (OR 2.02, 95% CI 1.07 to 3.78); this disparity improved by May, only to return later in the pandemic. Conclusion: In our patient sample, the severity of observed COVID-19 illness declined steadily over time, but these clinical improvements were not seen evenly across racial/ethnic groups; greater illness severity continues to be experienced among Hispanic/Latinx patients.

  6. d

    COVID-19 Cases and Deaths by Race/Ethnicity - ARCHIVE

    • catalog.data.gov
    • data.ct.gov
    • +1more
    Updated Aug 12, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.ct.gov (2023). COVID-19 Cases and Deaths by Race/Ethnicity - ARCHIVE [Dataset]. https://catalog.data.gov/dataset/covid-19-cases-and-deaths-by-race-ethnicity
    Explore at:
    Dataset updated
    Aug 12, 2023
    Dataset provided by
    data.ct.gov
    Description

    Note: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve. The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj. The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 . The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 . The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed. COVID-19 cases and associated deaths that have been reported among Connecticut residents, broken down by race and ethnicity. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Deaths reported to the either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the COVID-19 update. The following data show the number of COVID-19 cases and associated deaths per 100,000 population by race and ethnicity. Crude rates represent the total cases or deaths per 100,000 people. Age-adjusted rates consider the age of the person at diagnosis or death when estimating the rate and use a standardized population to provide a fair comparison between population groups with different age distributions. Age-adjustment is important in Connecticut as the median age of among the non-Hispanic white population is 47 years, whereas it is 34 years among non-Hispanic blacks, and 29 years among Hispanics. Because most non-Hispanic white residents who died were over 75 years of age, the age-adjusted rates are lower than the unadjusted rates. In contrast, Hispanic residents who died tend to be younger than 75 years of age which results in higher age-adjusted rates. The population data used to calculate rates is based on the CT DPH population statistics for 2019, which is available online here: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Population/Population-Statistics. Prior to 5/10/2021, the population estimates from 2018 were used. Rates are standardized to the 2000 US Millions Standard population (data available here: https://seer.cancer.gov/stdpopulations/). Standardization was done using 19 age groups (0, 1-4, 5-9, 10-14, ..., 80-84, 85 years and older). More information about direct standardization for age adjustment is available here: https://www.cdc.gov/nchs/data/statnt/statnt06rv.pdf Categories are mutually exclusive. The category “multiracial” includes people who answered ‘yes’ to more than one race category. Counts may not add up to total case counts as data on race and ethnicity may be missing. Age adjusted rates calculated only for groups with more than 20 deaths. Abbreviation: NH=Non-Hispanic. Data on Connecticut deaths were obtained from the Connecticut Deaths Registry maintained by the DPH Office of Vital Records. Cause of death was determined by a death certifier (e.g., physician, APRN, medical

  7. d

    Data from: Early predictors of outcomes of hospitalization for cirrhosis and...

    • search.dataone.org
    • data.niaid.nih.gov
    • +1more
    Updated Jun 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    VV Pavan Kedar Mukthinuthlalapati; Samuel Akinyeye; Zachary Fricker; Moinuddin Syed; Eric Orman; Lauren Nephew; Eduardo Vilar Gomez; James Slaven; Naga Chalasani; Maya Balakrishnan; Michelle Long; Bashar Attar; Marwan Ghabril (2025). Early predictors of outcomes of hospitalization for cirrhosis and assessment of the impact of race and ethnicity at safety-net hospitals [Dataset]. http://doi.org/10.5061/dryad.6gt88dv
    Explore at:
    Dataset updated
    Jun 14, 2025
    Dataset provided by
    Dryad Digital Repository
    Authors
    VV Pavan Kedar Mukthinuthlalapati; Samuel Akinyeye; Zachary Fricker; Moinuddin Syed; Eric Orman; Lauren Nephew; Eduardo Vilar Gomez; James Slaven; Naga Chalasani; Maya Balakrishnan; Michelle Long; Bashar Attar; Marwan Ghabril
    Time period covered
    Feb 12, 2020
    Description

    Background. Safety-net hospitals provide care for racially/ethnically diverse and disadvantaged urban populations. Their hospitalized patients with cirrhosis are relatively understudied and may be vulnerable to poor outcomes and racial/ethnic disparities. Aims. To examine the outcomes of patients with cirrhosis hospitalized at regionally diverse safety-net hospitals and the impact of race/ethnicity. Methods. A study of patients with cirrhosis hospitalized at 4 safety-net hospitals in 2012 was conducted. Demographic, clinical factors, and outcomes were compared between centers and racial/ethnic groups. Study endpoints included mortality and 30-day readmission. Results. In 2012, 733 of 1,212 patients with cirrhosis were hospitalized for liver-related indications (median age 55 years, 65% male). The cohort was racially diverse (43% White, 25% black, 22% Hispanic, 3% Asian) with cirrhosis related to alcohol and viral hepatitis in 635 (87%) patients. Patients were hospitalized mainly for ...

  8. h

    A synthetic dataset of 15,000 "patients" with Community Acquired Pneumonia...

    • healthdatagateway.org
    unknown
    Updated Feb 13, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data is representative of the multi-ethnicity population within the West Midlands (42% non white). Data includes all patients admitted during this timeframe, with National data Opt Outs applied, and therefore is representative of admissions to secondary care. Data focuses on in-patient stay in hospital during the acute episode but can be supplemented on request to include previous and subsequent hospital contacts (including outpatient appointments) and ambulance, 111, 999 data. (2024). A synthetic dataset of 15,000 "patients" with Community Acquired Pneumonia (CAP) [Dataset]. https://healthdatagateway.org/en/dataset/197
    Explore at:
    unknownAvailable download formats
    Dataset updated
    Feb 13, 2024
    Dataset authored and provided by
    Data is representative of the multi-ethnicity population within the West Midlands (42% non white). Data includes all patients admitted during this timeframe, with National data Opt Outs applied, and therefore is representative of admissions to secondary care. Data focuses on in-patient stay in hospital during the acute episode but can be supplemented on request to include previous and subsequent hospital contacts (including outpatient appointments) and ambulance, 111, 999 data.
    License

    https://www.pioneerdatahub.co.uk/data/data-request-process/https://www.pioneerdatahub.co.uk/data/data-request-process/

    Description

    Community Acquired Pneumonia (CAP) is the leading cause of infectious death and the third leading cause of death globally. Disease severity and outcomes are highly variable, dependent on host factors (such as age, smoking history, frailty and comorbidities), microbial factors (the causative organism) and what treatments are given. Clinical decision pathways are complex and despite guidelines, there is significant national variability in how guidelines are adhered to and patient outcomes.

    For clinicians treating pneumonia in the hospital setting, care of these patients can be challenging. Key decisions include the type of antibiotics (oral or intravenous), the appropriate place of care (home, hospital or intensive care), and when it is appropriate to stop antibiotics. Decision support tools to help inform clinical management would be highly valuable to the clinical community.

    This dataset is synthetic, formed from statistical modelling using real patient data, and represents a population with significant diversity in terms of patient demography, socio-economic status, CAP severity, treatments and outcomes. It can be used to develop code for deployment on real data, train data analysts and increase familiarity with this disease and its management.

    PIONEER geography: The West Midlands (WM) has a population of 5.9 million & includes a diverse ethnic & socio-economic mix.

    EHR. UHB is one of the largest NHS Trusts in England, providing direct acute services & specialist care across four hospital sites, with 2.2 million patient episodes per year, 2750 beds & an expanded 250 ITU bed capacity during COVID. UHB runs a fully electronic healthcare record (EHR) (PICS; Birmingham Systems), a shared primary & secondary care record (Your Care Connected) & a patient portal “My Health”. This synthetic dataset has been modelled to reflect data collected from this EHR.

    Scope: A synthetic dataset which has been statistically modelled on all hospitalised patients admitted to UHB with Community Acquired Pneumonia. The dataset includes highly granular patient demographics & co-morbidities taken from ICD-10 & SNOMED-CT codes. Serial, structured data pertaining to process of care including timings, admissions, escalation of care to ITU, discharge outcomes, physiology readings (heart rate, blood pressure, AVPU score and others), blood results and drug prescribing and administration.

    Available supplementary data: Matched synthetic controls; ambulance, OMOP data, real patient CAP data. Available supplementary support: Analytics, Model build, validation & refinement; A.I.; Data partner support for ETL (extract, transform & load) process, Clinical expertise, Patient & end-user access, Purchaser access, Regulatory requirements, Data-driven trials, “fast screen” services.

  9. A

    ‘COVID-19 Cases and Deaths by Race/Ethnicity’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Sep 29, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2021). ‘COVID-19 Cases and Deaths by Race/Ethnicity’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/data-gov-covid-19-cases-and-deaths-by-race-ethnicity-3781/f0753de3/?iid=004-538&v=presentation
    Explore at:
    Dataset updated
    Sep 29, 2021
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘COVID-19 Cases and Deaths by Race/Ethnicity’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/3fdc6593-c708-4a6a-8073-5ca862caa279 on 27 January 2022.

    --- Dataset description provided by original source is as follows ---

    COVID-19 cases and associated deaths that have been reported among Connecticut residents, broken down by race and ethnicity. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Deaths reported to the either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the COVID-19 update.

    The following data show the number of COVID-19 cases and associated deaths per 100,000 population by race and ethnicity. Crude rates represent the total cases or deaths per 100,000 people. Age-adjusted rates consider the age of the person at diagnosis or death when estimating the rate and use a standardized population to provide a fair comparison between population groups with different age distributions. Age-adjustment is important in Connecticut as the median age of among the non-Hispanic white population is 47 years, whereas it is 34 years among non-Hispanic blacks, and 29 years among Hispanics. Because most non-Hispanic white residents who died were over 75 years of age, the age-adjusted rates are lower than the unadjusted rates. In contrast, Hispanic residents who died tend to be younger than 75 years of age which results in higher age-adjusted rates.

    The population data used to calculate rates is based on the CT DPH population statistics for 2019, which is available online here: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Population/Population-Statistics. Prior to 5/10/2021, the population estimates from 2018 were used.

    Rates are standardized to the 2000 US Millions Standard population (data available here: https://seer.cancer.gov/stdpopulations/). Standardization was done using 19 age groups (0, 1-4, 5-9, 10-14, ..., 80-84, 85 years and older). More information about direct standardization for age adjustment is available here: https://www.cdc.gov/nchs/data/statnt/statnt06rv.pdf

    Categories are mutually exclusive. The category “multiracial” includes people who answered ‘yes’ to more than one race category. Counts may not add up to total case counts as data on race and ethnicity may be missing. Age adjusted rates calculated only for groups with more than 20 deaths. Abbreviation: NH=Non-Hispanic.

    Data on Connecticut deaths were obtained from the Connecticut Deaths Registry maintained by the DPH Office of Vital Records. Cause of death was determined by a death certifier (e.g., physician, APRN, medical examiner) using their best clinical judgment. Additionally, all COVID-19 deaths, including suspected or related, are required to be reported to OCME. On April 4, 2020, CT DPH and OCME released a joint memo to providers and facilities within Connecticut providing guidelines for certifying deaths due to COVID-19 that were consistent with the CDC’s guidelines and a reminder of the required reporting to OCME.25,26 As of July 1, 2021, OCME had reviewed every case reported and performed additional investigation on about one-third of reported deaths to better ascertain if COVID-19 did or did not cause or contribute to the death. Some of these investigations resulted in the OCME performing postmortem swabs for PCR testing on individuals whose deaths were suspected to be due to COVID-19, but antemortem diagnosis was unable to be made.31 The OCME issued or re-issued about 10% of COVID-19 death certificates and, when appropriate, removed COVID-19 from the death certificate. For standardization and tabulation of mortality statistics, written cause of death statements made by the certifiers on death certificates are sent to the National Center for Health Statistics (NCHS) at the CDC which assigns cause of death codes according to the International Causes of Disease 10th Revision (ICD-10) classification system.25,26 COVID-19 deaths in this report are defined as those for which the death certificate has an ICD-10 code of U07.1 as either a primary (underlying) or a contributing cause of death. More infor

    --- Original source retains full ownership of the source dataset ---

  10. I

    Data from: Racial disparities in symptomatology and outcomes of COVID-19...

    • data.niaid.nih.gov
    • immport.org
    url
    Updated Mar 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Racial disparities in symptomatology and outcomes of COVID-19 among adults of Arkansas [Dataset]. http://doi.org/10.21430/M3V5LZ099V
    Explore at:
    urlAvailable download formats
    Dataset updated
    Mar 27, 2025
    License

    https://www.immport.org/agreementhttps://www.immport.org/agreement

    Description

    Few reports have suggested that non-Hispanic (NH) blacks may present with different symptoms for COVID-19 than NH-whites. The objective of this study was to investigate patterns in symptomatology and COVID-19 outcomes by race/ethnicity among adults in Arkansas. Data on COVID-19 symptoms were collected on day of testing, 7th and 14th day among participants at UAMS mobile testing units throughout the state of Arkansas. Diagnosis for SARS-CoV-2 infection was confirmed via nasopharyngeal swab and RT-PCR methods. Data analysis was conducted using Chi-square test and Poisson regression to assess the differences in characteristics by race/ethnicity. A total of 60,648 individuals were RT-PCR tested from March 29, 2020 through October 7, 2020. Among adults testing positive, except shortness of breath, Hispanics were more likely to report all symptoms than NH-whites or NH-blacks. NH-whites were more likely to report fever (19.6% vs. 16.6%), cough (27.5% vs. 26.1%), shortness of breath (13.6% vs. 9.6%), sore throat (16.7% vs. 10.7%), chills (12.5% vs. 11.8%), muscle pain (15.6% vs. 12.4%), and headache (20.3% vs. 17.8%). NH-blacks were more likely to report loss of taste/smell (10.9% vs. 10.6%). To conclude, we found differences in COVID-19 symptoms by race/ethnicity, with NH-blacks and Hispanics more often affected with specific or all symptoms, compared to NH-whites. Due to the cross-sectional study design, these findings do not necessarily reflect biological differences by race/ethnicity; however, they suggest that certain race/ethnicities may have underlying differences in health status that impact COVID-19 outcomes.

  11. Population Health Management Market Analysis, Size, and Forecast 2025-2029:...

    • technavio.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio, Population Health Management Market Analysis, Size, and Forecast 2025-2029: North America (US and Canada), Europe (France, Germany, Italy, UK), Asia (China, India, Japan, South Korea), and Rest of World (ROW) [Dataset]. https://www.technavio.com/report/population-health-management-market-industry-analysis
    Explore at:
    Dataset provided by
    TechNavio
    Authors
    Technavio
    Time period covered
    2021 - 2025
    Area covered
    Global, United States
    Description

    Snapshot img

    Population Health Management Market Size 2025-2029

    The population health management market size is forecast to increase by USD 19.40 billion at a CAGR of 10.7% between 2024 and 2029.

    The Population Health Management Market is experiencing significant growth, driven by the increasing adoption of healthcare IT solutions and the rising focus on personalized medicine. The implementation of electronic health records (EHRs) and other digital health technologies has enabled healthcare providers to collect and analyze large amounts of patient data, facilitating proactive care and population health management. Moreover, the trend towards personalized medicine, which aims to tailor healthcare treatments to individual patients based on their unique genetic makeup and health history, is further fueling the demand for PHM solutions. However, the high cost of installing and implementing these platforms poses a significant challenge for market growth.
    Despite this, the potential benefits of PHM, including improved patient outcomes, reduced healthcare costs, and enhanced population health, make it an attractive area for investment and innovation. Companies seeking to capitalize on these opportunities must navigate the challenges of data privacy and security, interoperability, and integration with existing healthcare systems. By addressing these challenges and focusing on delivering actionable insights from patient data, PHM solution providers can help healthcare organizations optimize their resources, improve patient care, and ultimately, improve population health.
    

    What will be the Size of the Population Health Management Market during the forecast period?

    Request Free Sample

    The market is experiencing significant growth, driven by the increasing focus on accountable care organizations (ACOs) and payer organizations to improve health outcomes and reduce costs. Healthcare professionals are leveraging big data, data analytics services, and clinical data integration to develop personalized care plans and implement intervention strategies for various populations. Telehealth services have become essential in population health management, enabling care coordination, health promotion, and health navigation for patients. Health equity is a critical factor in population health management, with a growing emphasis on addressing disparities and ensuring equal access to care.
    Data security and interoperability standards are essential in population health management, as healthcare providers exchange sensitive patient data for risk adjustment, care pathways, and quality reporting. Data mining and data visualization tools are used to identify health behavior changes and lifestyle modifications, leading to better health outcomes. Consumer health technology, such as patient engagement tools and wearable technology, are playing an increasingly important role in population health management. Health coaching and evidence-based medicine are intervention strategies used to prevent diseases and improve health outcomes. In summary, the market in the US is characterized by the adoption of precision medicine, health literacy, clinical guidelines, and personalized care plans.
    The market is driven by the need for care coordination, data analytics, and patient engagement to improve health outcomes and reduce costs. The use of data security, data mining, and interoperability standards ensures the effective exchange and utilization of health data.
    

    How is this Population Health Management Industry segmented?

    The population health management industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.

    Component
    
      Software
      Services
    
    
    End-user
    
      Large enterprises
      SMEs
    
    
    Delivery Mode
    
      On-Premise
      Cloud-Based
      Web-Based
      On-Premise
      Cloud-Based
    
    
    End-Use
    
      Providers
      Payers
      Employer Groups
      Government Bodies
      Providers
      Payers
      Employer Groups
    
    
    Geography
    
      North America
    
        US
        Canada
    
    
      Europe
    
        France
        Germany
        Italy
        UK
    
    
      APAC
    
        China
        India
        Japan
        South Korea
    
    
      Rest of World
    

    By Component Insights

    The software segment is estimated to witness significant growth during the forecast period.

    The market's software segment is experiencing significant growth and innovation. Healthcare organizations are utilizing these solutions to effectively manage and enhance the health outcomes of diverse populations. The software component incorporates various tools that collect, analyze, and utilize health data for informed decision-making. Population health management platforms gather data from multiple sources, such as electronic health records, claims data, and patient-generated data. These platforms employ advanced analytics to generate valuable insi

  12. d

    4b Patient experience of hospital care

    • digital.nhs.uk
    csv, pdf, xlsx
    Updated Aug 20, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). 4b Patient experience of hospital care [Dataset]. https://digital.nhs.uk/data-and-information/publications/statistical/nhs-outcomes-framework/february-2021
    Explore at:
    pdf(541.5 kB), pdf(171.9 kB), xlsx(216.3 kB), csv(357.3 kB)Available download formats
    Dataset updated
    Aug 20, 2020
    License

    https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions

    Time period covered
    Jun 1, 2003 - Jan 31, 2020
    Area covered
    England
    Description

    Patient experience measured by scoring the results of a selection of questions from the National Inpatient Survey looking at a range of elements of hospital care. This indicator aims to capture the experience of patients who have received medical treatment in hospital. Legacy unique identifier: P01774

  13. AHRQ Social Determinants of Health Updated Database

    • datalumos.org
    Updated Feb 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AHRQ (2025). AHRQ Social Determinants of Health Updated Database [Dataset]. http://doi.org/10.3886/E220762V1
    Explore at:
    Dataset updated
    Feb 25, 2025
    Dataset provided by
    Agency for Healthcare Research and Qualityhttp://www.ahrq.gov/
    Authors
    AHRQ
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    AHRQ's database on Social Determinants of Health (SDOH) was created under a project funded by the Patient Centered Outcomes Research (PCOR) Trust Fund. The purpose of this project is to create easy to use, easily linkable SDOH-focused data to use in PCOR research, inform approaches to address emerging health issues, and ultimately contribute to improved health outcomes.The database was developed to make it easier to find a range of well documented, readily linkable SDOH variables across domains without having to access multiple source files, facilitating SDOH research and analysis.Variables in the files correspond to five key SDOH domains: social context (e.g., age, race/ethnicity, veteran status), economic context (e.g., income, unemployment rate), education, physical infrastructure (e.g, housing, crime, transportation), and healthcare context (e.g., health insurance). The files can be linked to other data by geography (county, ZIP Code, and census tract). The database includes data files and codebooks by year at three levels of geography, as well as a documentation file.The data contained in the SDOH database are drawn from multiple sources and variables may have differing availability, patterns of missing, and methodological considerations across sources, geographies, and years. Users should refer to the data source documentation and codebooks, as well as the original data sources, to help identify these patterns

  14. H

    Replication Data for: Ethnicity, pre-existing comorbidities, and outcomes of...

    • dataverse.harvard.edu
    Updated Jan 18, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gillian Santorelli (2021). Replication Data for: Ethnicity, pre-existing comorbidities, and outcomes of hospitalised patients with COVID-19 [Dataset]. http://doi.org/10.7910/DVN/RRCQEO
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 18, 2021
    Dataset provided by
    Harvard Dataverse
    Authors
    Gillian Santorelli
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    The data were used to examine ethnic, demographic, socio-economic and clinical risk factors associated with outcomes of COVID-19 positive hospital patients.

  15. f

    Datasheet2_Assessing disparities through missing race and ethnicity data:...

    • frontiersin.figshare.com
    pdf
    Updated Jul 24, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Katelyn M. Banschbach; Jade Singleton; Xing Wang; Sheetal S. Vora; Julia G. Harris; Ashley Lytch; Nancy Pan; Julia Klauss; Danielle Fair; Erin Hammelev; Mileka Gilbert; Connor Kreese; Ashley Machado; Peter Tarczy-Hornoch; Esi M. Morgan (2024). Datasheet2_Assessing disparities through missing race and ethnicity data: results from a juvenile arthritis registry.pdf [Dataset]. http://doi.org/10.3389/fped.2024.1430981.s002
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jul 24, 2024
    Dataset provided by
    Frontiers
    Authors
    Katelyn M. Banschbach; Jade Singleton; Xing Wang; Sheetal S. Vora; Julia G. Harris; Ashley Lytch; Nancy Pan; Julia Klauss; Danielle Fair; Erin Hammelev; Mileka Gilbert; Connor Kreese; Ashley Machado; Peter Tarczy-Hornoch; Esi M. Morgan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    IntroductionEnsuring high-quality race and ethnicity data within the electronic health record (EHR) and across linked systems, such as patient registries, is necessary to achieving the goal of inclusion of racial and ethnic minorities in scientific research and detecting disparities associated with race and ethnicity. The project goal was to improve race and ethnicity data completion within the Pediatric Rheumatology Care Outcomes Improvement Network and assess impact of improved data completion on conclusions drawn from the registry.MethodsThis is a mixed-methods quality improvement study that consisted of five parts, as follows: (1) Identifying baseline missing race and ethnicity data, (2) Surveying current collection and entry, (3) Completing data through audit and feedback cycles, (4) Assessing the impact on outcome measures, and (5) Conducting participant interviews and thematic analysis.ResultsAcross six participating centers, 29% of the patients were missing data on race and 31% were missing data on ethnicity. Of patients missing data, most patients were missing both race and ethnicity. Rates of missingness varied by data entry method (electronic vs. manual). Recovered data had a higher percentage of patients with Other race or Hispanic/Latino ethnicity compared with patients with non-missing race and ethnicity data at baseline. Black patients had a significantly higher odds ratio of having a clinical juvenile arthritis disease activity score (cJADAS10) of ≥5 at first follow-up compared with White patients. There was no significant change in odds ratio of cJADAS10 ≥5 for race and ethnicity after data completion. Patients missing race and ethnicity were more likely to be missing cJADAS values, which may affect the ability to detect changes in odds ratio of cJADAS ≥5 after completion.ConclusionsAbout one-third of the patients in a pediatric rheumatology registry were missing race and ethnicity data. After three audit and feedback cycles, centers decreased missing data by 94%, primarily via data recovery from the EHR. In this sample, completion of missing data did not change the findings related to differential outcomes by race. Recovered data were not uniformly distributed compared with those with non-missing race and ethnicity data at baseline, suggesting that differences in outcomes after completing race and ethnicity data may be seen with larger sample sizes.

  16. Data from: Race/Ethnicity Influences Outcomes in Young Adults with...

    • zenodo.org
    • search.dataone.org
    • +1more
    Updated Jun 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Laura C Miyares; Guido J Falcone; Audrey Leasure; Opeolu Adeoye; Fu-Dong Shi; Steven J Kittner; Carl Langefeld; Achala Vagal; Kevin N Sheth; Daniel Woo; Laura C Miyares; Guido J Falcone; Audrey Leasure; Opeolu Adeoye; Fu-Dong Shi; Steven J Kittner; Carl Langefeld; Achala Vagal; Kevin N Sheth; Daniel Woo (2022). Data from: Race/Ethnicity Influences Outcomes in Young Adults with Intracerebral Hemorrhage [Dataset]. http://doi.org/10.5061/dryad.6kb10h4
    Explore at:
    Dataset updated
    Jun 1, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Laura C Miyares; Guido J Falcone; Audrey Leasure; Opeolu Adeoye; Fu-Dong Shi; Steven J Kittner; Carl Langefeld; Achala Vagal; Kevin N Sheth; Daniel Woo; Laura C Miyares; Guido J Falcone; Audrey Leasure; Opeolu Adeoye; Fu-Dong Shi; Steven J Kittner; Carl Langefeld; Achala Vagal; Kevin N Sheth; Daniel Woo
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Objectives: We investigated the predictors of functional outcome in young patients enrolled in a multi-ethnic study of intracerebral hemorrhage (ICH). Methods: The Ethnic/Racial Variations in Intracerebral Hemorrhage (ERICH) study is a prospective multi-center study of ICH among adult (age ≥18 years) non-Hispanic whites, non-Hispanic blacks, and Hispanics. The study recruited 1000 participants per racial/ethnic group. The present study utilized the subset of ERICH cases aged <50 years with supratentorial ICH. Functional outcome was ascertained using the modified Rankin Scale (mRS) at 3 months. Logistic regression was used to identify factors associated with poor outcome (mRS 4–6), and analyses were compared by race/ethnicity to identify differences across these groups. Results: Of the 3000 ICH cases enrolled in ERICH, 418 were studied (mean age 43 years, 69% male), of which 48 (12%) were white, 173 (41%) were black, and 197 (47%) were Hispanic. For supratentorial ICH, blacks (odds ratio [OR] 0.42, p=0.046) and Hispanics (OR 0.34, p=0.01) had better outcomes than whites after adjustment for other factors associated with poor outcome: age, baseline disability, admission blood pressure, admission Glasgow Coma Scale score, ICH volume, deep ICH location, and intraventricular extension. Conclusions: In young patients with supratentorial ICH, black and Hispanic race/ethnicity is associated with better functional outcomes, compared with white race. Additional studies are needed to identify the biological and social mediators of this association.

  17. US Population Health Management (PHM) Market Analysis - Size and Forecast...

    • technavio.com
    Updated Feb 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). US Population Health Management (PHM) Market Analysis - Size and Forecast 2025-2029 [Dataset]. https://www.technavio.com/report/us-population-health-management-market-analysis
    Explore at:
    Dataset updated
    Feb 15, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    Time period covered
    2021 - 2025
    Area covered
    United States
    Description

    Snapshot img

    US Population Health Management (PHM) Market Size 2025-2029

    The us population health management (phm) market size is forecast to increase by USD 6.04 billion at a CAGR of 7.4% between 2024 and 2029.

    The Population Health Management (PHM) market in the US is experiencing significant growth, driven by the increasing adoption of healthcare IT solutions and analytics. These technologies enable healthcare providers to collect, analyze, and act on patient data to improve health outcomes and reduce costs. However, the high perceived costs associated with PHM solutions pose a challenge for some organizations, limiting their ability to fully implement and optimize these technologies. Despite this obstacle, the potential benefits of PHM, including improved patient care and population health, make it a strategic priority for many healthcare organizations. To capitalize on this opportunity, companies must focus on cost-effective solutions and innovative approaches to addressing the challenges of PHM implementation and optimization. By leveraging advanced analytics, cloud technologies, and strategic partnerships, organizations can overcome cost barriers and deliver better care to their patient populations.

    What will be the size of the US Population Health Management (PHM) Market during the forecast period?

    Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
    Request Free Sample

    The Population Health Management (PHM) market in the US is experiencing significant advancements, integrating various elements to improve patient outcomes and reduce healthcare costs. Public health surveillance and data governance ensure accurate population health data, enabling healthcare leaders to identify health disparities and target interventions. Quality measures and health literacy initiatives promote transparency and patient activation, while data visualization and business intelligence facilitate data-driven decision-making. Behavioral health integration, substance abuse treatment, and mental health services address the growing need for holistic care, and outcome-based contracts incentivize providers to focus on patient outcomes. Health communication, community health workers, and patient portals enhance patient engagement, while wearable devices and mHealth technologies provide real-time data for personalized care plans. Precision medicine and predictive modeling leverage advanced analytics to tailor treatment approaches, and social service integration addresses the social determinants of health. Health data management, data storytelling, and healthcare innovation continue to drive market growth, transforming the industry and improving overall population health.

    How is this market segmented?

    The market research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments. ProductSoftwareServicesDeploymentCloudOn-premisesEnd-userHealthcare providersHealthcare payersEmployers and government bodiesGeographyNorth AmericaUS

    By Product Insights

    The software segment is estimated to witness significant growth during the forecast period.

    Population Health Management (PHM) software in the US gathers patient data from healthcare systems and utilizes advanced analytics tools, including data visualization and business intelligence, to predict health conditions and improve patient care. PHM software aims to enhance healthcare efficiency, reduce costs, and ensure quality patient care. By analyzing accurate patient data, PHM software enables the identification of community health risks, leading to proactive interventions and better health outcomes. The adoption of PHM software is on the rise in the US due to the growing emphasis on value-based care and the increasing prevalence of chronic diseases. Machine learning, artificial intelligence, and predictive analytics are integral components of PHM software, enabling healthcare payers to develop personalized care plans and improve care coordination. Data integration and interoperability facilitate seamless data sharing among various healthcare stakeholders, while data visualization tools help in making informed decisions. Public health agencies and healthcare providers leverage PHM software for population health research, disease management programs, and quality improvement initiatives. Cloud computing and data warehousing provide the necessary infrastructure for storing and managing large volumes of population health data. Healthcare regulations mandate the adoption of PHM software to ensure compliance with data privacy and security standards. PHM software also supports care management services, patient engagement platforms, and remote patient monitoring, empowering patients

  18. d

    Dataplex: All CMS Data Feeds | Access 1519 Reports & 26B+ Rows of Contact...

    • datarade.ai
    .csv
    Updated Aug 29, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataplex (2024). Dataplex: All CMS Data Feeds | Access 1519 Reports & 26B+ Rows of Contact Data | Perfect for Historical Analysis & Easy Ingestion [Dataset]. https://datarade.ai/data-products/dataplex-all-cms-data-feeds-access-1519-reports-26b-row-dataplex-3b76
    Explore at:
    .csvAvailable download formats
    Dataset updated
    Aug 29, 2024
    Dataset authored and provided by
    Dataplex
    Area covered
    United States of America
    Description

    The All CMS Data Feeds dataset is an expansive resource offering access to 119 unique report feeds, providing in-depth insights into various aspects of the U.S. healthcare system including nursing facility owners and accountable care organization participants contact data. With over 25.8 billion rows of data meticulously collected since 2007, this dataset is invaluable for healthcare professionals, analysts, researchers, and businesses seeking to understand and analyze healthcare trends, performance metrics, and demographic shifts over time. The dataset is updated monthly, ensuring that users always have access to the most current and relevant data available.

    Dataset Overview:

    118 Report Feeds: - The dataset includes a wide array of report feeds, each providing unique insights into different dimensions of healthcare. These topics range from Medicare and Medicaid service metrics, patient demographics, provider information, financial data, and much more. The breadth of information ensures that users can find relevant data for nearly any healthcare-related analysis. - As CMS releases new report feeds, they are automatically added to this dataset, keeping it current and expanding its utility for users.

    25.8 Billion Rows of Data:

    • With over 25.8 billion rows of data, this dataset provides a comprehensive view of the U.S. healthcare system. This extensive volume of data allows for granular analysis, enabling users to uncover insights that might be missed in smaller datasets. The data is also meticulously cleaned and aligned, ensuring accuracy and ease of use.

    Historical Data Since 2007: - The dataset spans from 2007 to the present, offering a rich historical perspective that is essential for tracking long-term trends and changes in healthcare delivery, policy impacts, and patient outcomes. This historical data is particularly valuable for conducting longitudinal studies and evaluating the effects of various healthcare interventions over time.

    Monthly Updates:

    • To ensure that users have access to the most current information, the dataset is updated monthly. These updates include new reports as well as revisions to existing data, making the dataset a continuously evolving resource that stays relevant and accurate.

    Data Sourced from CMS:

    • The data in this dataset is sourced directly from the Centers for Medicare & Medicaid Services (CMS). After collection, the data is meticulously cleaned and its attributes are aligned, ensuring consistency, accuracy, and ease of use for any application. Furthermore, any new updates or releases from CMS are automatically integrated into the dataset, keeping it comprehensive and current.

    Use Cases:

    Market Analysis:

    • The dataset is ideal for market analysts who need to understand the dynamics of the healthcare industry. The extensive historical data allows for detailed segmentation and analysis, helping users identify trends, market shifts, and growth opportunities. The comprehensive nature of the data enables users to perform in-depth analyses of specific market segments, making it a valuable tool for strategic decision-making.

    Healthcare Research:

    • Researchers will find the All CMS Data Feeds dataset to be a robust foundation for academic and commercial research. The historical data, combined with the breadth of coverage across various healthcare metrics, supports rigorous, in-depth analysis. Researchers can explore the effects of healthcare policies, study patient outcomes, analyze provider performance, and more, all within a single, comprehensive dataset.

    Performance Tracking:

    • Healthcare providers and organizations can use the dataset to track performance metrics over time. By comparing data across different periods, organizations can identify areas for improvement, monitor the effectiveness of initiatives, and ensure compliance with regulatory standards. The dataset provides the detailed, reliable data needed to track and analyze key performance indicators.

    Compliance and Regulatory Reporting:

    • The dataset is also an essential tool for compliance officers and those involved in regulatory reporting. With detailed data on provider performance, patient outcomes, and healthcare utilization, the dataset helps organizations meet regulatory requirements, prepare for audits, and ensure adherence to best practices. The accuracy and comprehensiveness of the data make it a trusted resource for regulatory compliance.

    Data Quality and Reliability:

    The All CMS Data Feeds dataset is designed with a strong emphasis on data quality and reliability. Each row of data is meticulously cleaned and aligned, ensuring that it is both accurate and consistent. This attention to detail makes the dataset a trusted resource for high-stakes applications, where data quality is critical.

    Integration and Usability:

    Ease of Integration:

    • The dataset is provided in a CSV format, which is widely compatible with most data analysis too...
  19. u

    Racial and Ethnic Disparities in Satisfaction with Healthcare Access and...

    • deepblue.lib.umich.edu
    Updated Apr 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Roberts, Eric; Ruggiero, Dominic; Stefanesu, Andrei; Patel, Syama; Hames, Alexandra; Tipirneni, Renu (2025). Racial and Ethnic Disparities in Satisfaction with Healthcare Access and Affordability Data Set [Dataset]. http://doi.org/10.7302/jrpq-sv90
    Explore at:
    Dataset updated
    Apr 25, 2025
    Dataset provided by
    Deep Blue Data
    Authors
    Roberts, Eric; Ruggiero, Dominic; Stefanesu, Andrei; Patel, Syama; Hames, Alexandra; Tipirneni, Renu
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    We analyzed satisfaction with care, out-of-pocket costs, and specialist access among community-dwelling Medicare Current Beneficiary Survey respondents, 2015–2019, in the 50 states and Washington, DC. For each measure, we constructed a binary indicator indicating very satisfied (vs. very dissatisfied to satisfied).;We used logistic regression to model outcomes as a function of Medicare Advantage - MA (vs. Traditional Medicare - TM) enrollment, respondent-reported race/ethnicity, and interactions of MA with race/ethnicity. Race/ethnicity was categorized as non-Hispanic Black, Hispanic, and non-Hispanic White. We adjusted for age, sex, education, income, tobacco use, chronic conditions, functional limitations, disability, and geographic factors. Racial/ethnic disparities reflect effects of structural factors that systematically disadvantage members of minoritized racial/ethnic groups. Because structural racism contributes to disparities in socioeconomic status (including income and education), we verified that our estimates did not change appreciably when we did not adjust for socioeconomic factors. ;Analyses were weighted by a composite of survey weights and propensity score weights to balance MA and TM populations within racial/ethnic groups. Separate analyses were conducted for beneficiaries with vs. without dual eligibility for full Medicaid.

    We used SAS to process the data.

  20. H

    The impact of ethnicity and multi-morbidity on C19 hospitalised outcomes

    • find.data.gov.scot
    • dtechtive.com
    Updated May 25, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    PIONEER (2023). The impact of ethnicity and multi-morbidity on C19 hospitalised outcomes [Dataset]. https://find.data.gov.scot/datasets/26292
    Explore at:
    Dataset updated
    May 25, 2023
    Dataset provided by
    PIONEER
    Area covered
    United Kingdom, West Midlands, England
    Description

    A deeply phenotyped dataset of hospitalised COVID-19 patients in Birmingham; including granular ethnicity and multi-morbidity data confirmed in primary care; physiology, blood biomarkers, treatments, interventions, ITU admissions and outcomes.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
This publication uses data from PIONEER, an ethically approved database and analytical environment (East Midlands Derby Research Ethics 20/EM/0158), The impact of ethnicity and multi-morbidity on C19 hospitalised outcomes [Dataset]. https://healthdatagateway.org/dataset/143

The impact of ethnicity and multi-morbidity on C19 hospitalised outcomes

The impact of ethnicity and multi-morbidity on C19 hospitalised outcomes

Explore at:
unknownAvailable download formats
Dataset authored and provided by
This publication uses data from PIONEER, an ethically approved database and analytical environment (East Midlands Derby Research Ethics 20/EM/0158)
License

https://www.pioneerdatahub.co.uk/data/data-request-process/https://www.pioneerdatahub.co.uk/data/data-request-process/

Description

PIONEER: The impact of ethnicity and multi-morbidity on COVID-related outcomes; a primary care supplemented hospitalised dataset Dataset number 3.0

Coronavirus disease 2019 (COVID-19) was identified in January 2020. Currently, there have been more than 65million cases and more than 1.5 million deaths worldwide. Some individuals experience severe manifestations of infection, including viral pneumonia, adult respiratory distress syndrome (ARDS) and death. Evidence suggests that older patients, those from some ethnic minority groups and those with multiple long-term health conditions have worse outcomes. This secondary care COVID dataset contains granular demographic and morbidity data, supplemented from primary care records, to add to the understanding of patient factors on disease outcomes.

PIONEER geography The West Midlands (WM) has a population of 5.9 million & includes a diverse ethnic & socio-economic mix. There is a higher than average percentage of minority ethnic groups. WM has a large number of elderly residents but is the youngest population in the UK. Each day >100,000 people are treated in hospital, see their GP or are cared for by the NHS. The West Midlands was one of the hardest hit regions for COVID admissions in both wave 1 and 2.

EHR. University Hospitals Birmingham NHS Foundation Trust (UHB) is one of the largest NHS Trusts in England, providing direct acute services & specialist care across four hospital sites, with 2.2 million patient episodes per year, 2750 beds & 100 ITU beds. UHB runs a fully electronic healthcare record (EHR) (PICS; Birmingham Systems), a shared primary & secondary care record (Your Care Connected) & a patient portal “My Health”. UHB has cared for >5000 COVID admissions to date.

Scope: All COVID swab confirmed hospitalised patients to UHB from January – May 2020. The dataset includes highly granular patient demographics & co-morbidities taken from ICD-10 & SNOMED-CT codes but also primary care records and clinic letters. Serial, structured data pertaining to care process (timings, staff grades, specialty review, wards), presenting complaint, acuity, all physiology readings (pulse, blood pressure, respiratory rate, oxygen saturations), all blood results, microbiology, all prescribed & administered treatments (fluids, antibiotics, inotropes, vasopressors, organ support), all outcomes. Linked images available (radiographs, CT, MRI, ultrasound).

Available supplementary data: Health data preceding and following admission event. Matched “non-COVID” controls; ambulance, 111, 999 data, synthetic data.

Available supplementary support: Analytics, Model build, validation & refinement; A.I.; Data partner support for ETL (extract, transform & load) process, Clinical expertise, Patient & end-user access, Purchaser access, Regulatory requirements, Data-driven trials, “fast screen” services.

Search
Clear search
Close search
Google apps
Main menu