Community Specific Profiles are grouped by race and ethnicity. We measure by race, ethnicity, and other demographics to understand the specific needs of different communities and evaluate effective service delivery and accountability. This dataset is the groupings used to combine projects with multiple levels and types of data standards. These include the minimum and comprehensive race and ethnicity categories from the City of Portland Rescue Plan Data Standards. They also include race and ethnicity categories in the HUD HMIS data standards.-- Additional Information: Category: ARPA Update Frequency: As Necessary-- Metadata Link: https://www.portlandmaps.com/metadata/index.cfm?&action=DisplayLayer&LayerID=60968
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Sidell by race. It includes the population of Sidell across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to understand the population distribution of Sidell across relevant racial categories.
Key observations
The percent distribution of Sidell population by race (across all racial categories recognized by the U.S. Census Bureau): 97.76% are white, 1.12% are Black or African American, 0.89% are Asian and 0.22% are multiracial.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Sidell Population by Race & Ethnicity. You can refer the same here
TIGER, TIGER/Line, and Census TIGER are registered trademarks of the Bureau of the Census. The Redistricting Census 2000 TIGER/Line files are an extract of selected geographic and cartographic information from the Census TIGER data base. The geographic coverage for a single TIGER/Line file is a county or statistical equivalent entity, with the coverage area based on January 1, 2000 legal boundaries. A complete set of Redistricting Census 2000 TIGER/Line files includes all counties and statistically equivalent entities in the United States and Puerto Rico. The Redistricting Census 2000 TIGER/Line files will not include files for the Island Areas. The Census TIGER data base represents a seamless national file with no overlaps or gaps between parts. However, each county-based TIGER/Line file is designed to stand alone as an independent data set or the files can be combined to cover the whole Nation. The Redistricting Census 2000 TIGER/Line files consist of line segments representing physical features and governmental and statistical boundaries. The Redistricting Census 2000 TIGER/Line files do NOT contain the ZIP Code Tabulation Areas (ZCTAs) and the address ranges are of approximately the same vintage as those appearing in the 1999 TIGER/Line files. That is, the Census Bureau is producing the Redistricting Census 2000 TIGER/Line files in advance of the computer processing that will ensure that the address ranges in the TIGER/Line files agree with the final Master Address File (MAF) used for tabulating Census 2000. The files contain information distributed over a series of record types for the spatial objects of a county. There are 17 record types, including the basic data record, the shape coordinate points, and geographic codes that can be used with appropriate software to prepare maps. Other geographic information contained in the files includes attributes such as feature identifiers/census feature class codes (CFCC) used to differentiate feature types, address ranges and ZIP Codes, codes for legal and statistical entities, latitude/longitude coordinates of linear and point features, landmark point features, area landmarks, key geographic features, and area boundaries. The Redistricting Census 2000 TIGER/Line data dictionary contains a complete list of all the fields in the 17 record types.
Open Data Commons Attribution License (ODC-By) v1.0https://www.opendatacommons.org/licenses/by/1.0/
License information was derived automatically
Race and ethnicity variables can be particularly problematic for data reidentification and data misuse in publicly available datasets, and as such were removed from the original datasets. This dataset contains race and ethnicity information for all waves of data that may be available upon request. Data within utilize the same coding schemes presented within the data waves of interest.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Philadelphia by race. It includes the population of Philadelphia across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to understand the population distribution of Philadelphia across relevant racial categories.
Key observations
The percent distribution of Philadelphia population by race (across all racial categories recognized by the U.S. Census Bureau): 83.52% are white, 9.70% are Black or African American and 6.79% are multiracial.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Philadelphia Population by Race & Ethnicity. You can refer the same here
This layer shows race and ethnicity data from the 2020 Census Demographic and Housing Characteristics. This is shown by Nation, Consolidated City, Census Designated Place, Incorporated Place boundaries. Each geography layer contains a common set of Census counts based on available attributes from the U.S. Census Bureau. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. To see the full list of attributes available in this service, go to the "Data" tab above, and then choose "Fields" at the top right. Each attribute contains definitions, additional details, and the formula for calculated fields in the field description.Vintage of boundaries and attributes: 2020 Demographic and Housing Characteristics Table(s): P1, H1, H3, P5, P9 Data downloaded from: U.S. Census Bureau’s data.census.gov siteDate the Data was Downloaded: May 25, 2023Geography Levels included: Nation, Consolidated City, Census Designated Place, Incorporated PlaceNational Figures: included in Nation layer The United States Census Bureau Demographic and Housing Characteristics: 2020 Census Results 2020 Census Data Quality Geography & 2020 Census Technical Documentation Data Table Guide: includes the final list of tables, lowest level of geography by table and table shells for the Demographic Profile and Demographic and Housing Characteristics.News & Updates This layer is ready to be used in ArcGIS Pro, ArcGIS Online and its configurable apps, Story Maps, dashboards, Notebooks, Python, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the U.S. Census Bureau when using this data. Data Processing Notes: These 2020 Census boundaries come from the US Census TIGER geodatabases. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For Census tracts and block groups, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract and block group boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2020 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are unchanged and available as attributes within the data table (units are square meters). The layer contains all US states, Washington D.C., and Puerto Rico. Census tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99). Block groups that fall within the same criteria (Block Group denoted as 0 with no area land) have also been removed.Percentages and derived counts, are calculated values (that can be identified by the "_calc_" stub in the field name). Field alias names were created based on the Table Shells file available from the Data Table Guide for the Demographic Profile and Demographic and Housing Characteristics. Not all lines of all tables listed above are included in this layer. Duplicative counts were dropped. For example, P0030001 was dropped, as it is duplicative of P0010001.To protect the privacy and confidentiality of respondents, their data has been protected using differential privacy techniques by the U.S. Census Bureau.
This dataset represents the percent distribution of AmeriCorps member terms which started their service in calendar year 2019 by race and ethnicity. This report excludes AmeriCorps Seniors volunteers. Included are percentage distributions from the United States Census Bureau's 2010-2019 State Population Characteristics dataset.
Knowing the racial and ethnic composition of a community is often one of the first steps in understanding, serving, and advocating for various groups. This information can help enforce laws, policies, and regulations against discrimination based on race and ethnicity. These statistics can also help tailor services to accommodate cultural differences.This multi-scale map shows the most common race/ethnicity living within an area. Map opens at tract-level in Los Angeles, CA but has national coverage. Zoom out to see counties and states.This map uses these hosted feature layers containing the most recent American Community Survey data. These layers are part of the ArcGIS Living Atlas, and are updated every year when the American Community Survey releases new estimates, so values in the map always reflect the newest data available. The data on race were derived from answers to the question on race that was asked of individuals in the United States. The Census Bureau collects racial data in accordance with guidelines provided by the U.S. Office of Management and Budget (OMB), and these data are based on self-identification. The racial categories included in the census questionnaire generally reflect a social definition of race recognized in this country and not an attempt to define race biologically, anthropologically, or genetically. The categories represent a social-political construct designed for collecting data on the race and ethnicity of broad population groups in this country, and are not anthropologically or scientifically based. Learn more here.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This layer shows population broken down by race and Hispanic origin. Data is from US Census American Community Survey (ACS) 5-year estimates.This layer is symbolized to show the percent of population that is Hispanic or Latino. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right (in ArcGIS Online). To view only the census tracts that are predominantly in Tempe, add the expression City is Tempe in the map filter settings.A ‘Null’ entry in the estimate indicates that data for this geographic area cannot be displayed because the number of sample cases is too small (per the U.S. Census).Vintage: 2018-2022ACS Table(s): B03002 (Not all lines of this ACS table are available in this feature layer.)Data downloaded from: Census Bureau's API for American Community SurveyData Preparation: Data curated from Esri Living Atlas clipped to Census Tract boundaries that are within or adjacent to the City of Tempe boundaryDate of Census update: December 15, 2023National Figures: data.census.gov
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
Note: As of March 2022, the race/ethnicity label changed from Native American to American Indian or Alaska Native to align with the Census.
Note: As of April 16, 2021, this dataset will update daily with a five-day data lag.
Note: As of February 2022, the way race/ethnicity is categorized has been changed. See Section B for additional information.
A. SUMMARY This dataset includes San Francisco COVID-19 tests by race/ethnicity and by date. This dataset represents the daily count of tests collected, and the breakdown of test results (positive, negative, or indeterminate). Tests in this dataset include all those collected from persons who listed San Francisco as their home address at the time of testing. It also includes tests that were collected by San Francisco providers for persons who were missing a locating address. This dataset does not include tests for residents listing a locating address outside of San Francisco, even if they were tested in San Francisco.
The data were de-duplicated by individual and date, so if a person gets tested multiple times on different dates, all tests will be included in this dataset (on the day each test was collected). If a person tested multiple times on the same date, only one test is included from that date. When there are multiple tests on the same date, a positive result, if one exists, will always be selected as the record for the person. If a PCR and antigen test are taken on the same day, the PCR test will supersede. If a person tests multiple times on the same day and the results are all the same (e.g. all negative or all positive) then the first test done is selected as the record for the person.
The total number of positive test results is not equal to the total number of COVID-19 cases in San Francisco. Each positive test result is investigated by the health department. While the city tries to only report on tests for San Francisco residents (or tests in San Francisco for those with no locating address listed), some test results purported to be for San Francisco residents are actually for people living outside the city. This can be discovered during a case investigation or data quality assurance. In such an instance, the test would be counted as a positive test in the SF data but would not be counted as a COVID-19 case in San Francisco. If a person tests positive for COVID-19 on different dates, they would be included each of those times in the testing data but only one case. To track the number of cases by race/ethnicity, see this dashboard: https://sf.gov/data/covid-19-population-characteristics#race-or-ethnicity-
When a person gets tested for COVID-19, they may be asked to report information about themselves. One piece of information that might be requested is a person's race and ethnicity. These data are often incomplete in the laboratory and provider reports of the test results sent to the health department. The data can be missing or incomplete for several possible reasons:
• The person was not asked about their race and ethnicity.
• The person was asked, but refused to answer.
• The person answered, but the testing provider did not include the person's answers in the reports.
• The testing provider reported the person's answers in a format that could not be used by the health department.
For any of these reasons, a person's race/ethnicity will be recorded in the dataset as “Unknown.”
B. NOTE ON RACE/ETHNICITY The different values for Race/Ethnicity in this dataset are "Asian;" "Black or African American;" "Hispanic or Latino/a, all races;" "American Indian or Alaska Native;" "Native Hawaiian or Other Pacific Islander;" "White;" "Multi-racial;" "Other;" and “Unknown."
On February 10, 2022, the method for which race/ethnicity is categorized was updated for the sake of data accuracy, clarity, and stability. The new categorization increases data clarity by emulating the methodology used by the U.S. Census in the
Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
Sources: U.S. Census Bureau; American Community Survey, 2019-2023 American Community Survey 5-Year Estimates, Tables B02001; generated by CCRPC staff; using data.census.gov; https://data.census.gov; (17 December 2024). U.S. Census Bureau; American Community Survey, 2019-2023 American Community Survey 5-Year Estimates, Table B03002; generated by CCRPC staff; using data.census.gov; https://data.census.gov; (17 December 2024).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Cudahy by race. It includes the population of Cudahy across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to understand the population distribution of Cudahy across relevant racial categories.
Key observations
The percent distribution of Cudahy population by race (across all racial categories recognized by the U.S. Census Bureau): 81.61% are white, 3.59% are Black or African American, 0.19% are American Indian and Alaska Native, 2.44% are Asian, 0.11% are Native Hawaiian and other Pacific Islander, 2.43% are some other race and 9.63% are multiracial.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Cudahy Population by Race & Ethnicity. You can refer the same here
Percent population by race and Hispanic Origin North Carolina and all counties from the 2012-2016 American Community Survey.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Census block-level data focusing on race and ethnicity. This layer captures the distribution of 2010 Census respondents self-identifying as "two or more races/ ethnicities" in the City of Johns Creek, GA.
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
A. SUMMARY This dataset includes San Francisco COVID-19 tests by race/ethnicity and by date. This dataset represents the daily count of tests collected, and the breakdown of test results (positive, negative, or indeterminate). Tests in this dataset include all those collected from persons who listed San Francisco as their home address at the time of testing. It also includes tests that were collected by San Francisco providers for persons who were missing a locating address. This dataset does not include tests for residents listing a locating address outside of San Francisco, even if they were tested in San Francisco. The data were de-duplicated by individual and date, so if a person gets tested multiple times on different dates, all tests will be included in this dataset (on the day each test was collected). If a person tested multiple times on the same date, only one test is included from that date. When there are multiple tests on the same date, a positive result, if one exists, will always be selected as the record for the person. If a PCR and antigen test are taken on the same day, the PCR test will supersede. If a person tests multiple times on the same day and the results are all the same (e.g. all negative or all positive) then the first test done is selected as the record for the person. The total number of positive test results is not equal to the total number of COVID-19 cases in San Francisco. When a person gets tested for COVID-19, they may be asked to report information about themselves. One piece of information that might be requested is a person's race and ethnicity. These data are often incomplete in the laboratory and provider reports of the test results sent to the health department. The data can be missing or incomplete for several possible reasons: • The person was not asked about their race and ethnicity. • The person was asked, but refused to answer. • The person answered, but the testing provider did not include the person's answers in the reports. • The testing provider reported the person's answers in a format that could not be used by the health department. For any of these reasons, a person's race/ethnicity will be recorded in the dataset as “Unknown.” B. NOTE ON RACE/ETHNICITY The different values for Race/Ethnicity in this dataset are "Asian;" "Black or African American;" "Hispanic or Latino/a, all races;" "American Indian or Alaska Native;" "Native Hawaiian or Other Pacific Islander;" "White;" "Multi-racial;" "Other;" and “Unknown." The Race/Ethnicity categorization increases data clarity by emulating the methodology used by the U.S. Census in the American Community Survey. Specifically, persons who identify as "Asian," "Black or African American," "American Indian or Alaska Native," "Native Hawaiian or Other Pacific Islander," "White," "Multi-racial," or "Other" do NOT include any person who identified as Hispanic/Latino at any time in their testing reports that either (1) identified them as SF residents or (2) as someone who tested without a locating address by an SF provider. All persons across all races who identify as Hispanic/Latino are recorded as “"Hispanic or Latino/a, all races." This categorization increases data accuracy by correcting the way “Other” persons were counted. Previously, when a person reported “Other” for Race/Ethnicity, they would be recorded “Unknown.” Under the new categorization, they are counted as “Other” and are distinct from “Unknown.” If a person records their race/ethnicity as “Asian,” “Black or African American,” “American Indian or Alaska Native,” “Native Hawaiian or Other Pacific Islander,” “White,” or “Other” for their first COVID-19 test, then this data will not change—even if a different race/ethnicity is reported for this person for any future COVID-19 test. There are two exceptions to this rule. The first exception is if a person’s race/ethnicity value i
In 2023, **** percent of Oregon residents were Hispanic or Latino (of any race). A further **** percent of the population were white, and **** percent of Oregon residents were of two or more races in that same year.
Use this application to view the pattern of concentrations of people by race and Hispanic or Latino ethnicity. Data are provided at the U.S. Census block group level, one of the smallest Census geographies, to provide a detailed picture of these patterns. The data is sourced from the U.S Census Bureau, 2020 Census Redistricting Data (Public Law 94-171) Summary File. Definitions: Definitions of the Census Bureau’s categories are provided below. This interactive map shows patterns for all categories except American Indian or Alaska Native and Native Hawaiian or Other Pacific Islander. The total population countywide for these two categories is small (1,582 and 263 respectively). The Census Bureau uses the following race categories:Population by RaceWhite – A person having origins in any of the original peoples of Europe, the Middle East, or North Africa.Black or African American – A person having origins in any of the Black racial groups of Africa.American Indian or Alaska Native – A person having origins in any of the original peoples of North and South America (including Central America) and who maintains tribal affiliation or community attachment.Asian – A person having origins in any of the original peoples of the Far East, Southeast Asia, or the Indian subcontinent including, for example, Cambodia, China, India, Japan, Korea, Malaysia, Pakistan, the Philippine Islands, Thailand, and Vietnam.Native Hawaiian or Other Pacific Islander – A person having origins in any of the original peoples of Hawaii, Guam, Samoa, or other Pacific Islands.Some Other Race - this category is chosen by people who do not identify with any of the categories listed above. People can identify with more than one race. These people are included in the Two or More Races Hispanic or Latino PopulationThe Hispanic/Latino population is an ethnic group. Hispanic/Latino people may be of any race.Other layers provided in this tool included the Loudoun County Census block groups, towns and Dulles airport, and the Loudoun County 2021 aerial imagery.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This layer shows population broken down by race and Hispanic origin. Data is from US Census American Community Survey (ACS) 5-year estimates.This layer is symbolized to show the percent of population that is Hispanic or Latino. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right (in ArcGIS Online). To view only the census tracts that are predominantly in Tempe, add the expression City is Tempe in the map filter settings.A ‘Null’ entry in the estimate indicates that data for this geographic area cannot be displayed because the number of sample cases is too small (per the U.S. Census).Vintage: 2017-2021ACS Table(s): B03002 (Not all lines of this ACS table are available in this feature layer.)Data downloaded from: Census Bureau's API for American Community Survey Data Preparation: Data curated from Esri Living Atlas clipped to Census Tract boundaries that are within or adjacent to the City of Tempe boundaryDate of Census update: December 8, 2022National Figures: data.census.govAdditional Census data notes and data processing notes are available at the Esri Living Atlas Layer:https://tempegov.maps.arcgis.com/home/item.html?id=23ab8028f1784de4b0810104cd5d1c8f&view=list&sortOrder=desc&sortField=defaultFSOrder#overview(Esri's Living Atlas always shows latest data)
Table published by the Connecticut Department of Public Health that contains reportable disease data. Each row of data represents a case of disease in a person with their reported race/ethnicity. Information on race/ethnicity is gathered from individuals during case interviews. Reported race and ethnicity information is used create a single race/ethnicity variable. People with more than one race are classified as two or more races. People with Hispanic ethnicity are classified as Hispanic regardless of reported race(s). People with a missing ethnicity are classified as non-Hispanic. All data are preliminary; data for previous weeks are routinely updated as new reports are received, duplicate records are removed, and data errors are corrected. The following disease(s) are included in this table: MPOX (previously called Monkeypox), Influenza
Notice: The U.S. Census Bureau is delaying the release of the 2016-2020 ACS 5-year data until March 2022. For more information, please read the Census Bureau statement regarding this matter. -----------------------------------------This layer shows population broken down by race and Hispanic origin. This layer shows Census data from Esri's Living Atlas and is clipped to only show Tempe census tracts. This layer is symbolized to show the predominant race living within an area. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right (in ArcGIS Online).
Data is from US Census American Community Survey (ACS) 5-year estimates.
Vintage: 2015-2019
ACS Table(s): B03002 (Not all lines of this ACS table are available in this feature layer.)
Data downloaded from: Census Bureau's API for American Community Survey
Date of Census update: December 10, 2020
National Figures: data.census.gov
Additional Census data notes and data processing notes are available at the Esri Living Atlas Layer:
(Esri's Living Atlas always shows latest data)
Community Specific Profiles are grouped by race and ethnicity. We measure by race, ethnicity, and other demographics to understand the specific needs of different communities and evaluate effective service delivery and accountability. This dataset is the groupings used to combine projects with multiple levels and types of data standards. These include the minimum and comprehensive race and ethnicity categories from the City of Portland Rescue Plan Data Standards. They also include race and ethnicity categories in the HUD HMIS data standards.-- Additional Information: Category: ARPA Update Frequency: As Necessary-- Metadata Link: https://www.portlandmaps.com/metadata/index.cfm?&action=DisplayLayer&LayerID=60968