100+ datasets found
  1. d

    CT DPH COVID -19 Race and Ethnicity Data Summary

    • catalog.data.gov
    • data.ct.gov
    Updated Jul 5, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.ct.gov (2025). CT DPH COVID -19 Race and Ethnicity Data Summary [Dataset]. https://catalog.data.gov/dataset/ct-dph-covid-19-race-and-ethnicity-data-summary
    Explore at:
    Dataset updated
    Jul 5, 2025
    Dataset provided by
    data.ct.gov
    Area covered
    Connecticut
    Description

    This report summarizes data on COVID-19 cases and COVID-19 associated deaths by race/ethnicity for the state of Connecticut and the 10 largest Connecticut towns. Data on race/ethnicity are missing on almost half (47%) of reported COVID-19 cases. CT DPH has urged healthcare providers and laboratories to complete information on race/ethnicity for all COVID-19 cases. All data in this report are preliminary; data will be updated as new COVID-19 case reports are received and data errors are corrected. Data on COVID-19 cases and COVID-19-associated deaths were last updated on April 20, 2020 at 3 PM. Information about race and ethnicity are collected on the Connecticut Department of Public Health (DPH) COVID-19 case report form, which is completed by healthcare providers for laboratory-confirmed COVID-19 cases. Information about the race/ethnicity of COVID-19-associated deaths also are collected by the Connecticut Office of the Chief Medical Examiner and shared with DPH. Race/ethnicity categories used in this report are mutually exclusive. People answering ‘yes’ to more than one race category are counted as ‘other’.

  2. u

    American Community Survey

    • gstore.unm.edu
    csv, geojson, gml +5
    Updated Mar 6, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Earth Data Analysis Center (2020). American Community Survey [Dataset]. https://gstore.unm.edu/apps/rgis/datasets/474fef30-414f-4269-b37a-5103c84b141f/metadata/FGDC-STD-001-1998.html
    Explore at:
    json(5), gml(5), shp(5), kml(5), csv(5), xls(5), zip(1), geojson(5)Available download formats
    Dataset updated
    Mar 6, 2020
    Dataset provided by
    Earth Data Analysis Center
    Time period covered
    2018
    Area covered
    West Bounding Coordinate -109.05017 East Bounding Coordinate -103.00196 North Bounding Coordinate 37.000293 South Bounding Coordinate 31.33217, New Mexico
    Description

    A broad and generalized selection of 2014-2018 US Census Bureau 2018 5-year American Community Survey race, ethnicity and citizenship data estimates, obtained via Census API and joined to the appropriate geometry (in this case, New Mexico counties). The selection, while not comprehensive, provides a first-level characterization of the race and/or ethnicity of populations in New Mexico, along with citizenship status and nativity. The determination of which estimates to include was based upon level of interest and providing a manageable dataset for users. The U.S. Census Bureau's American Community Survey (ACS) is a nationwide, continuous survey designed to provide communities with reliable and timely demographic, housing, social, and economic data every year. The ACS collects long-form-type information throughout the decade rather than only once every 10 years. As in the decennial census, strict confidentiality laws protect all information that could be used to identify individuals or households.The ACS combines population or other data from multiple years to produce reliable numbers for small counties, neighborhoods, and other local areas. To provide information for communities each year, the ACS provides 1-, 3-, and 5-year estimates. ACS 5-year estimates (multiyear estimates) are “period” estimates that represent data collected over a 60-month period of time (as opposed to “point-in-time” estimates, such as the decennial census, that approximate the characteristics of an area on a specific date). ACS data are released in the year immediately following the year in which they are collected. ACS estimates based on data collected from 2009–2014 should not be called “2009” or “2014” estimates. Multiyear estimates should be labeled to indicate clearly the full period of time. The primary advantage of using multiyear estimates is the increased statistical reliability of the data for less populated areas and small population subgroups. Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. While each full Data Profile contains margin of error (MOE) information, this dataset does not. Those individuals requiring more complete data are directed to download the more detailed datasets from the ACS American FactFinder website. This dataset is organized by New Mexico county boundaries, based on TIGER/Line Files: shapefiles and related database files (.dbf) that are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database.

  3. 2019 Economic Surveys: AB1900NESD03 | Nonemployer Statistics by Demographics...

    • data.census.gov
    Updated May 11, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECN (2023). 2019 Economic Surveys: AB1900NESD03 | Nonemployer Statistics by Demographics series (NES-D): Legal Form of Organization Statistics for Nonemployer Firms by Sector, Sex, Ethnicity, Race, Veteran Status for the U.S., States, and Metro Areas: 2019 (ECNSVY Nonemployer Statistics by Demographics Company Summary) [Dataset]. https://data.census.gov/table/ABSNESD2019.AB1900NESD03?q=Construction+Data+Inc
    Explore at:
    Dataset updated
    May 11, 2023
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ECN
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2019
    Area covered
    United States
    Description

    Release Date: 2023-05-11.The Census Bureau has reviewed this data product to ensure appropriate access, use, and disclosure avoidance protection of the confidential source data (Project No. 7504866, Disclosure Review Board (DRB) approval number: CBDRB-FY23-0262)...Key Table Information:.Includes U.S. firms with no paid employment or payroll, annual receipts of $1,000 or more ($1 or more in the construction industries) and filing Internal Revenue Service (IRS) tax forms for sole proprietorships (Form 1040, Schedule C), partnerships (Form 1065), or corporations (the Form 1120 series)...Data Items and Other Identifying Records:.Data include estimates on:.Number of nonemployer firms (firms without paid employees). Sales and receipts of nonemployer firms (reported in $1,000s of dollars)...These data are aggregated by the following demographic classifications of firm for:.All firms. Classifiable (firms classifiable by sex, ethnicity, race, and veteran status). . Sex. Female. Male. Equally male/female. . Ethnicity. Hispanic. Equally Hispanic/non-Hispanic. Non-Hispanic. . Race. White. Black or African American. American Indian and Alaska Native. Asian. Native Hawaiian and Other Pacific Islander. Minority (Firms classified as any race and ethnicity combination other than non-Hispanic and White). Equally minority/nonminority. Nonminority (Firms classified as non-Hispanic and White). . Veteran Status (defined as having served in any branch of the U.S. Armed Forces). Veteran. Equally veteran/nonveteran. Nonveteran. . . . Unclassifiable (firms not classifiable by sex, ethnicity, race, and veteran status). ...The data are also shown by the following legal form of organization (LFO) categories:. S-Corporations. C-Corporations. Individual proprietorships. Partnerships...Data Notes:.. Business ownership is defined as having 51 percent or more of the stock or equity in the business. Data are provided for firms owned equally (50% / 50%) by men and women, by Hispanics and non-Hispanics, by minorities and nonminorities, and by veterans and nonveterans. Firms not classifiable by sex, ethnicity, race, and veteran status are counted and tabulated separately.. The detail may not add to the total or subtotal because a Hispanic firm may be of any race; because a firm could be tabulated in more than one racial group; or because the number of nonemployer firm's data are rounded.. For C-corporations, there is no tax form or business registry that clearly and unequivocally identifies all owners of this type of business. For this reason, the Census Bureau is unable to assign demographic characteristics for C-corporations. Data for C-corporations are included in the published tables but are not shown by the demographic characteristics of the firms....Industry and Geography Coverage:.The data are shown for the total for all sectors (00) and 2-digit NAICS code levels for:..United States. States and the District of Columbia. Metropolitan Statistical Areas...Data are also shown for the 3-digit NAICS code for:..United States...Data are excluded for the following NAICS industries:.Crop and Animal Production (NAICS 111 and 112). Rail Transportation (NAICS 482). Postal Service (NAICS 491). Monetary Authorities-Central Bank (NAICS 521). Funds, Trusts, and Other Financial Vehicles (NAICS 525). Management of Companies and Enterprises (NAICS 55). Private Households (NAICS 814). Public Administration (NAICS 92). Industries Not Classified (NAICS 99)...For more information about NAICS, see NAICS Codes & Understanding Industry Classification Systems. For information about geographies used by economic programs at the Census Bureau, see Economic Census: Economic Geographies...FTP Download:.Download the entire table at: https://www2.census.gov/programs-surveys/abs/data/2019/AB1900NESD03.zip...API Information:.Nonemployer Demographic Statistics data are housed in the Census Bureau API. For more information, see https://api.census.gov/data/2019/absnesd.html...Symbols:. D - Withheld to avoid disclosing data for individual companies; data are included in higher level totals. S - Estimate does not meet publication standards because of high sampling variability, poor response quality, or other concerns about the estimate quality. Unpublished estimates derived from this table by subtraction are subject to these same limitations and should not be attributed to the U.S. Census Bureau. For a description of publication standards and the total quantity response rate, see link to program methodology page.. N - Not available or not comparable. X - Not applicable..The following symbols are used to identify the level of noise applied to the data:. G - Low noise: The cell valu...

  4. d

    Yearly Asian and Native Hawaiian or Other Pacific Islander Representation

    • datasets.ai
    • cloud.csiss.gmu.edu
    • +3more
    Updated Sep 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Social Security Administration (2024). Yearly Asian and Native Hawaiian or Other Pacific Islander Representation [Dataset]. https://datasets.ai/datasets/yearly-asian-and-native-hawaiian-or-other-pacific-islander-representation
    Explore at:
    Dataset updated
    Sep 18, 2024
    Dataset authored and provided by
    Social Security Administration
    Description

    Federal employees self-identify their race and ethnicity by completing OPM'S Standard Form 181, "Ethnicity and Race Identification". We input the information into the Human Resources Operational Data Store, a database with information about active and inactive SSA employees that we update nightly. The data conform to OPM standards.

  5. 2021 Economic Surveys: AB2100NESD05 | Nonemployer Statistics by Demographics...

    • data.census.gov
    Updated Aug 8, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECN (2024). 2021 Economic Surveys: AB2100NESD05 | Nonemployer Statistics by Demographics series (NES-D): Urban and Rural Classification of Employer and Nonemployer Firms by Industry, Sex, Ethnicity, Race, and Veteran Status for the U.S., States, Metro Areas, and Counties: 2021 (ECNSVY Nonemployer Statistics by Demographics Company Summary) [Dataset]. https://data.census.gov/table/ABSNESD2021.AB2100NESD05?q=Butler+Brett+D
    Explore at:
    Dataset updated
    Aug 8, 2024
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ECN
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2021
    Area covered
    United States
    Description

    Release Date: 2024-08-08.The Census Bureau has reviewed this data product to ensure appropriate access, use, and disclosure avoidance protection of the confidential source data (Project No. 7504866, Disclosure Review Board (DRB) approval number: 2021 NES-D approval number: CBDRB-FY24-0307; 2022 ABS approval number: CBDRB-FY23-0479)...Key Table Information:.Data in this table combines estimates from the Annual Business Survey (employer firms) and the Nonemployer Statistics by Demographics (nonemployer firms)...Includes U.S. firms with no paid employment or payroll, annual receipts of $1,000 or more ($1 or more in the construction industries) and filing Internal Revenue Service (IRS) tax forms for sole proprietorships (Form 1040, Schedule C), partnerships (Form 1065), or corporations (the Form 1120 series)...Includes U.S. employer firms estimates of business ownership by sex, ethnicity, race, and veteran status from the 2022 Annual Business Survey (ABS) collection. Data are also obtained from administrative records, the 2017 Economic Census, and other economic surveys...Note: For employer data only, the collection year is the year in which the data are collected. A reference year is the year that is referenced in the questions on the survey and in which the statistics are tabulated. For example, the 2022 ABS collection year produces statistics for the 2021 reference year. The "Year" column in the table is the reference year...Data Items and Other Identifying Records:.Data include estimates on:.Total number of employer and nonemployer firms. Total sales and receipts of employer and nonemployer firms (reported in $1,000 of dollars). Number of nonemployer firms (firms without paid employees). Sales and receipts of nonemployer firms (reported in $1,000s of dollars). Number of employer firms (firms with paid employees). Sales and receipts of employer firms (reported in $1,000s of dollars). Number of employees (during the March 12 pay period). Annual payroll of employer firms (reported in $1,000s of dollars)...These data are aggregated by the following demographic classifications of firm for:.All firms. Classifiable (firms classifiable by sex, ethnicity, race, and veteran status). . Sex. Female. Male. Equally male/female (50% / 50%). . Ethnicity. Hispanic. Equally Hispanic/non-Hispanic (50% / 50%). Non-Hispanic. . Race. White. Black or African American. American Indian and Alaska Native. Asian. Native Hawaiian and Other Pacific Islander. Minority (Firms classified as any race and ethnicity combination other than non-Hispanic and White). Equally minority/nonminority (50% / 50%). Nonminority (Firms classified as non-Hispanic and White). . Veteran Status (defined as having served in any branch of the U.S. Armed Forces). Veteran. Equally veteran/nonveteran (50% / 50%). Nonveteran. . . . Unclassifiable (firms not classifiable by sex, ethnicity, race, and veteran status). ...The data are also shown for the urban or rural classification of the firm:. Urban. Rural. Not classified...Data Notes:.. Business ownership is defined as having 51 percent or more of the stock or equity in the business. Data are provided for firms owned equally (50% / 50%) by men and women, by Hispanics and non-Hispanics, by minorities and nonminorities, and by veterans and nonveterans. Firms not classifiable by sex, ethnicity, race, and veteran status are counted and tabulated separately.. The detail may not add to the total or subtotal because a Hispanic firm may be of any race; because a firm could be tabulated in more than one racial group; or because the number of nonemployer firm's data are rounded.. Nonemployer data do not have standard error or relative standard error columns as these data are from the universe of nonemployer firms, not from a data sample.. Firms are classified as urban or rural based on the population of the Census block of its physical location or mailing address. Firms without an assigned Census block are designated as "Not classified". Firms with a physical location or mailing address on a Census block with at least 2,000 housing units, or have a population of at least 5,000 are classified as "Urban". All other firms are classified as "Rural"....Industry and Geography Coverage:.The data are shown for the total for all sectors (00) and 2-digit NAICS code levels for:..United States. States and the District of Columbia. Metropolitan Statistical Areas. County...Data are also shown for the 3- and 4-digit NAICS code for:..United States...Data are excluded for the following NAICS industries:.Crop and Animal Production (NAICS 111 and 112). Rail Transportation (NAICS 482). Postal Service (NAICS 491). Monetary Authorities-Central Ba...

  6. Population of the U.S. by race 2000-2023

    • statista.com
    Updated Aug 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Population of the U.S. by race 2000-2023 [Dataset]. https://www.statista.com/statistics/183489/population-of-the-us-by-ethnicity-since-2000/
    Explore at:
    Dataset updated
    Aug 20, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jul 2000 - Jul 2023
    Area covered
    United States
    Description

    This graph shows the population of the U.S. by race and ethnic group from 2000 to 2023. In 2023, there were around 21.39 million people of Asian origin living in the United States. A ranking of the most spoken languages across the world can be accessed here. U.S. populationCurrently, the white population makes up the vast majority of the United States’ population, accounting for some 252.07 million people in 2023. This ethnicity group contributes to the highest share of the population in every region, but is especially noticeable in the Midwestern region. The Black or African American resident population totaled 45.76 million people in the same year. The overall population in the United States is expected to increase annually from 2022, with the 320.92 million people in 2015 expected to rise to 341.69 million people by 2027. Thus, population densities have also increased, totaling 36.3 inhabitants per square kilometer as of 2021. Despite being one of the most populous countries in the world, following China and India, the United States is not even among the top 150 most densely populated countries due to its large land mass. Monaco is the most densely populated country in the world and has a population density of 24,621.5 inhabitants per square kilometer as of 2021. As population numbers in the U.S. continues to grow, the Hispanic population has also seen a similar trend from 35.7 million inhabitants in the country in 2000 to some 62.65 million inhabitants in 2021. This growing population group is a significant source of population growth in the country due to both high immigration and birth rates. The United States is one of the most racially diverse countries in the world.

  7. d

    AmeriCorps Members Demographic

    • catalog-dev.data.gov
    • data.americorps.gov
    • +1more
    Updated Mar 20, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CNCS (2025). AmeriCorps Members Demographic [Dataset]. https://catalog-dev.data.gov/dataset/americorps-members-demographic-7eccb
    Explore at:
    Dataset updated
    Mar 20, 2025
    Dataset provided by
    CNCS
    Description

    The data is prepared using AmeriCorps members who began service on any day in fiscal year (FY) 2017. The members may have served 1 to 365 days during their term. Members who are in never served, disqualified, pre-service, or deferred statuses were excluded from this analysis. AmeriCorps VISTA and AmeriCorps NCCC race and ethnicity data come from the member application to serve. The code to extract the data between the two programs is the same. The ASN race and ethnicity data comes from the enrollment form. The enrollment form may exist multiple times if the member enrolled in more than one term. It is not uncommon for each enrollment form to have conflicting information about the member’s race and ethnicity. The member may have enrollment form data for terms served outside of the timeframe of the dataset. For example, if we are reporting on members who began service in FY17, then a member who also served in FY16 may have race and ethnicity information in the FY16 enrollment form and no race or ethnicity information or conflicting information in the FY17 enrollment form. In the case of conflicting information, this analysis assumes each instance of race designation is correct. If a member reports themselves as “Asian or Asian American” in one enrollment form and “White” in another enrollment form, then the analysis categorizes this person as someone who identifies with multiple race selections vs. one or the other. In the case of ethnicity, if a member indicates that they are not Hispanic or Latino/a in one form, but that they are in another, this analysis assumes the affirmative—and they will be categorized as Hispanic or Latino/a. Lastly, the totals include the total results from the query plus the difference between the query and the raw count of members who started service in that fiscal year. The members who did not have a record in the invite table and enrollment table were added to the non-response category. Senior Corps Figures come from the Annual Progress Report Supplement as of April 11, 2018. Percentages are calculated from totals of the subcategories, excluding the non-response categories.

  8. u

    Race, Ethnicity and Citizenship by Tracts 2017

    • gstore.unm.edu
    Updated Mar 6, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). Race, Ethnicity and Citizenship by Tracts 2017 [Dataset]. https://gstore.unm.edu/apps/rgis/datasets/487f0819-6838-48f0-bd45-378c0859ed61/metadata/ISO-19115:2003.html
    Explore at:
    Dataset updated
    Mar 6, 2020
    Time period covered
    2017
    Area covered
    West Bound -109.050173 East Bound -103.001964 North Bound 37.000293 South Bound 31.332172
    Description

    A broad and generalized selection of 2013-2017 US Census Bureau 2017 5-year American Community Survey race, ethnicity and citizenship data estimates, obtained via Census API and joined to the appropriate geometry (in this case, New Mexico Census tracts). The selection is not comprehensive, but allows a first-level characterization of the race and/or ethnicity of populations in New Mexico, along with citizenship status and nativity. The determination of which estimates to include was based upon level of interest and providing a manageable dataset for users.The U.S. Census Bureau's American Community Survey (ACS) is a nationwide, continuous survey designed to provide communities with reliable and timely demographic, housing, social, and economic data every year. The ACS collects long-form-type information throughout the decade rather than only once every 10 years. The ACS combines population or housing data from multiple years to produce reliable numbers for small counties, neighborhoods, and other local areas. To provide information for communities each year, the ACS provides 1-, 3-, and 5-year estimates. ACS 5-year estimates (multiyear estimates) are “period” estimates that represent data collected over a 60-month period of time (as opposed to “point-in-time” estimates, such as the decennial census, that approximate the characteristics of an area on a specific date). ACS data are released in the year immediately following the year in which they are collected. ACS estimates based on data collected from 2009–2014 should not be called “2009” or “2014” estimates. Multiyear estimates should be labeled to indicate clearly the full period of time. While the ACS contains margin of error (MOE) information, this dataset does not. Those individuals requiring more complete data are directed to download the more detailed datasets from the ACS American FactFinder website. This dataset is organized by Census tract boundaries in New Mexico. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2010 Census Participant Statistical Areas Program. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.

  9. 2020 Economic Surveys: AB2000NESD03 | Nonemployer Statistics by Demographics...

    • data.census.gov
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECN, 2020 Economic Surveys: AB2000NESD03 | Nonemployer Statistics by Demographics series (NES-D): Legal Form of Organization Statistics for Nonemployer Firms by Industry, Sex, Ethnicity, Race, Veteran Status for the U.S., States, and Metro Areas: 2020 (ECNSVY Nonemployer Statistics by Demographics Company Summary) [Dataset]. https://data.census.gov/table/ABSNESD2020.AB2000NESD03?q=T%20D%20CONSTRUCTION%20CO
    Explore at:
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ECN
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2020
    Area covered
    United States
    Description

    Release Date: 2024-02-08.The Census Bureau has reviewed this data product to ensure appropriate access, use, and disclosure avoidance protection of the confidential source data (2020 NES-D Project No. 7504866, Disclosure Review Board (DRB) approval number: CBDRB-FY24-0051)...Key Table Information:.Includes U.S. firms with no paid employment or payroll, annual receipts of $1,000 or more ($1 or more in the construction industries) and filing Internal Revenue Service (IRS) tax forms for sole proprietorships (Form 1040, Schedule C), partnerships (Form 1065), or corporations (the Form 1120 series)...Data Items and Other Identifying Records:.Data include estimates on:.Number of nonemployer firms (firms without paid employees). Sales and receipts of nonemployer firms (reported in $1,000s of dollars)...These data are aggregated by the following demographic classifications of firm for:.All firms. Classifiable (firms classifiable by sex, ethnicity, race, and veteran status). . Sex. Female. Male. Equally male/female (50% / 50%). . Ethnicity. Hispanic. Equally Hispanic/non-Hispanic (50% / 50%). Non-Hispanic. . Race. White. Black or African American. American Indian and Alaska Native. Asian. Native Hawaiian and Other Pacific Islander. Minority (Firms classified as any race and ethnicity combination other than non-Hispanic and White). Equally minority/nonminority (50% / 50%). Nonminority (Firms classified as non-Hispanic and White). . Veteran Status (defined as having served in any branch of the U.S. Armed Forces). Veteran. Equally veteran/nonveteran (50% / 50%). Nonveteran. . . . Unclassifiable (firms not classifiable by sex, ethnicity, race, and veteran status). ...The data are also shown by the following legal form of organization (LFO) categories:. S-Corporations. C-Corporations. Individual proprietorships. Partnerships...Data Notes:.. Business ownership is defined as having 51 percent or more of the stock or equity in the business. Data are provided for firms owned equally (50% / 50%) by men and women, by Hispanics and non-Hispanics, by minorities and nonminorities, and by veterans and nonveterans. Firms not classifiable by sex, ethnicity, race, and veteran status are counted and tabulated separately.. The detail may not add to the total or subtotal because a Hispanic firm may be of any race; because a firm could be tabulated in more than one racial group; or because the number of nonemployer firm's data are rounded.. For C-corporations, there is no tax form or business registry that clearly and unequivocally identifies all owners of this type of business. For this reason, the Census Bureau is unable to assign demographic characteristics for C-corporations. Data for C-corporations are included in the published tables but are not shown by the demographic characteristics of the firms....Industry and Geography Coverage:.The data are shown for the total for all sectors (00) and 2-digit NAICS code levels for:..United States. States and the District of Columbia. Metropolitan Statistical Areas...Data are also shown for the 3- and 4-digit NAICS code for:..United States...Data are excluded for the following NAICS industries:.Crop and Animal Production (NAICS 111 and 112). Rail Transportation (NAICS 482). Postal Service (NAICS 491). Monetary Authorities-Central Bank (NAICS 521). Funds, Trusts, and Other Financial Vehicles (NAICS 525). Management of Companies and Enterprises (NAICS 55). Private Households (NAICS 814). Public Administration (NAICS 92). Industries Not Classified (NAICS 99)...For more information about NAICS, see NAICS Codes & Understanding Industry Classification Systems. For information about geographies used by economic programs at the Census Bureau, see Economic Census: Economic Geographies...FTP Download:.Download the entire table at: https://www2.census.gov/programs-surveys/abs/data/2020/AB2000NESD03.zip...API Information:.Nonemployer Demographic Statistics data are housed in the Census Bureau API. For more information, see https://api.census.gov/data/2020/absnesd.html...Symbols:. D - Withheld to avoid disclosing data for individual companies; data are included in higher level totals. S - Estimate does not meet publication standards because of high sampling variability, poor response quality, or other concerns about the estimate quality. Unpublished estimates derived from this table by subtraction are subject to these same limitations and should not be attributed to the U.S. Census Bureau. For a description of publication standards and the total quantity response rate, see link to program methodology page.. N - Not available or not comparable. X - Not applicable..The following symbols are used to identify the...

  10. MD COVID-19 - Cases by Race and Ethnicity Distribution

    • opendata.maryland.gov
    • healthdata.gov
    • +2more
    application/rdfxml +5
    Updated Jul 8, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chesapeake Regional Information System for our Patients, CRISP (2025). MD COVID-19 - Cases by Race and Ethnicity Distribution [Dataset]. https://opendata.maryland.gov/Health-and-Human-Services/MD-COVID-19-Cases-by-Race-and-Ethnicity-Distributi/xnfm-sgpt
    Explore at:
    application/rdfxml, csv, json, tsv, application/rssxml, xmlAvailable download formats
    Dataset updated
    Jul 8, 2025
    Dataset provided by
    Chesapeake Regional Information System for our Patientshttp://www.crisphealth.org/
    Authors
    Chesapeake Regional Information System for our Patients, CRISP
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Area covered
    Maryland
    Description

    Note: Starting April 27, 2023 updates change from daily to weekly.

    Summary The cumulative number of positive COVID-19 cases among Maryland residents by race and ethnicity: African American; White; Hispanic; Asian; Other; Unknown.

    Description The MD COVID-19 - Cases by Race and Ethnicity Distribution data layer is a collection of positive COVID-19 test results that have been reported each day via CRISP.

    Terms of Use The Spatial Data, and the information therein, (collectively the "Data") is provided "as is" without warranty of any kind, either expressed, implied, or statutory. The user assumes the entire risk as to quality and performance of the Data. No guarantee of accuracy is granted, nor is any responsibility for reliance thereon assumed. In no event shall the State of Maryland be liable for direct, indirect, incidental, consequential or special damages of any kind. The State of Maryland does not accept liability for any damages or misrepresentation caused by inaccuracies in the Data or as a result to changes to the Data, nor is there responsibility assumed to maintain the Data in any manner or form. The Data can be freely distributed as long as the metadata entry is not modified or deleted. Any data derived from the Data must acknowledge the State of Maryland in the metadata.

  11. u

    American Community Survey

    • gstore.unm.edu
    csv, geojson, gml +5
    Updated Mar 6, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Earth Data Analysis Center (2020). American Community Survey [Dataset]. https://gstore.unm.edu/apps/rgis/datasets/e0430ebf-d4b7-48c2-8fb8-dbdd0858e807/metadata/FGDC-STD-001-1998.html
    Explore at:
    kml(5), shp(5), gml(5), geojson(5), zip(1), xls(5), json(5), csv(5)Available download formats
    Dataset updated
    Mar 6, 2020
    Dataset provided by
    Earth Data Analysis Center
    Time period covered
    2015
    Area covered
    New Mexico, West Bounding Coordinate -109.05017 East Bounding Coordinate -103.00196 North Bounding Coordinate 37.000293 South Bounding Coordinate 31.33217
    Description

    A broad and generalized selection of 2011-2015 US Census Bureau 2015 5-year American Community Survey race, ethnicity and citizenship data estimates, obtained via Census API and joined to the appropriate geometry (in this case, New Mexico counties). The selection, while not comprehensive, provides a first-level characterization of the race and/or ethnicity of populations in New Mexico, along with citizenship status and nativity. The determination of which estimates to include was based upon level of interest and providing a manageable dataset for users. The U.S. Census Bureau's American Community Survey (ACS) is a nationwide, continuous survey designed to provide communities with reliable and timely demographic, housing, social, and economic data every year. The ACS collects long-form-type information throughout the decade rather than only once every 10 years. As in the decennial census, strict confidentiality laws protect all information that could be used to identify individuals or households.The ACS combines population or other data from multiple years to produce reliable numbers for small counties, neighborhoods, and other local areas. To provide information for communities each year, the ACS provides 1-, 3-, and 5-year estimates. ACS 5-year estimates (multiyear estimates) are “period” estimates that represent data collected over a 60-month period of time (as opposed to “point-in-time” estimates, such as the decennial census, that approximate the characteristics of an area on a specific date). ACS data are released in the year immediately following the year in which they are collected. ACS estimates based on data collected from 2009–2014 should not be called “2009” or “2014” estimates. Multiyear estimates should be labeled to indicate clearly the full period of time. The primary advantage of using multiyear estimates is the increased statistical reliability of the data for less populated areas and small population subgroups. Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. While each full Data Profile contains margin of error (MOE) information, this dataset does not. Those individuals requiring more complete data are directed to download the more detailed datasets from the ACS American FactFinder website. This dataset is organized by New Mexico county boundaries, based on TIGER/Line Files: shapefiles and related database files (.dbf) that are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database.

  12. f

    Datasheet1_Racial and ethnic disparities in preterm birth: a mediation...

    • frontiersin.figshare.com
    docx
    Updated Jan 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zifan Wang; Cuilin Zhang; Paige L. Williams; Andrea Bellavia; Blair J. Wylie; Kurunthachalam Kannan; Michael S. Bloom; Kelly J. Hunt; Tamarra James-Todd (2024). Datasheet1_Racial and ethnic disparities in preterm birth: a mediation analysis incorporating mixtures of polybrominated diphenyl ethers.docx [Dataset]. http://doi.org/10.3389/frph.2023.1285444.s001
    Explore at:
    docxAvailable download formats
    Dataset updated
    Jan 8, 2024
    Dataset provided by
    Frontiers
    Authors
    Zifan Wang; Cuilin Zhang; Paige L. Williams; Andrea Bellavia; Blair J. Wylie; Kurunthachalam Kannan; Michael S. Bloom; Kelly J. Hunt; Tamarra James-Todd
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    BackgroundRacial and ethnic disparities persist in preterm birth (PTB) and gestational age (GA) at delivery in the United States. It remains unclear whether exposure to environmental chemicals contributes to these disparities.ObjectivesWe applied recent methodologies incorporating environmental mixtures as mediators in causal mediation analysis to examine whether racial and ethnic disparities in GA at delivery and PTB may be partially explained by exposures to polybrominated diphenyl ethers (PBDEs), a class of chemicals used as flame retardants in the United States.MethodsData from a multiracial/ethnic US cohort of 2008 individuals with low-risk singleton pregnancies were utilized, with plasma PBDE concentrations measured during early pregnancy. We performed mediation analyses incorporating three forms of mediators: (1) reducing all PBDEs to a weighted index, (2) selecting a PBDE congener, or (3) including all congeners simultaneously as multiple mediators, to evaluate whether PBDEs may contribute to the racial and ethnic disparities in PTB and GA at delivery, adjusted for potential confounders.ResultsAmong the 2008 participants, 552 self-identified as non-Hispanic White, 504 self-identified as non-Hispanic Black, 568 self-identified as Hispanic, and 384 self-identified as Asian/Pacific Islander. The non-Hispanic Black individuals had the highest mean ∑PBDEs, the shortest mean GA at delivery, and the highest rate of PTB. Overall, the difference in GA at delivery comparing non-Hispanic Black to non-Hispanic White women was −0.30 (95% CI: −0.54, −0.05) weeks. This disparity reduced to −0.23 (95% CI: −0.49, 0.02) and −0.18 (95% CI: −0.46, 0.10) weeks if fixing everyone's weighted index of PBDEs to the median and the 25th percentile levels, respectively. The proportion of disparity mediated by the weighted index of PBDEs was 11.8%. No statistically significant mediation was found for PTB, other forms of mediator(s), or other racial and ethnic groups.ConclusionPBDE mixtures may partially mediate the Black vs. White disparity in GA at delivery. While further validations are needed, lowering the PBDEs at the population level might help reduce this disparity.

  13. d

    Substantiated Children With Safety Maintained 6 Months: Annual Trend By...

    • catalog.data.gov
    • data.ct.gov
    • +1more
    Updated Jun 28, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.ct.gov (2025). Substantiated Children With Safety Maintained 6 Months: Annual Trend By Race/Ethnicity [Dataset]. https://catalog.data.gov/dataset/substantiated-children-with-safety-maintained-6-months-annual-trend-by-race-ethnicity
    Explore at:
    Dataset updated
    Jun 28, 2025
    Dataset provided by
    data.ct.gov
    Description

    This dataset contains aggregate data concerning the number of children with substantiated abuse/neglect reports, and for whom the end of a 6 month observation period (starting with either the date the substantiated report had been accepted, or the specific incident date if one was provided) terminated during the SFY. These figures are broken out by the DCF Region and Office responsible for the child's care, by their Race/Ethnicity, and by whether another report of substantiated abuse/neglect occurred within 12 months of the first substantiation or not. It would be appropriate to roll up the data from all variables across multiple time periods, as they represent specific events in the lives of these children. These data form the basis of measurement for the Juan F. Consent Decree Exit Plan Outcome #7: Safety Maintained (No Repeat Maltreatment), although those figures are reported to the DCF Court Monitor on a quarterly rather than annual schedule.

  14. O

    Discharged Children With Permanency Maintained 12 Months: Annual Trend By...

    • data.ct.gov
    • datasets.ai
    • +2more
    application/rdfxml +5
    Updated Oct 24, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CT Department of Children and Families (2017). Discharged Children With Permanency Maintained 12 Months: Annual Trend By Race/Ethnicity [Dataset]. https://data.ct.gov/Health-and-Human-Services/Discharged-Children-With-Permanency-Maintained-12-/2s8m-2xqm
    Explore at:
    application/rdfxml, tsv, json, csv, application/rssxml, xmlAvailable download formats
    Dataset updated
    Oct 24, 2017
    Dataset authored and provided by
    CT Department of Children and Families
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    This dataset contains aggregate data concerning the number of child placement episodes that ended with a legal discharge from DCF care, and for whom the end of a 12 month observation period (starting with their legal discharge date) terminated during the SFY. These figures are broken out by the DCF Region and Office responsible for the child's care, by their Race/Ethnicity, and by whether another placement episode for that child began within 12 months of their discharge from care or not. It would be appropriate to roll up the data from all variables across multiple time periods, as they represent specific events in the lives of these children. These data form the basis of measurement for the Juan F. Consent Decree Exit Plan Outcome #11: Permanency Maintained (No Re-Entry), although those figures are reported to the DCF Court Monitor on a quarterly rather than annual schedule.

  15. d

    Replication Data for: \"Pioneers of Gentrification: Transformation in Global...

    • search.dataone.org
    Updated Nov 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hwang, Jackelyn (2023). Replication Data for: \"Pioneers of Gentrification: Transformation in Global Neighborhoods in Urban America in the Late Twentieth Century.\" [Dataset]. http://doi.org/10.7910/DVN/1NQQCG
    Explore at:
    Dataset updated
    Nov 21, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Hwang, Jackelyn
    Description

    Few studies have considered the role of immigration in the rise of gentrification in the late twentieth century. Analysis of U.S. Census and American Community Survey data over 24 years and field surveys of gentrification in low-income neighborhoods across 23 U.S. cities reveal that most gentrifying neighborhoods were “ global” in the 1970s or became so over time. An early presence of Asians was positively associated with gentrification; and an early presence of Hispanics was positively associated with gentrification in neighborhoods with substantial shares of blacks and negatively associated with gentrification in cities with high Hispanic growth, where ethnic enclaves were more likely to form. Low-income, predominantly black neighborhoods and neighborhoods that became Asian and Hispanic destinations remained ungentrified despite the growth of gentrification during the late twentieth century. The findings suggest that the rise of immigration after 1965 brought pioneers to many low-income central-city neighborhoods, spurring gentrification in some neighborhoods and forming ethnic enclaves in others.

  16. 2018 Economic Surveys: AB1800NESD03 | Nonemployer Statistics by Demographics...

    • data.census.gov
    Updated Dec 16, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECN (2021). 2018 Economic Surveys: AB1800NESD03 | Nonemployer Statistics by Demographics series (NES-D): Legal Form of Organization Statistics for Nonemployer Firms by Sector, Sex, Ethnicity, Race, Veteran Status for the U.S., States, and Metro Areas: 2018 (ECNSVY Nonemployer Statistics by Demographics Company Summary) [Dataset]. https://data.census.gov/table/ABSNESD2018.AB1800NESD03?q=SOUTH%20SHORE%20UTILILTY%20CONSTRUCTION%20CO
    Explore at:
    Dataset updated
    Dec 16, 2021
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ECN
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2018
    Area covered
    United States
    Description

    Release Date: 2021-12-16.The Census Bureau has reviewed this data product for unauthorized disclosure of confidential information and has approved the disclosure avoidance practices applied (Approval ID: CBDRB-FY22-032)...Key Table Information:.Includes U.S. firms with no paid employment or payroll, annual receipts of $1,000 or more ($1 or more in the construction industries) and filing Internal Revenue Service (IRS) tax forms for sole proprietorships (Form 1040, Schedule C), partnerships (Form 1065), or corporations (the Form 1120 series)...Data Items and Other Identifying Records:.Data include estimates on:.Number of nonemployer firms (firms without paid employees). Sales and receipts of nonemployer firms (reported in $1,000s of dollars)...These data are aggregated by the following demographic classifications of firm for:.All firms. Classifiable (firms classifiable by sex, ethnicity, race, and veteran status). . Sex. Female. Male. Equally male/female. . Ethnicity. Hispanic. Equally Hispanic/non-Hispanic. Non-Hispanic. . Race. White. Black or African American. American Indian and Alaska Native. Asian. Native Hawaiian and Other Pacific Islander. Minority (Firms classified as any race and ethnicity combination other than non-Hispanic and White). Equally minority/nonminority. Nonminority (Firms classified as non-Hispanic and White). . Veteran Status (defined as having served in any branch of the U.S. Armed Forces). Veteran. Equally veteran/nonveteran. Nonveteran. . . . Unclassifiable (firms not classifiable by sex, ethnicity, race, and veteran status). ...The data are also shown by the following legal form of organization (LFO) categories:. S-Corporations. C-Corporations. Individual proprietorships. Partnerships...Data Notes:.. Business ownership is defined as having 51 percent or more of the stock or equity in the business. Data are provided for firms owned equally (50% / 50%) by men and women, by Hispanics and non-Hispanics, by minorities and nonminorities, and by veterans and nonveterans. Firms not classifiable by sex, ethnicity, race, and veteran status are counted and tabulated separately.. The detail may not add to the total or subtotal because a Hispanic firm may be of any race; because a firm could be tabulated in more than one racial group; or because the number of nonemployer firm's data are rounded....Industry and Geography Coverage:.Data are shown for the total for all sectors (00) and the 2-digit NAICS codes levels for the U.S., states, and metro areas. Data are excluded for the following NAICS industries:.Crop and Animal Production (NAICS 111 and 112). Rail Transportation (NAICS 482). Postal Service (NAICS 491). Monetary Authorities-Central Bank (NAICS 521). Funds, Trusts, and Other Financial Vehicles (NAICS 525). Management of Companies and Enterprises (NAICS 55). Private Households (NAICS 814). Public Administration (NAICS 92). Industries Not Classified (NAICS 99)...For more information about NAICS, see NAICS Codes & Understanding Industry Classification Systems. For information about geographies used by economic programs at the Census Bureau, see Economic Census: Economic Geographies...FTP Download:.Download the entire table at: https://www2.census.gov/programs-surveys/abs/data/2018/AB1800NESD03.zip...API Information:.Nonemployer Demographic Statistics data are housed in the Census Bureau API. For more information, see https://api.census.gov/data/2018/absnesd.html...Symbols:. D - Withheld to avoid disclosing data for individual companies; data are included in higher level totals. S - Estimate does not meet publication standards because of high sampling variability, poor response quality, or other concerns about the estimate quality. Unpublished estimates derived from this table by subtraction are subject to these same limitations and should not be attributed to the U.S. Census Bureau. For a description of publication standards and the total quantity response rate, see link to program methodology page.. N - Not available or not comparable. X - Not applicable..The following symbols are used to identify the level of noise applied to the data:. G - Low noise: The cell value was changed by less than 2 percent by the application of noise.. H - Moderate noise: The cell value was changed by 2 percent or more but less than 5 percent by the application of noise.. J - High noise: The cell value was changed by 5 percent or more by the application of noise..For a complete list of all economic programs symbols, see the Symbols Glossary...Source:.U.S. Census Bureau, Nonemployer Statistics by Demographics, Annual Business Survey Program.For more information about the survey, please visit https://www.census.gov/programs-s...

  17. 2020 Economic Surveys: AB2000NESD01 | Nonemployer Statistics by Demographics...

    • data.census.gov
    Updated Feb 8, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECN (2024). 2020 Economic Surveys: AB2000NESD01 | Nonemployer Statistics by Demographics series (NES-D): Statistics for Employer and Nonemployer Firms by Industry, Sex, Ethnicity, Race, and Veteran Status for the U.S., States, and Metro Areas: 2020 (ECNSVY Nonemployer Statistics by Demographics Company Summary) [Dataset]. https://data.census.gov/table/ABSNESD2020.AB2000NESD01?q=D+K+LA+VALLEUR
    Explore at:
    Dataset updated
    Feb 8, 2024
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ECN
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2020
    Area covered
    United States
    Description

    Release Date: 2024-02-08.The Census Bureau has reviewed this data product to ensure appropriate access, use, and disclosure avoidance protection of the confidential source data (2020 NES-D Project No. 7504866, Disclosure Review Board (DRB) approval number: CBDRB-FY24-0051; 2021 ABS approval number: CBDRB-FY23-0479)...Key Table Information:.Data in this table combines estimates from the Annual Business Survey (employer firms) and the Nonemployer Statistics by Demographics (nonemployer firms)...Includes U.S. firms with no paid employment or payroll, annual receipts of $1,000 or more ($1 or more in the construction industries) and filing Internal Revenue Service (IRS) tax forms for sole proprietorships (Form 1040, Schedule C), partnerships (Form 1065), or corporations (the Form 1120 series)...Includes U.S. employer firms estimates of business ownership by sex, ethnicity, race, and veteran status from the 2021 Annual Business Survey (ABS) collection. Data are also obtained from administrative records, the 2017 Economic Census, and other economic surveys...Note: For employer data only, the collection year is the year in which the data are collected. A reference year is the year that is referenced in the questions on the survey and in which the statistics are tabulated. For example, the 2021 ABS collection year produces statistics for the 2020 reference year. The "Year" column in the table is the reference year...Data Items and Other Identifying Records:.Data include estimates on:.Total number of employer and nonemployer firms. Total sales and receipts of employer and nonemployer firms (reported in $1,000 of dollars). Number of employer firms (firms with paid employees). Sales and receipts of employer firms (reported in $1,000s of dollars). Number of employees (during the March 12 pay period). Annual payroll of employer firms (reported in $1,000s of dollars). Number of nonemployer firms (firms without paid employees). Sales and receipts of nonemployer firms (reported in $1,000s of dollars)...These data are aggregated by the following demographic classifications of firm for:.All firms. Classifiable (firms classifiable by sex, ethnicity, race, and veteran status). . Sex. Female. Male. Equally male/female (50% / 50%). . Ethnicity. Hispanic. Equally Hispanic/non-Hispanic (50% / 50%). Non-Hispanic. . Race. White. Black or African American. American Indian and Alaska Native. Asian. Native Hawaiian and Other Pacific Islander. Minority (Firms classified as any race and ethnicity combination other than non-Hispanic and White). Equally minority/nonminority (50% / 50%). Nonminority (Firms classified as non-Hispanic and White). . Veteran Status (defined as having served in any branch of the U.S. Armed Forces). Veteran. Equally veteran/nonveteran (50% / 50%). Nonveteran. . . . Unclassifiable (firms not classifiable by sex, ethnicity, race, and veteran status). ...Data Notes:.. Business ownership is defined as having 51 percent or more of the stock or equity in the business. Data are provided for firms owned equally (50% / 50%) by men and women, by Hispanics and non-Hispanics, by minorities and nonminorities, and by veterans and nonveterans. Firms not classifiable by sex, ethnicity, race, and veteran status are counted and tabulated separately.. The detail may not add to the total or subtotal because a Hispanic firm may be of any race; because a firm could be tabulated in more than one racial group; or because the number of nonemployer firm's data are rounded.. Nonemployer data do not have standard error or relative standard error columns as these data are from the universe of nonemployer firms, not from a data sample....Industry and Geography Coverage:.Data are shown for the total for all sectors (00) and the 2-digit NAICS levels for the U.S., states and District of Columbia, and metro areas. Data are shown for the 3-digit and 4-digit NAICS for U.S. only. Nonemployer data are excluded for the following NAICS industries:.Crop and Animal Production (NAICS 111 and 112). Rail Transportation (NAICS 482). Postal Service (NAICS 491). Monetary Authorities-Central Bank (NAICS 521). Funds, Trusts, and Other Financial Vehicles (NAICS 525). Management of Companies and Enterprises (NAICS 55). Private Households (NAICS 814). Public Administration (NAICS 92). Industries Not Classified (NAICS 99)...For more information about NAICS, see NAICS Codes & Understanding Industry Classification Systems. For information about geographies used by economic programs at the Census Bureau, see Economic Census: Economic Geographies...Employer Data Footnotes:.Footnote 660 - Agriculture, forestry, fishing and hunting (Sector 11): Crop and Animal Production (NAICS 111 and ...

  18. d

    2020 Census Redistricting Data (P.L. 94-171) Noisy Measurement File

    • search.dataone.org
    • dataverse.harvard.edu
    • +1more
    Updated Nov 8, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Abowd, John M.,; Ashmead, Robert; Cumings-Menon, Ryan; Garfinkel, Simson; Heineck, Micah; Heiss, Christine; Johns, Robert; Kifer, Daniel; Leclerc, Philip; Machanavajjhala, Ashwin; Moran, Brett; Sexton, William; Spence, Matthew; Zhuravlev, Pavel (2023). 2020 Census Redistricting Data (P.L. 94-171) Noisy Measurement File [Dataset]. http://doi.org/10.7910/DVN/5LAVKV
    Explore at:
    Dataset updated
    Nov 8, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Abowd, John M.,; Ashmead, Robert; Cumings-Menon, Ryan; Garfinkel, Simson; Heineck, Micah; Heiss, Christine; Johns, Robert; Kifer, Daniel; Leclerc, Philip; Machanavajjhala, Ashwin; Moran, Brett; Sexton, William; Spence, Matthew; Zhuravlev, Pavel
    Description

    The 2020 Census Redistricting Data (P.L. 94-171) Noisy Measurement File (NMF) is an intermediate output of the 2020 Census Disclosure Avoidance System (DAS) TopDown Algorithm (TDA) (as described in Abowd, J. et al [2022] https://doi.org/10.1162/99608f92.529e3cb9, and implemented in https://github.com/uscensusbureau/DAS_2020_Redistricting_Production_Code). The 2020 Redistricting NMF was an intermediate output of the DAS during the execution of the algorithm to produce the 2020 Census Redistricting Data (P.L. 94-171) Summary File. The NMFs are intermediate privacy-protected outputs of the DAS; they were generated using the Census Bureau's implementation of the Discrete Gaussian Mechanism (https://arxiv.org/abs/2004.00010), calibrated to satisfy zero-Concentrated Differential Privacy (https://arxiv.org/abs/1605.02065) with bounded neighbors (https://dl.acm.org/doi/10.1145/1989323.1989345). The NMF values, called "noisy measurements," are the output of applying the Discrete Gaussian Mechanism to counts from the 2020 Census Edited File (CEF). They are generally inconsistent with one another (for example, in a county composed of two tracts, the noisy measurement for the county's total population may not equal the sum of the noisy measurements of the two tracts' total population), and frequently negative (especially when the population being measured was small), but are integer-valued. The NMF was later post-processed as part of the DAS code to take the form of microdata and to satisfy various constraints. The NMF documented here contains both the noisy measurements themselves as well as the data needed to represent the DAS constraints; thus, the NMF could be used to reproduce the steps taken by the DAS code to produce microdata from the noisy measurements by applying the production code base. The 2020 Census Redistricting Data (P.L. 94-171) Noisy Measurement File includes zero-Concentrated Differentially Private (zCDP) (Bun, M. and Steinke, T [2016]) noisy measurements, implemented via the discrete Gaussian mechanism. These are estimated counts of individuals and housing units included in the 2020 Census Edited File (CEF), which includes confidential data initially collected in the 2020 Census of Population and Housing. The noisy measurements included in this file were subsequently post-processed by the TopDown Algorithm (TDA) to produce the 2020 Census Redistricting Data (P.L. 94-171) Summary File. The NMF provides estimates of counts of persons in the CEF by various characteristics and combinations of characteristics including their reported race and ethnicity, whether they were of voting age, whether they resided in a housing unit or one of 7 group quarters types, and their census block of residence after the addition of discrete Gaussian noise (with the scale parameter determined by the privacy-loss budget allocation for that particular query under zCDP). Noisy measurements of the counts of occupied and vacant housing units by census block are also included. Lastly, data on constraints—information into which no noise was infused by the Disclosure Avoidance System (DAS) and used by the TDA to post-process the noisy measurements into the 2020 Census Redistricting Data (P.L. 94-171) Summary File —are provided.

  19. d

    Adoptions by SFY, DCF Office, Race/Ethnicity and Length of Stay

    • catalog.data.gov
    • data.ct.gov
    • +2more
    Updated Sep 15, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.ct.gov (2023). Adoptions by SFY, DCF Office, Race/Ethnicity and Length of Stay [Dataset]. https://catalog.data.gov/dataset/adoptions-by-sfy-dcf-office-race-ethnicity-and-length-of-stay
    Explore at:
    Dataset updated
    Sep 15, 2023
    Dataset provided by
    data.ct.gov
    Description

    This dataset contains aggregate data concerning the number of children that exited DCF care to an Adoption. These figures are broken out by the DCF Region and Office responsible for the child's care, by their Race/Ethnicity, and by whether their exit from care occurred within 24 months of their entry to care or not. It would be appropriate to roll up the data from all variables across multiple time periods, as they represent specific events in the lives of these children. Please note that these figures do not represent unique children, and so should not be used as the basis for creating a rate based on the child population of the state. These data form the basis of measurement for the Juan F. Consent Decree Exit Plan Outcome #8: Adoption Within 24 Months, although those figures are reported to the DCF Court Monitor on a quarterly rather than annual schedule.

  20. Races/ethnicities most commonly targeted in hate crimes U.S. 2023

    • statista.com
    Updated Oct 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Races/ethnicities most commonly targeted in hate crimes U.S. 2023 [Dataset]. https://www.statista.com/statistics/737681/number-of-racial-hate-crimes-in-the-us-by-race/
    Explore at:
    Dataset updated
    Oct 29, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    United States
    Description

    Anti-Black or African American attacks were the most common form of racist hate crime in the United States in 2023, with 3,027 cases. Anti-White hate crimes were the next most common form of race-based hate crime in that year, with 831 incidents.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
data.ct.gov (2025). CT DPH COVID -19 Race and Ethnicity Data Summary [Dataset]. https://catalog.data.gov/dataset/ct-dph-covid-19-race-and-ethnicity-data-summary

CT DPH COVID -19 Race and Ethnicity Data Summary

Explore at:
Dataset updated
Jul 5, 2025
Dataset provided by
data.ct.gov
Area covered
Connecticut
Description

This report summarizes data on COVID-19 cases and COVID-19 associated deaths by race/ethnicity for the state of Connecticut and the 10 largest Connecticut towns. Data on race/ethnicity are missing on almost half (47%) of reported COVID-19 cases. CT DPH has urged healthcare providers and laboratories to complete information on race/ethnicity for all COVID-19 cases. All data in this report are preliminary; data will be updated as new COVID-19 case reports are received and data errors are corrected. Data on COVID-19 cases and COVID-19-associated deaths were last updated on April 20, 2020 at 3 PM. Information about race and ethnicity are collected on the Connecticut Department of Public Health (DPH) COVID-19 case report form, which is completed by healthcare providers for laboratory-confirmed COVID-19 cases. Information about the race/ethnicity of COVID-19-associated deaths also are collected by the Connecticut Office of the Chief Medical Examiner and shared with DPH. Race/ethnicity categories used in this report are mutually exclusive. People answering ‘yes’ to more than one race category are counted as ‘other’.

Search
Clear search
Close search
Google apps
Main menu