There are 435 members of the House of Representatives in any congressional sitting. In the 118th Congress which began in January 2023, there were 58 Black members, 16 Asian American members, 54 Hispanic members.
There are 100 Senators that serve in the United States Congress at any given time - two from each of the fifty states. As of the first day of the 118th Congress, there were three African American Senators, two Asian American Senators, and six Hispanic Senators.
The Congressional District Summary File (118th Congress) (CD118) contains the data compiled from the questions asked of all people and about every housing unit in the 2020 Census. This product retabulates selected summary levels from the Demographic and Housing Characteristics File (DHC) for the 118th Congress and 2022 state legislative districts. Population items include age, sex, race, Hispanic or Latino origin, household type, family type, relationship to householder, group quarters population, housing occupancy and housing tenure (whether a housing unit is owner-occupied or renter-occupied).
In 2025, there were 125 women serving in the U.S. House of Representatives. Of those, 27 identify as black, and an additional 18 identify as Latina.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Congress by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of Congress across both sexes and to determine which sex constitutes the majority.
Key observations
There is a considerable majority of female population, with 66.28% of total population being female. Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Congress Population by Race & Ethnicity. You can refer the same here
The Congressional District Summary File contains the data compiled from the questions asked of all people and about every housing unit in the 2010 Census. The Congressional District Summary File (113th Congress) (CD113) contains the data compiled from the questions asked of all people and about every housing unit in the 2010 Census. Population items include sex, age, race, Hispanic or Latino origin, household relationship, household type, household size, family type, family size, and group quarters. Housing items include occupancy status, vacancy status, and tenure (whether a housing unit is owner-occupied or renter-occupied). The file contains subject content identical to that shown in the 2010 Census Summary File 1.
The 110th Congressional District Summary File (Sample) (110CDSAMPLE) contains the sample data, which is the information compiled from the questions asked of a sample of all people and housing units. Population items include basic population totals; urban and rural; households and families; marital status; grandparents as caregivers; language and ability to speak English; ancestry; place of birth, citizenship status, and year of entry; migration; place of work; journey to work (commuting); school enrollment and educational attainment; veteran status; disability; employment status; industry, occupation, and class of worker; income; and poverty status. Housing items include basic housing totals; urban and rural; number of rooms; number of bedrooms; year moved into unit; household size and occupants per room; units in structure; year structure built; heating fuel; telephone service; plumbing and kitchen facilities; vehicles available; value of home; monthly rent; and shelter costs. The file contains subject content identical to that shown in Summary File 3 (SF 3).
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This resource is a member of a series. The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Congressional districts are the 435 areas from which people are elected to the U.S. House of Representatives. After the apportionment of congressional seats among the states based on census population counts, each state is responsible for establishing congressional districts for the purpose of electing representatives. Each congressional district is to be as equal in population to all other congressional districts in a state as practicable. The 118th Congress is seated from January 2023 through December 2024. In Connecticut, Illinois, and New Hampshire, the Redistricting Data Program (RDP) participant did not define the CDs to cover all of the state or state equivalent area. In these areas with no CDs defined, the code "ZZ" has been assigned, which is treated as a single CD for purposes of data presentation. The TIGER/Line shapefiles for the District of Columbia, Puerto Rico, and the Island Areas (American Samoa, Guam, the Commonwealth of the Northern Mariana Islands, and the U.S. Virgin Islands) each contain a single record for the non-voting delegate district in these areas. The boundaries of all other congressional districts reflect information provided to the Census Bureau by the states by August 31, 2022.
The United States House of Representatives has 435 members. The number of seats allocated to each state is determined by a state's population. The 119th Congress was sworn-in in January 2025, with the Republicans holding a majority with 220 seats. In this year, the Republican Party was in control of the Senate, House of Representatives, and the Presidency.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
In The Paradox of Representation David Lublin offers an unprecedented analysis of a vast range of rigorous, empirical evidence that exposes the central paradox of racial representation: Racial redistricting remains vital to the election of African Americans and Latinos but makes Congress less likely to adopt policies favored by blacks. Lublin's evidence, together with policy recommendations for improving minority representation, will make observers of the political scene reconsider the avenues to fair representation. Using data on all representatives elected to Congress between 1972 and 1994, Lublin examines the link between the racial composition of a congressional district and its representative's race as well as ideology. The author confirms the view that specially drawn districts must exist to ensure the election of African Americans and Latinos. He also shows, however, that a relatively small number of minorities in a district can lead to the election of a representative attentive to their interests . When African Americans and Latinos make up 40 percent of a district, according to Lublin's findings, they have a strong liberalizing influence on representatives of both parties; when they make up 55 percent, the district is almost certain to elect a minority representative. Lublin notes that particularly in the South, the practice of concentrating minority populations into a small number of districts decreases the liberal influence in the remaining areas. Thus, a handful of minority representatives, almost invariably Democrats, win elections, but so do a greater number of conservative Republicans. The author proposes that establishing a balance between majority-minority districts and districts where the minority population would be slightly more dispersed, maki ng up 40 percent of a total district, would allow more African Americans to exercise more influence over their representatives.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is published by the Research & Analytics Group at the Atlanta Regional Commission to show population change by utilizing the 2020 redistricting data and comparable data for 2010, 2000, and 1990 across multiple geographies for the State of Georgia. For a deep dive into the data model including every specific metric, see the Data Manifest. The manifest details ARC-defined naming conventions, names/descriptions and topics where applicable, summary levels; source tables; notes and so forth for all metrics.
It should be noted:The 2020 redistricting release is not as detailed in terms of data compared to ACS estimates; data include total population, population by race and ethnicity, and "voting age" population (i.e., adults) by race and ethnicity, adults are subtracted from the total population to show children (ages 0-17); total number of housing units, occupied housing units, and vacant housing units. Percent and change measures are calculated over four different Censuses.These data are expressed in terms of 2020 geographies such as the new 2020 Census tracts. This means that that historical data for geographies like cities have been estimated to the 2020 boundaries. For example, the city of Atlanta, which has made multiple annexations since 1990, has a higher estimated 1990 population of 400,452 (2020 boundaries) than the 394,017 reported in the 1990 Census (1990 boundaries).Due to changes in block geographies and annexations, 2010 population totals for custom geographies such as City of Atlanta NSAs may differ slightly from the numbers we have published in the past.The procedure to re-estimate historical data to 2020 blocks often results in fractional population (e.g., 1.25 instead of 1 or 2). Counts have been rounded to the nearest whole, but to be more precise, all aggregation, percent, and change measures were performed pre-rounding. Some change measures may appear curious as a result. For example, 100.4 - 20.8 = 79.6 which rounds to 80. But if rounded first, 100.4 rounds down to 100, 20.8 rounds up to 21; 100 - 21 = 79.Asian and Pacific Islander categories are combined to maximize compatibility with the 1990 release, which reported the two groups as a single category. Caution should be exercised with 1990 race data because the Census Bureau changed to the current system (which allows people to identify as biracial or multiracial) starting only in 2000.The "other" race category includes American Indian and Alaska Natives, people identifying with "some other race" and (for 2000 forward), people who identify as biracial or multiracial.For more information regarding Decennial Census source data, visit 2020 Census website
There are 435 seats in the U.S. House of Representatives, of which 52 are allocated to the state of California. Seats in the House are allocated based on the population of each state. To ensure proportional and dynamic representation, congressional apportionment is reevaluated every 10 years based on census population data. After the 2020 census, six states gained a seat - Colorado, Florida, Montana, North Carolina, and Oregon. The states of California, Illinois, Michigan, New York, Ohio, Pennsylvania, and West Virginia lost a seat.
The 2023 cartographic boundary KMLs are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. The records in this file allow users to map the parts of the 118th Congressional Districts that overlap a particular county. Congressional districts are the 435 areas from which people are elected to the U.S. House of Representatives. After the apportionment of congressional seats among the states based on census population counts, each state is responsible for establishing congressional districts for the purpose of electing representatives. Each congressional district is to be as equal in population to all other congressional districts in a state as practicable. The 118th Congress is seated from January 2023 through December 2024. In Connecticut, Illinois, and New Hampshire, the Redistricting Data Program (RDP) participant did not define the CDs to cover all of the state or state equivalent area. In these areas with no CDs defined, the code "ZZ" has been assigned, which is treated as a single CD for purposes of data presentation. The cartographic boundary files for the District of Columbia, Puerto Rico, and the Island Areas (American Samoa, Guam, the Commonwealth of the Northern Mariana Islands, and the U.S. Virgin Islands) each contain a single record for the non-voting delegate district in these areas. The generalzied boundaries of all other congressional districts are based on information provided to the Census Bureau by the states by August 31, 2022. The primary legal divisions of most states are termed counties. In Louisiana, these divisions are known as parishes. In Alaska, which has no counties, the equivalent entities are the organized boroughs, city and boroughs, municipalities, and for the unorganized area, census areas. The latter are delineated cooperatively for statistical purposes by the State of Alaska and the Census Bureau. In four states (Maryland, Missouri, Nevada, and Virginia), there are one or more incorporated places that are independent of any county organization and thus constitute primary divisions of their states. These incorporated places are known as independent cities and are treated as equivalent entities for purposes of data presentation. The District of Columbia and Guam have no primary divisions, and each area is considered an equivalent entity for purposes of data presentation. The Census Bureau treats the following entities as equivalents of counties for purposes of data presentation: Municipios in Puerto Rico, Districts and Islands in American Samoa, Municipalities in the Commonwealth of the Northern Mariana Islands, and Islands in the U.S. Virgin Islands. The entire area of the United States, Puerto Rico, and the Island Areas is covered by counties or equivalent entities. The generalized boundaries for counties and equivalent entities are based on those as of January 1, 2023, primarily as reported through the Census Bureau's Boundary and Annexation Survey (BAS).
US Census American Community Survey (ACS) 2013, 5-year estimates of the key demographic characteristics of Congressional Districts (113th US Congress) geographic level in Orange County, California. The data contains 105 fields for the variable groups D01: Sex and age (universe: total population, table X1, 49 fields); D02: Median age by sex and race (universe: total population, table X1, 12 fields); D03: Race (universe: total population, table X2, 8 fields); D04: Race alone or in combination with one or more other races (universe: total population, table X2, 7 fields); D05: Hispanic or Latino and race (universe: total population, table X3, 21 fields), and; D06: Citizen voting age population (universe: citizen, 18 and over, table X5, 8 fields). The US Census geodemographic data are based on the 2013 TigerLines across multiple geographies. The spatial geographies were merged with ACS data tables. See full documentation at the OCACS project GitHub page (https://github.com/ktalexan/OCACS-Geodemographics).
https://dataverse.harvard.edu/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.7910/DVN/6RL6IDhttps://dataverse.harvard.edu/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.7910/DVN/6RL6ID
We know little about the extent to which racial minorities are symbolically represented by members of Congress. This stands in contrast to a wealth of research analyzing the extent to which minorities are substantively and descriptively represented. This article provides the most comprehensive analysis of symbolic representation to date. Using data on legislators' speech from 105,875 newsletters and 620,838 floor speeches, I find that white legislators of both parties are more likely to symbolically represent blacks, Hispanics, and Asians if those groups are more populous in their constituency. However, these effects only hold cross-sectionally; using a difference-in-differences setup from redistricting shocks, I find that there is little within-legislator variation in speech patterns as their constituencies change. Lastly, I show that, unlike on the symbolic dimension, legislators' substantive representation is not influenced by group size. I conclude that white legislators are symbolically responsive to their constituents' identities in their speech patterns.
US Census American Community Survey (ACS) 2019, 5-year estimates of the key demographic characteristics of Congressional Districts (116th US Congress) geographic level in Orange County, California. The data contains 105 fields for the variable groups D01: Sex and age (universe: total population, table X1, 49 fields); D02: Median age by sex and race (universe: total population, table X1, 12 fields); D03: Race (universe: total population, table X2, 8 fields); D04: Race alone or in combination with one or more other races (universe: total population, table X2, 7 fields); D05: Hispanic or Latino and race (universe: total population, table X3, 21 fields), and; D06: Citizen voting age population (universe: citizen, 18 and over, table X5, 8 fields). The US Census geodemographic data are based on the 2019 TigerLines across multiple geographies. The spatial geographies were merged with ACS data tables. See full documentation at the OCACS project github page (https://github.com/ktalexan/OCACS-Geodemographics).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This layer was developed by the Research & Analytics Group of the Atlanta Regional Commission, using data from the U.S. Census Bureau’s American Community Survey 5-year estimates for 2013-2017, to show numbers and percentages for occupation, household income, and commuting pattern by race and by US Congress in the Atlanta region.
The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent.
The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2013-2017). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available.
For further explanation of ACS estimates and margin of error, visit Census ACS website.
Naming conventions:
Prefixes:
None
Count
p
Percent
r
Rate
m
Median
a
Mean (average)
t
Aggregate (total)
ch
Change in absolute terms (value in t2 - value in t1)
pch
Percent change ((value in t2 - value in t1) / value in t1)
chp
Change in percent (percent in t2 - percent in t1)
Suffixes:
None
Change over two periods
_e
Estimate from most recent ACS
_m
Margin of Error from most recent ACS
_00
Decennial 2000
Attributes:
Attributes and definitions available below under "Attributes" section and in Infrastructure Manifest (due to text box constraints, attributes cannot be displayed here).
Source: U.S. Census Bureau, Atlanta Regional Commission
Date: 2013-2017
For additional information, please visit the Census ACS website.
Us House Congressional Representatives serving Macon-Bibb County.
Congressional districts are the 435 areas from which members are elected to the U.S. House of Representatives. After the apportionment of congressional seats among the states, which is based on decennial census population counts, each state with multiple seats is responsible for establishing congressional districts for the purpose of electing representatives. Each congressional district is to be as equal in population to all other congressional districts in a state as practicable. The boundaries and numbers shown for the congressional districts are those specified in the state laws or court orders establishing the districts within each state.
Congressional districts for the 108th through 112th sessions were established by the states based on the result of the 2000 Census. Congressional districts for the 113th through 115th sessions were established by the states based on the result of the 2010 Census. Boundaries are effective until January of odd number years (for example, January 2015, January 2017, etc.), unless a state initiative or court ordered redistricting requires a change. All states established new congressional districts in 2011-2012, with the exception of the seven single member states (Alaska, Delaware, Montana, North Dakota, South Dakota, Vermont, and Wyoming).
For the states that have more than one representative, the Census Bureau requested a copy of the state laws or applicable court order(s) for each state from each secretary of state and each 2010 Redistricting Data Program state liaison requesting a copy of the state laws and/or applicable court order(s) for each state. Additionally, the states were asked to furnish their newly established congressional district boundaries and numbers by means of geographic equivalency files. States submitted equivalency files since most redistricting was based on whole census blocks. Kentucky was the only state where congressional district boundaries split some of the 2010 Census tabulation blocks. For further information on these blocks, please see the user-note at the bottom of the tables for this state.
The Census Bureau entered this information into its geographic database and produced tabulation block equivalency files that depicted the newly defined congressional district boundaries. Each state liaison was furnished with their file and requested to review, submit corrections, and certify the accuracy of the boundaries.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This layer was developed by the Research & Analytics Group of the Atlanta Regional Commission, using data from the U.S. Census Bureau’s American Community Survey 5-year estimates for 2013-2017, to show school enrollment, education attainments, and household composition by race and by US Congressional Districts in Georgia.
The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent.
The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2013-2017). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available.
For further explanation of ACS estimates and margin of error, visit Census ACS website.
Naming conventions:
Prefixes:
None
Count
p
Percent
r
Rate
m
Median
a
Mean (average)
t
Aggregate (total)
ch
Change in absolute terms (value in t2 - value in t1)
pch
Percent change ((value in t2 - value in t1) / value in t1)
chp
Change in percent (percent in t2 - percent in t1)
Suffixes:
None
Change over two periods
_e
Estimate from most recent ACS
_m
Margin of Error from most recent ACS
_00
Decennial 2000
Attributes:
Attributes and definitions available below under "Attributes" section and in Infrastructure Manifest (due to text box constraints, attributes cannot be displayed here).
Source: U.S. Census Bureau, Atlanta Regional Commission
Date: 2013-2017
For additional information, please visit the Census ACS website.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset was developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau.For a deep dive into the data model including every specific metric, see the Infrastructure Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics.Naming conventions:Prefixes: None Countp Percentr Ratem Mediana Mean (average)t Aggregate (total)ch Change in absolute terms (value in t2 - value in t1)pch Percent change ((value in t2 - value in t1) / value in t1)chp Change in percent (percent in t2 - percent in t1)s Significance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computed Suffixes: _e19 Estimate from 2014-19 ACS_m19 Margin of Error from 2014-19 ACS_00_v19 Decennial 2000, re-estimated to 2019 geography_00_19 Change, 2000-19_e10_v19 2006-10 ACS, re-estimated to 2019 geography_m10_v19 Margin of Error from 2006-10 ACS, re-estimated to 2019 geography_e10_19 Change, 2010-19The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2015-2019). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2015-2019Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the manifest: https://www.arcgis.com/sharing/rest/content/items/3d489c725bb24f52a987b302147c46ee/data
There are 435 members of the House of Representatives in any congressional sitting. In the 118th Congress which began in January 2023, there were 58 Black members, 16 Asian American members, 54 Hispanic members.