100+ datasets found
  1. d

    Race and Ethnicity - ACS 2018-2022 - Tempe Zip Code

    • catalog.data.gov
    • data.tempe.gov
    • +8more
    Updated May 10, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Tempe (2025). Race and Ethnicity - ACS 2018-2022 - Tempe Zip Code [Dataset]. https://catalog.data.gov/dataset/race-and-ethnicity-acs-2018-2022-tempe-zip-code
    Explore at:
    Dataset updated
    May 10, 2025
    Dataset provided by
    City of Tempe
    Area covered
    Tempe
    Description

    This layer shows the population broken down by race and Hispanic origin. Data is from US Census American Community Survey (ACS) 5-year estimates.To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right (in ArcGIS Online). A ‘Null’ entry in the estimate indicates that data for this geographic area cannot be displayed because the number of sample cases is too small (per the U.S. Census).Vintage: 2018-2022ACS Table(s): B03002 (Not all lines of this ACS table are available in this feature layer.)Data downloaded from: Census Bureau's API for American Community Survey Data Preparation: Data table was downloaded and joined with Zip Code boundaries in the City of Tempe.Date of Census update: December 15, 2023National Figures: data.census.gov

  2. f

    Data from: Using First Name Information to Improve Race and Ethnicity...

    • tandf.figshare.com
    docx
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ioan Voicu (2023). Using First Name Information to Improve Race and Ethnicity Classification [Dataset]. http://doi.org/10.6084/m9.figshare.5813859.v2
    Explore at:
    docxAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    Taylor & Francis
    Authors
    Ioan Voicu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This article uses a recent first name list to develop an improvement to an existing Bayesian classifier, namely the Bayesian Improved Surname Geocoding (BISG) method, which combines surname and geography information to impute missing race/ethnicity. The new Bayesian Improved First Name Surname Geocoding (BIFSG) method is validated using a large sample of mortgage applicants who self-report their race/ethnicity. BIFSG outperforms BISG, in terms of accuracy and coverage, for all major racial/ethnic categories. Although the overall magnitude of improvement is somewhat small, the largest improvements occur for non-Hispanic Blacks, a group for which the BISG performance is weakest. When estimating the race/ethnicity effects on mortgage pricing and underwriting decisions with regression models, estimation biases from both BIFSG and BISG are very small, with BIFSG generally having smaller biases, and the maximum a posteriori classifier resulting in smaller biases than through use of estimated probabilities. Robustness checks using voter registration data confirm BIFSG's improved performance vis-a-vis BISG and illustrate BIFSG's applicability to areas other than mortgage lending. Finally, I demonstrate an application of the BIFSG to the imputation of missing race/ethnicity in the Home Mortgage Disclosure Act data, and in the process, offer novel evidence that the incidence of missing race/ethnicity information is correlated with race/ethnicity.

  3. U.S. median household income 2023, by race and ethnicity

    • statista.com
    • ai-chatbox.pro
    Updated Sep 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). U.S. median household income 2023, by race and ethnicity [Dataset]. https://www.statista.com/statistics/233324/median-household-income-in-the-united-states-by-race-or-ethnic-group/
    Explore at:
    Dataset updated
    Sep 16, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    United States
    Description

    In 2023, the gross median household income for Asian households in the United States stood at 112,800 U.S. dollars. Median household income in the United States, of all racial and ethnic groups, came out to 80,610 U.S. dollars in 2023. Asian and Caucasian (white not Hispanic) households had relatively high median incomes, while the median income of Hispanic, Black, American Indian, and Alaskan Native households all came in lower than the national median. A number of related statistics illustrate further the current state of racial inequality in the United States. Unemployment is highest among Black or African American individuals in the U.S. with 8.6 percent unemployed, according to the Bureau of Labor Statistics in 2021. Hispanic individuals (of any race) were most likely to go without health insurance as of 2021, with 22.8 percent uninsured.

  4. ACS Race and Hispanic Origin Variables - Boundaries

    • visionzero.geohub.lacity.org
    • heat.gov
    • +12more
    Updated Oct 22, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2018). ACS Race and Hispanic Origin Variables - Boundaries [Dataset]. https://visionzero.geohub.lacity.org/maps/23ab8028f1784de4b0810104cd5d1c8f
    Explore at:
    Dataset updated
    Oct 22, 2018
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer shows population broken down by race and Hispanic origin. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the predominant race living within an area. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B03002Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  5. d

    Race and Ethnicity - ACS 2018-2022 - Tempe Tracts

    • catalog.data.gov
    • data-academy.tempe.gov
    • +6more
    Updated Sep 20, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Tempe (2024). Race and Ethnicity - ACS 2018-2022 - Tempe Tracts [Dataset]. https://catalog.data.gov/dataset/race-and-ethnicity-acs-2018-2022-tempe-tracts
    Explore at:
    Dataset updated
    Sep 20, 2024
    Dataset provided by
    City of Tempe
    Area covered
    Tempe
    Description

    This layer shows population broken down by race and Hispanic origin. Data is from US Census American Community Survey (ACS) 5-year estimates.This layer is symbolized to show the percent of population that is Hispanic or Latino. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right (in ArcGIS Online). To view only the census tracts that are predominantly in Tempe, add the expression City is Tempe in the map filter settings.A ‘Null’ entry in the estimate indicates that data for this geographic area cannot be displayed because the number of sample cases is too small (per the U.S. Census).Vintage: 2018-2022ACS Table(s): B03002 (Not all lines of this ACS table are available in this feature layer.)Data downloaded from: Census Bureau's API for American Community SurveyData Preparation: Data curated from Esri Living Atlas clipped to Census Tract boundaries that are within or adjacent to the City of Tempe boundaryDate of Census update: December 15, 2023National Figures: data.census.gov

  6. Race and Ethnicity 2018-2022 - COUNTIES

    • mce-data-uscensus.hub.arcgis.com
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • +1more
    Updated Feb 5, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    US Census Bureau (2024). Race and Ethnicity 2018-2022 - COUNTIES [Dataset]. https://mce-data-uscensus.hub.arcgis.com/maps/4c4d81c41e964ec58d1190fa508bc5ba
    Explore at:
    Dataset updated
    Feb 5, 2024
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    US Census Bureau
    Area covered
    Description

    This layer shows Race and Ethnicity. This is shown by state and county boundaries. This service contains the 2018-2022 release of data from the American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the percentage of population that are Hispanic or Latino (of any race). To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2018-2022ACS Table(s): B02001, B03001, DP05Data downloaded from: CensusBureau's API for American Community Survey Date of API call: January 18, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:Boundaries come from the Cartographic Boundaries via US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates, and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto Rico. The Counties (and equivalent) layer contains 3221 records - all counties and equivalent, Washington D.C., and Puerto Rico municipios. See Areas Published. Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells.Margin of error (MOE) values of -555555555 in the API (or "*****" (five asterisks) on data.census.gov) are displayed as 0 in this dataset. The estimates associated with these MOEs have been controlled to independent counts in the ACS weighting and have zero sampling error. So, the MOEs are effectively zeroes, and are treated as zeroes in MOE calculations. Other negative values on the API, such as -222222222, -666666666, -888888888, and -999999999, all represent estimates or MOEs that can't be calculated or can't be published, usually due to small sample sizes. All of these are rendered in this dataset as null (blank) values.

  7. Total fertility rate by ethnicity U.S. 2022

    • statista.com
    Updated Oct 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Total fertility rate by ethnicity U.S. 2022 [Dataset]. https://www.statista.com/statistics/226292/us-fertility-rates-by-race-and-ethnicity/
    Explore at:
    Dataset updated
    Oct 16, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2022
    Area covered
    United States
    Description

    Native Hawaiian and Pacific Islander women had the highest fertility rate of any ethnicity in the United States in 2022, with about 2,237.5 births per 1,000 women. The fertility rate for all ethnicities in the U.S. was 1,656.5 births per 1,000 women. What is the total fertility rate? The total fertility rate is an estimation of the number of children who would theoretically be born per 1,000 women through their childbearing years (generally considered to be between the ages of 15 and 44) according to age-specific fertility rates. The fertility rate is different from the birth rate, in that the birth rate is the number of births in relation to the population over a specific period of time. Fertility rates around the world Fertility rates around the world differ on a country-by-country basis, and more industrialized countries tend to see lower fertility rates. For example, Niger topped the list of the countries with the highest fertility rates, and Taiwan had the lowest fertility rate.

  8. d

    Race and Ethnicity - ACS 2017-2021 - Tempe Tracts

    • catalog.data.gov
    • data-academy.tempe.gov
    • +6more
    Updated Sep 20, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Tempe (2024). Race and Ethnicity - ACS 2017-2021 - Tempe Tracts [Dataset]. https://catalog.data.gov/dataset/race-and-ethnicity-acs-2017-2021-tempe-tracts-a63d5
    Explore at:
    Dataset updated
    Sep 20, 2024
    Dataset provided by
    City of Tempe
    Area covered
    Tempe
    Description

    This layer shows population broken down by race and Hispanic origin. Data is from US Census American Community Survey (ACS) 5-year estimates.This layer is symbolized to show the percent of population that is Hispanic or Latino. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right (in ArcGIS Online). To view only the census tracts that are predominantly in Tempe, add the expression City is Tempe in the map filter settings.A ‘Null’ entry in the estimate indicates that data for this geographic area cannot be displayed because the number of sample cases is too small (per the U.S. Census).Vintage: 2017-2021ACS Table(s): B03002 (Not all lines of this ACS table are available in this feature layer.)Data downloaded from: Census Bureau's API for American Community Survey Data Preparation: Data curated from Esri Living Atlas clipped to Census Tract boundaries that are within or adjacent to the City of Tempe boundaryDate of Census update: December 8, 2022National Figures: data.census.govAdditional Census data notes and data processing notes are available at the Esri Living Atlas Layer:https://tempegov.maps.arcgis.com/home/item.html?id=23ab8028f1784de4b0810104cd5d1c8f&view=list&sortOrder=desc&sortField=defaultFSOrder#overview(Esri's Living Atlas always shows latest data)

  9. Race and Ethnicity 2015-2019

    • covid19.census.gov
    Updated Mar 8, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    US Census Bureau (2021). Race and Ethnicity 2015-2019 [Dataset]. https://covid19.census.gov/datasets/us-1
    Explore at:
    Dataset updated
    Mar 8, 2021
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    US Census Bureau
    Area covered
    Description

    This layer shows Race and Ethnicity. This is shown by state and county boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis.
    This layer is symbolized to show the percentage of households with no internet connection. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2015-2019ACS Table(s): B02001, B03001Data downloaded from: Census Bureau's API for American Community Survey Date of API call: February 10, 2021National Figures: data.census.gov The United States Census Bureau's American Community Survey (ACS): About the SurveyGeography & ACSTechnical Documentation News & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables. Data Processing Notes: Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2010 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page. Margin of error (MOE) values of -555555555 in the API (or "*****" (five asterisks) on data.census.gov) are displayed as 0 in this dataset. The estimates associated with these MOEs have been controlled to independent counts in the ACS weighting and have zero sampling error. So, the MOEs are effectively zeroes, and are treated as zeroes in MOE calculations. Other negative values on the API, such as -222222222, -666666666, -888888888, and -999999999, all represent estimates or MOEs that can't be calculated or can't be published, usually due to small sample sizes.
    All of these are rendered in this dataset as null (blank) values.

  10. 2018 American Community Survey: EEOALL1R | EEO 1R. DETAILED CENSUS...

    • data.census.gov
    Updated Nov 16, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ACS (2023). 2018 American Community Survey: EEOALL1R | EEO 1R. DETAILED CENSUS OCCUPATION BY SEX AND RACE/ETHNICITY FOR RESIDENCE GEOGRAPHY (ACS 5-Year Estimates Equal Employment Opportunity) [Dataset]. https://data.census.gov/cedsci/table?q=eeo
    Explore at:
    Dataset updated
    Nov 16, 2023
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ACS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2018
    Description

    The EEO Tabulation is sponsored by four Federal agencies consisting of the Equal Employment Opportunity Commission (EEOC), the Employment Litigation Section of the Civil Rights Division at the Department of Justice (DOJ), the Office of Federal Contract Compliance Programs (OFCCP), and the Office of Personnel Management (OPM), and developed in conjunction with the U.S. Census Bureau..Supporting documentation on code lists and subject definitions can be found on the Equal Employment Opportunity Tabulation website. https://www.census.gov/topics/employment/equal-employment-opportunity-tabulation.html.Source: U.S. Census Bureau, 2014-2018 American Community Survey.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see https://www.census.gov/programs-surveys/acs/technical-documentation.html The effect of nonsampling error is not represented in these tables)..The U.S. Census Bureau collects race data in accordance with guidelines provided by the U.S. Office of Management and Budget (OMB). Except for the total, all race and ethnicity categories are mutually exclusive. "Black" refers to Black or African American; "AIAN" refers to American Indian and Alaska Native; and "NHPI" refers to Native Hawaiian and Other Pacific Islander. "Balance of Not Hispanic or Latino" includes the balance of non-Hispanic individuals who reported multiple races or reported Some Other Race alone. For more information on race and Hispanic origin, see the Subject Definitions at https://www.census.gov/programs-surveys/acs/technical-documentation.html..Race and Hispanic origin are separate concepts on the American Community Survey. "White alone Hispanic or Latino" includes respondents who reported Hispanic or Latino origin and reported race as "White" and no other race. "All other Hispanic or Latino" includes respondents who reported Hispanic or Latino origin and reported a race other than "White," either alone or in combination..Occupation titles and their 4-digit codes are based on the 2018 Standard Occupational Classification..The 2014-2018 American Community Survey (ACS) data generally reflect the September 2018 Office of Management and Budget (OMB) delineations of metropolitan and micropolitan statistical areas. In certain instances the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB delineations due to differences in the effective dates of the geographic entities..Explanation of Symbols:An "-" entry in the estimate column indicates that either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution, or the margin of error associated with a median was larger than the median itself.An "(X)" means that the estimate is not applicable or not available.An "**" entry in the margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.An "***" entry in the margin of error column indicates that the median falls in the lowest interval or upper interval of an open-ended distribution. A statistical test is not appropriate.An "*****" entry in the margin of error column indicates that the estimate is controlled. A statistical test for sampling variability is not appropriate.An "N" entry in the estimate and margin of error columns indicates that data for this geographic area cannot be displayed because the number of sample cases is too small.An "-" following a median estimate means the median falls in the lowest interval of an open-ended distribution.An "+" following a median estimate means the median falls in the upper interval of an open-ended distribution.

  11. d

    Hispanic Origin by Race - ACS 2019-2023 - Tempe Tracts

    • catalog.data.gov
    • data-academy.tempe.gov
    • +7more
    Updated May 17, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Tempe (2025). Hispanic Origin by Race - ACS 2019-2023 - Tempe Tracts [Dataset]. https://catalog.data.gov/dataset/hispanic-origin-by-race-acs-2019-2023-tempe-tracts
    Explore at:
    Dataset updated
    May 17, 2025
    Dataset provided by
    City of Tempe
    Area covered
    Tempe
    Description

    This layer shows population broken down by race and Hispanic origin. Data is from US Census American Community Survey (ACS) 5-year estimates.This layer is symbolized to show the percent of population that is Hispanic or Latino. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right (in ArcGIS Online). To view only the census tracts that are predominantly in Tempe, add the expression City is Tempe in the map filter settings.A ‘Null’ entry in the estimate indicates that data for this geographic area cannot be displayed because the number of sample cases is too small (per the U.S. Census).Vintage: 2019-2023ACS Table(s): B03002 (Not all lines of this ACS table are available in this feature layer.)Data downloaded from: Census Bureau's API for American Community SurveyData Preparation: Data curated from Esri Living Atlas clipped to Census Tract boundaries that are within or adjacent to the City of Tempe boundaryDate of Census update: December 12, 2024National Figures: data.census.gov

  12. Race and Ethnicity 2017-2021- COUNTIES

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    Updated Mar 24, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    US Census Bureau (2023). Race and Ethnicity 2017-2021- COUNTIES [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/datasets/39ac48c2b72a458e84986aa76c380266
    Explore at:
    Dataset updated
    Mar 24, 2023
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    US Census Bureau
    Area covered
    Description

    This layer shows Race and Ethnicity. This is shown by state and county boundaries. This service contains the 2017-2021 release of data from the American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the percentage of population that are Hispanic or Latino . To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2017-2021ACS Table(s): B02001, B03001, DP05Data downloaded from: CensusBureau's API for American Community Survey Date of API call: February 16, 2023National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:Boundaries come from the Cartographic Boundaries via US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates, and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto Rico. The Counties (and equivalent) layer contains 3221 records - all counties and equivalent, Washington D.C., and Puerto Rico municipios. See Areas Published. Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells.Margin of error (MOE) values of -555555555 in the API (or "*****" (five asterisks) on data.census.gov) are displayed as 0 in this dataset. The estimates associated with these MOEs have been controlled to independent counts in the ACS weighting and have zero sampling error. So, the MOEs are effectively zeroes, and are treated as zeroes in MOE calculations. Other negative values on the API, such as -222222222, -666666666, -888888888, and -999999999, all represent estimates or MOEs that can't be calculated or can't be published, usually due to small sample sizes. All of these are rendered in this dataset as null (blank) values.

  13. Mass shootings in the U.S. by shooter’s by race/ethnicity as of September...

    • statista.com
    • ai-chatbox.pro
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Mass shootings in the U.S. by shooter’s by race/ethnicity as of September 2024 [Dataset]. https://www.statista.com/statistics/476456/mass-shootings-in-the-us-by-shooter-s-race/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    Between 1982 and September 2024, 82 out of the 151 mass shootings in the United States were carried out by White shooters. By comparison, the perpetrator was African American in 26 mass shootings, and Latino in 12. When calculated as percentages, this amounts to 54 percent, 17 percent, and eight percent respectively. Race of mass shooters reflects the U.S. population Broadly speaking, the racial distribution of mass shootings mirrors the racial distribution of the U.S. population as a whole. While a superficial comparison of the statistics seems to suggest African American shooters are over-represented and Latino shooters underrepresented, the fact that the shooter’s race is unclear in around nine percent of cases, along with the different time frames over which these statistics are calculated, means no such conclusions should be drawn. Conversely, looking at the mass shootings in the United States by gender clearly demonstrates that the majority of mass shootings are carried out by men. Mass shootings and mental health With no clear patterns between the socio-economic or cultural background of mass shooters, increasing attention has been placed on mental health. Analysis of the factors Americans considered to be to blame for mass shootings showed 80 percent of people felt the inability of the mental health system to recognize those who pose a danger to others was a significant factor. This concern is not without merit – in over half of the mass shootings since 1982, the shooter showed prior signs of mental health issues, suggesting improved mental health services may help deal with this horrific problem. Mass shootings and guns In the wake of multiple mass shootings, critics have sought to look beyond the issues of shooter identification and their influences by focusing on their access to guns. The majority of mass shootings in the U.S. involve firearms which were obtained legally, reflecting the easy ability of Americans to purchase and carry deadly weapons in public. Gun control takes on a particular significance when the uniquely American phenomenon of school shootings is considered. The annual number of incidents involving firearms at K-12 schools in the U.S. was over 100 in each year since 2018. Conversely, similar incidents in other developed countries exceptionally rare, with only five school shootings in G7 countries other than the U.S. between 2009 and 2018.

  14. f

    Table_1_Operationalizing racialized exposures in historical research on...

    • frontiersin.figshare.com
    docx
    Updated Jul 6, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Marie Kaniecki; Nicole Louise Novak; Sarah Gao; Sioban Harlow; Alexandra Minna Stern (2023). Table_1_Operationalizing racialized exposures in historical research on anti-Asian racism and health: a comparison of two methods.DOCX [Dataset]. http://doi.org/10.3389/fpubh.2023.983434.s001
    Explore at:
    docxAvailable download formats
    Dataset updated
    Jul 6, 2023
    Dataset provided by
    Frontiers
    Authors
    Marie Kaniecki; Nicole Louise Novak; Sarah Gao; Sioban Harlow; Alexandra Minna Stern
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    BackgroundAddressing contemporary anti-Asian racism and its impacts on health requires understanding its historical roots, including discriminatory restrictions on immigration, citizenship, and land ownership. Archival secondary data such as historical census records provide opportunities to quantitatively analyze structural dynamics that affect the health of Asian immigrants and Asian Americans. Census data overcome weaknesses of other data sources, such as small sample size and aggregation of Asian subgroups. This article explores the strengths and limitations of early twentieth-century census data for understanding Asian Americans and structural racism.MethodsWe used California census data from three decennial census spanning 1920–1940 to compare two criteria for identifying Asian Americans: census racial categories and Asian surname lists (Chinese, Indian, Japanese, Korean, and Filipino) that have been validated in contemporary population data. This paper examines the sensitivity and specificity of surname classification compared to census-designated “color or race” at the population level.ResultsSurname criteria were found to be highly specific, with each of the five surname lists having a specificity of over 99% for all three census years. The Chinese surname list had the highest sensitivity (ranging from 0.60–0.67 across census years), followed by the Indian (0.54–0.61) and Japanese (0.51–0.62) surname lists. Sensitivity was much lower for Korean (0.40–0.45) and Filipino (0.10–0.21) surnames. With the exception of Indian surnames, the sensitivity values of surname criteria were lower for the 1920–1940 census data than those reported for the 1990 census. The extent of the difference in sensitivity and trends across census years vary by subgroup.DiscussionSurname criteria may have lower sensitivity in detecting Asian subgroups in historical data as opposed to contemporary data as enumeration procedures for Asians have changed across time. We examine how the conflation of race, ethnicity, and nationality in the census could contribute to low sensitivity of surname classification compared to census-designated “color or race.” These results can guide decisions when operationalizing race in the context of specific research questions, thus promoting historical quantitative study of Asian American experiences. Furthermore, these results stress the need to situate measures of race and racism in their specific historical context.

  15. 2010-2014 ACS Race and Hispanic Origin Variables - Boundaries

    • hub.arcgis.com
    • mapdirect-fdep.opendata.arcgis.com
    • +2more
    Updated Nov 20, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2020). 2010-2014 ACS Race and Hispanic Origin Variables - Boundaries [Dataset]. https://hub.arcgis.com/maps/f3a1d93fd5f04365a0af01f721c22e0d
    Explore at:
    Dataset updated
    Nov 20, 2020
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer contains 2010-2014 American Community Survey (ACS) 5-year data, and contains estimates and margins of error. The layer shows population broken down by race and Hispanic origin. This is shown by tract, county, and state boundaries. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the predominant race living within an area. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Vintage: 2010-2014ACS Table(s): B03002 (Not all lines of this ACS table are available in this feature layer.)Data downloaded from: Census Bureau's API for American Community Survey Date of API call: November 11, 2020National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer has associated layers containing the most recent ACS data available by the U.S. Census Bureau. Click here to learn more about ACS data releases and click here for the associated boundaries layer. The reason this data is 5+ years different from the most recent vintage is due to the overlapping of survey years. It is recommended by the U.S. Census Bureau to compare non-overlapping datasets.Boundaries come from the US Census TIGER geodatabases. Boundary vintage (2014) appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2010 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  16. d

    Race and Ethnicity - ACS 2016-2020 - Tempe Zip Codes

    • catalog.data.gov
    • data.tempe.gov
    • +8more
    Updated Apr 5, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Tempe (2025). Race and Ethnicity - ACS 2016-2020 - Tempe Zip Codes [Dataset]. https://catalog.data.gov/dataset/race-and-ethnicity-acs-2016-2020-tempe-zip-codes-47b0a
    Explore at:
    Dataset updated
    Apr 5, 2025
    Dataset provided by
    City of Tempe
    Area covered
    Tempe
    Description

    This layer shows population broken down by race and Hispanic origin. Data is from US Census American Community Survey (ACS) 5-year estimates.To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right (in ArcGIS Online). A ‘Null’ entry in the estimate indicates that data for this geographic area cannot be displayed because the number of sample cases is too small (per the U.S. Census).Vintage: 2016-2020ACS Table(s): B03002 (Not all lines of this ACS table are available in this feature layer.)Data downloaded from: Census Bureau's API for American Community Survey Data Preparation: Data table downloaded and joined with Zip Code boundaries in the City of Tempe.Date of Census update: March 17, 2022National Figures: data.census.gov

  17. ACS Internet Access by Age and Race Variables - Boundaries

    • coronavirus-resources.esri.com
    • resilience.climate.gov
    • +4more
    Updated Dec 7, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2018). ACS Internet Access by Age and Race Variables - Boundaries [Dataset]. https://coronavirus-resources.esri.com/maps/5a1b51d3c6374c3cbb7c9ff7acdba16b
    Explore at:
    Dataset updated
    Dec 7, 2018
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer shows computer ownership and internet access by age and race. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the percent of population age 18 to 64 in households with no computer. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B28005, B28003, B28009B, B28009C, B28009D, B28009E, B28009F, B28009G, B28009H, B28009I Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  18. 2018 American Community Survey: EEOALL6W | EEO 6W. STATE AND LOCAL...

    • data.census.gov
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ACS, 2018 American Community Survey: EEOALL6W | EEO 6W. STATE AND LOCAL GOVERNMENT JOB GROUPS BY SEX AND RACE/ETHNICITY FOR WORKSITE GEOGRAPHY, TOTAL POPULATION (ACS 5-Year Estimates Equal Employment Opportunity) [Dataset]. https://data.census.gov/table/ACSEEO5Y2018.EEOALL6W
    Explore at:
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ACS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2018
    Description

    The EEO Tabulation is sponsored by four Federal agencies consisting of the Equal Employment Opportunity Commission (EEOC), the Employment Litigation Section of the Civil Rights Division at the Department of Justice (DOJ), the Office of Federal Contract Compliance Programs (OFCCP), and the Office of Personnel Management (OPM), and developed in conjunction with the U.S. Census Bureau..Supporting documentation on code lists and subject definitions can be found on the Equal Employment Opportunity Tabulation website. https://www.census.gov/topics/employment/equal-employment-opportunity-tabulation.html.Source: U.S. Census Bureau, 2014-2018 American Community Survey.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (for a discussion of nonsampling variability, see https://www.census.gov/programs-surveys/acs/technical-documentation.html The effect of nonsampling error is not represented in these tables)..The U.S. Census Bureau collects race data in accordance with guidelines provided by the U.S. Office of Management and Budget (OMB). Except for the total, all race and ethnicity categories are mutually exclusive. "Black" refers to Black or African American; "AIAN" refers to American Indian and Alaska Native; and "NHPI" refers to Native Hawaiian and Other Pacific Islander. "Balance of Not Hispanic or Latino" includes the balance of non-Hispanic individuals who reported multiple races or reported Some Other Race alone. For more information on race and Hispanic origin, see the Subject Definitions at https://www.census.gov/programs-surveys/acs/technical-documentation.html..Race and Hispanic origin are separate concepts on the American Community Survey. "White alone Hispanic or Latino" includes respondents who reported Hispanic or Latino origin and reported race as "White" and no other race. "All other Hispanic or Latino" includes respondents who reported Hispanic or Latino origin and reported a race other than "White," either alone or in combination..The 2014-2018 American Community Survey (ACS) data generally reflect the September 2018 Office of Management and Budget (OMB) delineations of metropolitan and micropolitan statistical areas. In certain instances the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB delineations due to differences in the effective dates of the geographic entities..Explanation of Symbols:An "-" entry in the estimate column indicates that either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution, or the margin of error associated with a median was larger than the median itself.An "(X)" means that the estimate is not applicable or not available.An "**" entry in the margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.An "***" entry in the margin of error column indicates that the median falls in the lowest interval or upper interval of an open-ended distribution. A statistical test is not appropriate.An "*****" entry in the margin of error column indicates that the estimate is controlled. A statistical test for sampling variability is not appropriate.An "N" entry in the estimate and margin of error columns indicates that data for this geographic area cannot be displayed because the number of sample cases is too small.An "-" following a median estimate means the median falls in the lowest interval of an open-ended distribution.An "+" following a median estimate means the median falls in the upper interval of an open-ended distribution.

  19. n

    National Longitudinal Mortality Study

    • neuinfo.org
    • rrid.site
    • +2more
    Updated Jul 2, 2011
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2011). National Longitudinal Mortality Study [Dataset]. http://identifiers.org/RRID:SCR_008946
    Explore at:
    Dataset updated
    Jul 2, 2011
    Description

    A database based on a random sample of the noninstitutionalized population of the United States, developed for the purpose of studying the effects of demographic and socio-economic characteristics on differentials in mortality rates. It consists of data from 26 U.S. Current Population Surveys (CPS) cohorts, annual Social and Economic Supplements, and the 1980 Census cohort, combined with death certificate information to identify mortality status and cause of death covering the time interval, 1979 to 1998. The Current Population Surveys are March Supplements selected from the time period from March 1973 to March 1998. The NLMS routinely links geographical and demographic information from Census Bureau surveys and censuses to the NLMS database, and other available sources upon request. The Census Bureau and CMS have approved the linkage protocol and data acquisition is currently underway. The plan for the NLMS is to link information on mortality to the NLMS every two years from 1998 through 2006 with research on the resulting database to continue, at least, through 2009. The NLMS will continue to incorporate data from the yearly Annual Social and Economic Supplement into the study as the data become available. Based on the expected size of the Annual Social and Economic Supplements to be conducted, the expected number of deaths to be added to the NLMS through the updating process will increase the mortality content of the study to nearly 500,000 cases out of a total number of approximately 3.3 million records. This effort would also include expanding the NLMS population base by incorporating new March Supplement Current Population Survey data into the study as they become available. Linkages to the SEER and CMS datasets are also available. Data Availability: Due to the confidential nature of the data used in the NLMS, the public use dataset consists of a reduced number of CPS cohorts with a fixed follow-up period of five years. NIA does not make the data available directly. Research access to the entire NLMS database can be obtained through the NIA program contact listed. Interested investigators should email the NIA contact and send in a one page prospectus of the proposed project. NIA will approve projects based on their relevance to NIA/BSR''s areas of emphasis. Approved projects are then assigned to NLMS statisticians at the Census Bureau who work directly with the researcher to interface with the database. A modified version of the public use data files is available also through the Census restricted Data Centers. However, since the database is quite complex, many investigators have found that the most efficient way to access it is through the Census programmers. * Dates of Study: 1973-2009 * Study Features: Longitudinal * Sample Size: ~3.3 Million Link: *ICPSR: http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/00134

  20. 2023 American Community Survey: B03002 | Hispanic or Latino Origin by Race...

    • data.census.gov
    Updated Jan 29, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ACS (2024). 2023 American Community Survey: B03002 | Hispanic or Latino Origin by Race (ACS 5-Year Estimates Detailed Tables) [Dataset]. https://data.census.gov/cedsci/table?q=B03002&g=0500000US12011%241400000
    Explore at:
    Dataset updated
    Jan 29, 2024
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ACS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2023
    Description

    Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units and the group quarters population for states and counties..Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2019-2023 American Community Survey 5-Year Estimates.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year..Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..The Hispanic origin and race codes were updated in 2020. For more information on the Hispanic origin and race code changes, please visit the American Community Survey Technical Documentation website..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
City of Tempe (2025). Race and Ethnicity - ACS 2018-2022 - Tempe Zip Code [Dataset]. https://catalog.data.gov/dataset/race-and-ethnicity-acs-2018-2022-tempe-zip-code

Race and Ethnicity - ACS 2018-2022 - Tempe Zip Code

Explore at:
Dataset updated
May 10, 2025
Dataset provided by
City of Tempe
Area covered
Tempe
Description

This layer shows the population broken down by race and Hispanic origin. Data is from US Census American Community Survey (ACS) 5-year estimates.To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right (in ArcGIS Online). A ‘Null’ entry in the estimate indicates that data for this geographic area cannot be displayed because the number of sample cases is too small (per the U.S. Census).Vintage: 2018-2022ACS Table(s): B03002 (Not all lines of this ACS table are available in this feature layer.)Data downloaded from: Census Bureau's API for American Community Survey Data Preparation: Data table was downloaded and joined with Zip Code boundaries in the City of Tempe.Date of Census update: December 15, 2023National Figures: data.census.gov

Search
Clear search
Close search
Google apps
Main menu