The ReAding Comprehension dataset from Examinations (RACE) dataset is a machine reading comprehension dataset consisting of 27,933 passages and 97,867 questions from English exams, targeting Chinese students aged 12-18. RACE consists of two subsets, RACE-M and RACE-H, from middle school and high school exams, respectively. RACE-M has 28,293 questions and RACE-H has 69,574. Each question is associated with 4 candidate answers, one of which is correct. The data generation process of RACE differs from most machine reading comprehension datasets - instead of generating questions and answers by heuristics or crowd-sourcing, questions in RACE are specifically designed for testing human reading skills, and are created by domain experts.
https://choosealicense.com/licenses/other/https://choosealicense.com/licenses/other/
Dataset Card for "race"
Dataset Summary
RACE is a large-scale reading comprehension dataset with more than 28,000 passages and nearly 100,000 questions. The dataset is collected from English examinations in China, which are designed for middle school and high school students. The dataset can be served as the training and test sets for machine comprehension.
Supported Tasks and Leaderboards
More Information Needed
Languages
More Information Needed… See the full description on the dataset page: https://huggingface.co/datasets/ehovy/race.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
RACE 是一个大规模阅读理解数据集,包含超过 28,000 篇文章以及近 100,000 个问题。该数据集采集自中国的中学和高中英语考试,可以作为机器阅读理解任务的训练与测试集。 RACE is a large-scale reading comprehension dataset with over 28,000 passages and nearly 100,000 questions. The dataset is collected from English exams for Chinese middle and high school students and can serve as training and test sets for machine comprehension tasks.
数据格式 | Data Format
article(文章): 一个字符串,包含完整的阅读文章。 questions(问题): 一个字符串列表,每个字符串为一个问题(有陈述句和带填空两类)。 option(选项): 列表,每个问题有四个备选答案。… See the full description on the dataset page: https://huggingface.co/datasets/XuehangCang/RACE.
Includes questions written in Spanish pertaining to: race & ethnicitygenderagetribal affiliationdisabilityincomelanguagelocation
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
A. SUMMARY This dataset includes San Francisco COVID-19 tests by race/ethnicity and by date. This dataset represents the daily count of tests collected, and the breakdown of test results (positive, negative, or indeterminate). Tests in this dataset include all those collected from persons who listed San Francisco as their home address at the time of testing. It also includes tests that were collected by San Francisco providers for persons who were missing a locating address. This dataset does not include tests for residents listing a locating address outside of San Francisco, even if they were tested in San Francisco.
The data were de-duplicated by individual and date, so if a person gets tested multiple times on different dates, all tests will be included in this dataset (on the day each test was collected). If a person tested multiple times on the same date, only one test is included from that date. When there are multiple tests on the same date, a positive result, if one exists, will always be selected as the record for the person. If a PCR and antigen test are taken on the same day, the PCR test will supersede. If a person tests multiple times on the same day and the results are all the same (e.g. all negative or all positive) then the first test done is selected as the record for the person.
The total number of positive test results is not equal to the total number of COVID-19 cases in San Francisco.
When a person gets tested for COVID-19, they may be asked to report information about themselves. One piece of information that might be requested is a person's race and ethnicity. These data are often incomplete in the laboratory and provider reports of the test results sent to the health department. The data can be missing or incomplete for several possible reasons:
• The person was not asked about their race and ethnicity.
• The person was asked, but refused to answer.
• The person answered, but the testing provider did not include the person's answers in the reports.
• The testing provider reported the person's answers in a format that could not be used by the health department.
For any of these reasons, a person's race/ethnicity will be recorded in the dataset as “Unknown.”
B. NOTE ON RACE/ETHNICITY The different values for Race/Ethnicity in this dataset are "Asian;" "Black or African American;" "Hispanic or Latino/a, all races;" "American Indian or Alaska Native;" "Native Hawaiian or Other Pacific Islander;" "White;" "Multi-racial;" "Other;" and “Unknown."
The Race/Ethnicity categorization increases data clarity by emulating the methodology used by the U.S. Census in the American Community Survey. Specifically, persons who identify as "Asian," "Black or African American," "American Indian or Alaska Native," "Native Hawaiian or Other Pacific Islander," "White," "Multi-racial," or "Other" do NOT include any person who identified as Hispanic/Latino at any time in their testing reports that either (1) identified them as SF residents or (2) as someone who tested without a locating address by an SF provider. All persons across all races who identify as Hispanic/Latino are recorded as “"Hispanic or Latino/a, all races." This categorization increases data accuracy by correcting the way “Other” persons were counted. Previously, when a person reported “Other” for Race/Ethnicity, they would be recorded “Unknown.” Under the new categorization, they are counted as “Other” and are distinct from “Unknown.”
If a person records their race/ethnicity as “Asian,” “Black or African American,” “American Indian or Alaska Native,” “Native Hawaiian or Other Pacific Islander,” “White,” or “Other” for their first COVID-19 test, then this data will not change—even if a different race/ethnicity is reported for this person for any future COVID-19 test. There are two exceptions to this rule. The first exception is if a person’s race/ethnicity value is reported as “Unknown” on their first test and then on a subsequent test they report “Asian;” "Black or African American;" "Hispanic or Latino/a, all races;" "American Indian or Alaska Native;" "Native Hawaiian or Other Pacific Islander;" or "White”, then this subsequent reported race/ethnicity will overwrite the previous recording of “Unknown”. If a person has only ever selected “Unknown” as their race/ethnicity, then it will be recorded as “Unknown.” This change provides more specific and actionable data on who is tested in San Francisco.
The second exception is if a person ever marks “Hispanic or Latino/a, all races” for race/ethnicity then this choice will always overwrite any previous or future response. This is because it is an overarching category that can include any and all other races and is mutually exclusive with the other responses.
A person's race/ethnicity will be recorded as “Multi-racial” if they select two or more values among the following choices: “Asian,” “Black or African American,” “American Indian or Alaska Native,” “Native Hawaiian or Other Pacific Islander,” “White,” or “Other.” If a person selects a combination of two or more race/ethnicity answers that includes “Hispanic or Latino/a, all races” then they will still be recorded as “Hispanic or Latino/a, all races”—not as “Multi-racial.”
C. HOW THE DATASET IS CREATED COVID-19 laboratory test data is based on electronic laboratory test reports. Deduplication, quality assurance measures and other data verification processes maximize accuracy of laboratory test information.
D. UPDATE PROCESS Updates automatically at 5:00AM Pacific Time each day. Redundant runs are scheduled at 7:00AM and 9:00AM in case of pipeline failure.
E. HOW TO USE THIS DATASET San Francisco population estimates for race/ethnicity can be found in a view based on the San Francisco Population and Demographic Census dataset. These population estimates are from the 2016-2020 5-year American Community Survey (ACS).
Due to the high degree of variation in the time needed to complete tests by different labs there is a delay in this reporting. On March 24, 2020 the Health Officer ordered all labs in the City to report complete COVID-19 testing information to the local and state health departments.
In order to track trends over time, a user can analyze this data by sorting or filtering by the "specimen_collection_date" field.
Calculating Percent Positivity: The positivity rate is the percentage of tests that return a positive result for COVID-19 (positive tests divided by the sum of positive and negative tests). Indeterminate results, which could not conclusively determine whether COVID-19 virus was present, are not included in the calculation of percent positive. When there are fewer than 20 positives tests for a given race/ethnicity and time period, the positivity rate is not calculated for the public tracker because rates of small test counts are less reliable.
Calculating Testing Rates: To calculate the testing rate per 10,000 residents, divide the total number of tests collected (positive, negative, and indeterminate results) for the specified race/ethnicity by the total number of residents who identify as that race/ethnicity (according to the 2016-2020 American Community Survey (ACS) population estimate), then multiply by 10,000. When there are fewer than 20 total tests for a given race/ethnicity and time period, the testing rate is not calculated for the public tracker because rates of small test counts are less reliable.
Read more about how this data is updated and validated daily: https://sf.gov/information/covid-19-data-questions
F. CHANGE LOG
Knowing the racial and ethnic composition of a community is often one of the first steps in understanding, serving, and advocating for various groups. This information can help enforce laws, policies, and regulations against discrimination based on race and ethnicity. These statistics can also help tailor services to accommodate cultural differences.This multi-scale map shows the most common race/ethnicity living within an area. Map opens at tract-level in Los Angeles, CA but has national coverage. Zoom out to see counties and states.This map uses these hosted feature layers containing the most recent American Community Survey data. These layers are part of the ArcGIS Living Atlas, and are updated every year when the American Community Survey releases new estimates, so values in the map always reflect the newest data available. The data on race were derived from answers to the question on race that was asked of individuals in the United States. The Census Bureau collects racial data in accordance with guidelines provided by the U.S. Office of Management and Budget (OMB), and these data are based on self-identification. The racial categories included in the census questionnaire generally reflect a social definition of race recognized in this country and not an attempt to define race biologically, anthropologically, or genetically. The categories represent a social-political construct designed for collecting data on the race and ethnicity of broad population groups in this country, and are not anthropologically or scientifically based. Learn more here.
The American Community Survey (ACS) helps local officials, community leaders, and businesses understand the changes taking place in their communities. It is the premier source for detailed population and housing information about our nation.Part of the American Community Survey (ACS) looks to define demographic and housing estimates. We use the 5-Year Estimates to have a greater level of precision to our data, according to the Distinguishing features of ACS 1-year, 1-year supplemental, 3-year, and 5-year estimates table.We query attributes of the DP05 (Selected Social Characteristics in the United States) Group of questions for years available.This dataset has been narrowed down to Cary township using following the geographies codes supported for the ACS dataset:state: 37county: 183county subdivision: 90536
https://www.icpsr.umich.edu/web/ICPSR/studies/38310/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/38310/terms
This study is part of the American National Election Studies (ANES), a time series collection of national surveys fielded since 1948. The American National Election Studies are designed to present data on Americans' social backgrounds, political predispositions, social and political values, perceptions and evaluations of groups and candidates, opinions on questions of public policy, and participation in political life. The files included in this study are restricted-use due to the race, nationality, immigration, and heritage data contained in them for the year listed in the title.
The once-a-decade decennial census was conducted in April 2010 by the U.S. Census Bureau. This count of every resident in the United States was mandated by Article I, Section 2 of the Constitution and all households in the U.S. and individuals living in group quarters were required by law to respond to the 2010 Census questionnaire. The data collected by the decennial census determine the number of seats each state has in the U.S. House of Representatives and is also used to distribute billions in federal funds to local communities. The questionnaire consisted of a limited number of questions but allowed for the collection of information on the number of people in the household and their relationship to the householder, an individual's age, sex, race and Hispanic ethnicity, the number of housing units and whether those units are owner- or renter-occupied, or vacant. The first wave of results for sub-state geographic areas in New Mexico was released on March 15, 2011, through the Redistricting Data (PL94-171) Summary File. This batch of data covers the state, counties, places (both incorporated and unincorporated communities), tribal lands, school districts, neighborhoods (census tracts and block groups), individual census blocks, and other areas. The Redistricting products provide counts by race and Hispanic ethnicity for the total population and the population 18 years and over, and housing unit counts by occupancy status. The 2010 Census Redistricting Data Summary File can be used to redraw federal, state and local legislative districts under Public Law 94-171. This is an important purpose of the file and, indeed, state officials use the Redistricting Data to realign congressional and state legislative districts in their states, taking into account population shifts since the 2000 Census. More detailed population and housing characteristics will be released in the summer of 2011. The data in these particular RGIS Clearinghouse tables are for all Block Groups in Torrance County. There are two data tables. One provides total counts by major race groups and by Hispanic ethnicity, while the other provides proportions of the total population for these same groups. These files, along with file-specific descriptions (in Word and text formats) are available in a single zip file.
This study explores attitudes and perceptions related to urban problems and race relations in 15 northern cities of the United States (Baltimore, Boston, Brooklyn, Chicago, Cincinnati, Cleveland, Detroit, Gary, Milwaukee, Newark, Philadelphia, Pittsburgh, St. Louis, San Francisco, and Washington, DC). More specifically, it seeks to define the social and psychological characteristics and aspirations of the Black and White urban populations. Samples of Blacks and Whites were selected in each of the cities in early 1968. The study employed two questionnaire forms, one for Whites and one for Blacks, and two corresponding data files were generated. Attitudinal questions asked of the White and Black respondents measured their satisfaction with community services, their feelings about the effectiveness of government in solving urban problems, and their experience with police abuse. Additional questions about the respondent's familiarity with and participation in antipoverty programs were included. Other questions centered on the respondent's opinions about the 1967 riots: the main causes, the purpose, the major participating classes, and the effect of the riots on the Black cause. Respondents' interracial relationships, their attitudes toward integration, and their perceptions of the hostility between the races were also investigated. White respondents were asked about their opinions on the use of governmental intervention as a solution for various problems of the Blacks, such as substandard schools, unemployment, and unfair housing practices. Respondent's reactions to nonviolent and violent protests by Blacks, their acceptance of counter-rioting by Whites and their ideas concerning possible governmental action to prevent further rioting were elicited. Inquiries were made as to whether or not the respondent had given money to support or hinder the Black cause. Other items investigated respondents' perceptions of racial discrimination in jobs, education, and housing, and their reactions to working under or living next door to a Black person. Black respondents were asked about their perceptions of discrimination in hiring, promotion, and housing, and general attitudes toward themselves and towards Blacks in general. The survey also investigated respondents' past participation in civil rights organizations and in nonviolent and/or violent protests, their sympathy with rioters, and the likelihood of personal participation in a future riot. Other questions probed respondents' attitudes toward various civil rights leaders along with their concurrence with statements concerning the meaning of 'Black power.' Demographic variables include sex and age of the respondent, and the age and relationship to the respondent of each person in the household, as well as information about the number of persons in the household, their race, and the type of structure in which they lived. Additional demographic topics include the occupational and educational background of the respondent, of the respondent's family head, and of the respondent's father. The respondent's family income and the amount of that income earned by the head of the family were obtained, and it was determined if any of the family income came from welfare, Social Security, or veteran's benefits. This study also ascertained the place of birth of the respondent and respondent's m other and father, in order to measure the degree of southern influence. Other questions investigated the respondent's military background, religious preference, marital status, and family composition.
*** The County of Santa Clara Public Health Department discontinued updates to the COVID-19 data tables effective June 30, 2025. The COVID-19 data tables will be removed from the Open Data Portal on December 30, 2025. For current information on COVID-19 in Santa Clara County, please visit the Respiratory Virus Dashboard [sccphd.org/respiratoryvirusdata]. For any questions, please contact phinternet@phd.sccgov.org ***
The dataset provides information about the COVID-19 cases by racial/ethnic groups among Santa Clara County residents summarized by week. Source: California Reportable Disease Information Exchange.
This dataset is updated every Thursday.
This map is designed to work in the new ArcGIS Online Map Viewer. Open in Map Viewer to view map. What does this map show?This map shows the population in the US by race. The map shows this pattern nationwide for states, counties, and tracts. Open the map in the new ArcGIS Online Map Viewer Beta to see the dot density pattern. What is dot density?The density is visualized by randomly placing one dot per a given value for the desired attribute. Unlike choropleth visualizations, dot density can be mapped using total counts since the size of the polygon plays a significant role in the perceived density of the attribute.Where is the data from?The data in this map comes from the most current American Community Survey (ACS) from the U.S. Census Bureau. Table B03002. The layer being used if updated with the most current data each year when the Census releases new estimates. The layer can be found in ArcGIS Living Atlas of the World: ACS Race and Hispanic Origin Variables - Boundaries.What questions does this map answer?Where do people of different races live?Do people of a similar race live close to people of their own race?Which cities have a diverse range of different races? Less diverse?
https://dataverse-staging.rdmc.unc.edu/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=hdl:1902.29/D-33492https://dataverse-staging.rdmc.unc.edu/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=hdl:1902.29/D-33492
While this survey maintains some basic demographic questions, as well as those concerning media exposure, computer and internet use, religious identification, and political affiliation, its oevrarching theme is how race affects standards of living. Questions address what respondents percieve to be the problems and cultural implications in our society resulting from race issues both past and present.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Relative concentration of the Sierra Nevada region's Hispanic and/or Black, Indigenous or person of color (HSPBIPOC) population. The variable HSPBIPOC is equivalent to all individuals who select a combination of racial and ethnic identity in response to the Census questionnaire EXCEPT those who select "not Hispanic" for the ethnic identity question, and "white race alone" for the racial identity question. This is the most encompassing possible definition of racial and ethnic identities that may be associated with historic underservice by agencies, or be more likely to express environmental justice concerns (as compared to predominantly non-Hispanic white communities). Until 2021, federal agency guidance for considering environmental justice impacts of proposed actions focused on how the actions affected "racial or ethnic minorities." "Racial minority" is an increasingly meaningless concept in the USA, and particularly so in California, where only about 3/8 of the state's population identifies as non-Hispanic and white race alone - a clear majority of Californians identify as Hispanic and/or not white. Because many federal and state map screening tools continue to rely on "minority population" as an indicator for flagging potentially vulnerable / disadvantaged/ underserved populations, our analysis includes the variable HSPBIPOC which is effectively "all minority" population according to the now outdated federal environmental justice direction. A more meaningful analysis for the potential impact of forest management actions on specific populations considers racial or ethnic populations individually: e.g., all people identifying as Hispanic regardless of race; all people identifying as American Indian, regardless of Hispanic ethnicity; etc.
"Relative concentration" is a measure that compares the proportion of population within each Census block group data unit that identify as HSPBIPOC alone to the proportion of all people that live within the 775 block groups in the Sierra Nevada RRK region that identify as HSPBIPOC alone. Example: if 5.2% of people in a block group identify as HSPBIPOC, the block group has twice the proportion of HSPBIPOC individuals compared to the Sierra Nevada RRK region (2.6%), and more than three times the proportion compared to the entire state of California (1.6%). If the local proportion is twice the regional proportion, then HSPBIPOC individuals are highly concentrated locally.
The once-a-decade decennial census was conducted in April 2010 by the U.S. Census Bureau. This count of every resident in the United States was mandated by Article I, Section 2 of the Constitution and all households in the U.S. and individuals living in group quarters were required by law to respond to the 2010 Census questionnaire. The data collected by the decennial census determine the number of seats each state has in the U.S. House of Representatives and is also used to distribute billions in federal funds to local communities. The questionnaire consisted of a limited number of questions but allowed for the collection of information on the number of people in the household and their relationship to the householder, an individual's age, sex, race and Hispanic ethnicity, the number of housing units and whether those units are owner- or renter-occupied, or vacant. The first wave of results for sub-state geographic areas in New Mexico was released on March 15, 2011, through the Redistricting Data (PL94-171) Summary File. This batch of data covers the state, counties, places (both incorporated and unincorporated communities), tribal lands, school districts, neighborhoods (census tracts and block groups), individual census blocks, and other areas. The Redistricting products provide counts by race and Hispanic ethnicity for the total population and the population 18 years and over, and housing unit counts by occupancy status. The 2010 Census Redistricting Data Summary File can be used to redraw federal, state and local legislative districts under Public Law 94-171. This is an important purpose of the file and, indeed, state officials use the Redistricting Data to realign congressional and state legislative districts in their states, taking into account population shifts since the 2000 Census. More detailed population and housing characteristics will be released in the summer of 2011. The data in this particular RGIS Clearinghouse table are for all blocks in Lea County. The data table provides total counts by major race groups and by Hispanic ethnicity. This file, along with specific narrative descriptions and definitions (in Word and text formats) are available in a single zip file.
https://www.icpsr.umich.edu/web/ICPSR/studies/2987/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/2987/terms
This special topic poll, fielded June 21-29, 2000, queried respondents on their attitudes regarding race. This poll oversampled Black respondents, providing an insight into the demographic characteristics and political perspectives of Blacks or African-Americans. Respondents were asked a series of questions about perceptions of racial relations, attitudes about integration of neighborhoods, the workplace, and schools, experiences with racial discrimination, knowledge of Black history, and the relevance and importance of engaging in race relations dialogues. Respondents were asked to compare the opportunities available to their generation to the opportunities of past and future generations and what was the most important problem for the next generation to solve. In addition, respondents were asked for their views on issues such as racial profiling, interracial relationships, community/law enforcement relationships, and the representation of Blacks in professional and leadership positions. Demographic information includes age, employment status, sex, race, education, household income, religious preference, voter registration and participation history, political party, political orientation, ethnicity, marital status, type of residential area, and whether respondents had any school-age children in the household.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Relative concentration of the Southern California region's Black/African American population. The variable HSPBIPOC is equivalent to all individuals who select a combination of racial and ethnic identity in response to the Census questionnaire EXCEPT those who select "not Hispanic" for the ethnic identity question, and "white race alone" for the racial identity question. This is the most encompassing possible definition of racial and ethnic identities that may be associated with historic underservice by agencies, or be more likely to express environmental justice concerns (as compared to predominantly non-Hispanic white communities). Until 2021, federal agency guidance for considering environmental justice impacts of proposed actions focused on how the actions affected "racial or ethnic minorities." "Racial minority" is an increasingly meaningless concept in the USA, and particularly so in California, where only about 3/8 of the state's population identifies as non-Hispanic and white race alone - a clear majority of Californians identify as Hispanic and/or not white. Because many federal and state map screening tools continue to rely on "minority population" as an indicator for flagging potentially vulnerable / disadvantaged/ underserved populations, our analysis includes the variable HSPBIPOC which is effectively "all minority" population according to the now outdated federal environmental justice direction. A more meaningful analysis for the potential impact of forest management actions on specific populations considers racial or ethnic populations individually: e.g., all people identifying as Hispanic regardless of race; all people identifying as American Indian, regardless of Hispanic ethnicity; etc.
"Relative concentration" is a measure that compares the proportion of population within each Census block group data unit that identify as HSPBIPOC alone to the proportion of all people that live within the 13,312 block groups in the Southern California RRK region that identify as HSPBIPOC alone. Example: if 5.2% of people in a block group identify as HSPBIPOC, the block group has twice the proportion of HSPBIPOC individuals compared to the Southern California RRK region (2.6%), and more than three times the proportion compared to the entire state of California (1.6%). If the local proportion is twice the regional proportion, then HSPBIPOC individuals are highly concentrated locally.
*** The County of Santa Clara Public Health Department discontinued updates to the COVID-19 data tables effective June 30, 2025. The COVID-19 data tables will be removed from the Open Data Portal on December 30, 2025. For current information on COVID-19 in Santa Clara County, please visit the Respiratory Virus Dashboard [sccphd.org/respiratoryvirusdata]. For any questions, please contact phinternet@phd.sccgov.org ***
The dataset provides information about the demographics and characteristics of COVID-19 cases by racial/ethnic groups among Santa Clara County residents. Source: California Reportable Disease Information Exchange. Data notes: The Other category for the race/ethnicity graph includes American Indian/Alaska Native and people who identify as multi-racial.
This table is updated every Thursday.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Relative concentration of the Central California region's Hispanic and/or Black, Indigenous or person of color (HSPBIPOC) American population. The variable HSPBIPOC is equivalent to all individuals who select a combination of racial and ethnic identity in response to the Census questionnaire EXCEPT those who select "not Hispanic" for the ethnic identity question, and "white race alone" for the racial identity question. This is the most encompassing possible definition of racial and ethnic identities that may be associated with historic underservice by agencies, or be more likely to express environmental justice concerns (as compared to predominantly non-Hispanic white communities). Until 2021, federal agency guidance for considering environmental justice impacts of proposed actions focused on how the actions affected "racial or ethnic minorities." "Racial minority" is an increasingly meaningless concept in the USA, and particularly so in California, where only about 3/8 of the state's population identifies as non-Hispanic and white race alone - a clear majority of Californians identify as Hispanic and/or not white. Because many federal and state map screening tools continue to rely on "minority population" as an indicator for flagging potentially vulnerable / disadvantaged/ underserved populations, our analysis includes the variable HSPBIPOC which is effectively "all minority" population according to the now outdated federal environmental justice direction. A more meaningful analysis for the potential impact of forest management actions on specific populations considers racial or ethnic populations individually: e.g., all people identifying as Hispanic regardless of race; all people identifying as American Indian, regardless of Hispanic ethnicity; etc.
"Relative concentration" is a measure that compares the proportion of population within each Census block group data unit that identify as HSPBIPOC alone to the proportion of all people that live within the 4,961 block groups in the Central California RRK region that identify as HSPBIPOC alone. Example: if 5.2% of people in a block group identify as HSPBIPOC, the block group has twice the proportion of HSPBIPOC individuals compared to the Central California RRK region (2.6%), and more than three times the proportion compared to the entire state of California (1.6%). If the local proportion is twice the regional proportion, then HSPBIPOC individuals are highly concentrated locally.
The once-a-decade decennial census was conducted in April 2010 by the U.S. Census Bureau. This count of every resident in the United States was mandated by Article I, Section 2 of the Constitution and all households in the U.S. and individuals living in group quarters were required by law to respond to the 2010 Census questionnaire. The data collected by the decennial census determine the number of seats each state has in the U.S. House of Representatives and is also used to distribute billions in federal funds to local communities. The questionnaire consisted of a limited number of questions but allowed for the collection of information on the number of people in the household and their relationship to the householder, an individual's age, sex, race and Hispanic ethnicity, the number of housing units and whether those units are owner- or renter-occupied, or vacant. The first wave of results for sub-state geographic areas in New Mexico was released on March 15, 2011, through the Redistricting Data (PL94-171) Summary File. This batch of data covers the state, counties, places (both incorporated and unincorporated communities), tribal lands, school districts, neighborhoods (census tracts and block groups), individual census blocks, and other areas. The Redistricting products provide counts by race and Hispanic ethnicity for the total population and the population 18 years and over, and housing unit counts by occupancy status. The 2010 Census Redistricting Data Summary File can be used to redraw federal, state and local legislative districts under Public Law 94-171. This is an important purpose of the file and, indeed, state officials use the Redistricting Data to realign congressional and state legislative districts in their states, taking into account population shifts since the 2000 Census. More detailed population and housing characteristics will be released in the summer of 2011. The data in these particular RGIS Clearinghouse tables are for all Block Groups in Colfax County. There are two data tables. One provides total counts by major race groups and by Hispanic ethnicity, while the other provides proportions of the total population for these same groups. These files, along with file-specific descriptions (in Word and text formats) are available in a single zip file.
The ReAding Comprehension dataset from Examinations (RACE) dataset is a machine reading comprehension dataset consisting of 27,933 passages and 97,867 questions from English exams, targeting Chinese students aged 12-18. RACE consists of two subsets, RACE-M and RACE-H, from middle school and high school exams, respectively. RACE-M has 28,293 questions and RACE-H has 69,574. Each question is associated with 4 candidate answers, one of which is correct. The data generation process of RACE differs from most machine reading comprehension datasets - instead of generating questions and answers by heuristics or crowd-sourcing, questions in RACE are specifically designed for testing human reading skills, and are created by domain experts.