This layer shows Race and Ethnicity. This is shown by state and county boundaries. This service contains the 2018-2022 release of data from the American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the percentage of population that are Hispanic or Latino (of any race). To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2018-2022ACS Table(s): B02001, B03001, DP05Data downloaded from: CensusBureau's API for American Community Survey Date of API call: January 18, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:Boundaries come from the Cartographic Boundaries via US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates, and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto Rico. The Counties (and equivalent) layer contains 3221 records - all counties and equivalent, Washington D.C., and Puerto Rico municipios. See Areas Published. Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells.Margin of error (MOE) values of -555555555 in the API (or "*****" (five asterisks) on data.census.gov) are displayed as 0 in this dataset. The estimates associated with these MOEs have been controlled to independent counts in the ACS weighting and have zero sampling error. So, the MOEs are effectively zeroes, and are treated as zeroes in MOE calculations. Other negative values on the API, such as -222222222, -666666666, -888888888, and -999999999, all represent estimates or MOEs that can't be calculated or can't be published, usually due to small sample sizes. All of these are rendered in this dataset as null (blank) values.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Non-Hispanic population of State Line by race. It includes the distribution of the Non-Hispanic population of State Line across various race categories as identified by the Census Bureau. The dataset can be utilized to understand the Non-Hispanic population distribution of State Line across relevant racial categories.
Key observations
With a zero Hispanic population, State Line is 100% Non-Hispanic. Among the Non-Hispanic population, the largest racial group is White alone with a population of 3 (100% of the total Non-Hispanic population).
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for State Line Population by Race & Ethnicity. You can refer the same here
OSPI school year 2024 (2023-24) detailed student race data.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
This list ranks the 50 states in the United States by Non-Hispanic Some Other Race (SOR) population, as estimated by the United States Census Bureau. It also highlights population changes in each states over the past five years.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates, including:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
VetPop2023 projection of living Veterans by sex and race/ethnicity at the state level. Note: Rounding to the nearest 1,000 is always appropriate for VetPop estimates.
This layer shows Race and Ethnicity. This is shown by state and county boundaries. This service contains the 2018-2022 release of data from the American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the percentage of population that are Hispanic or Latino (of any race). To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2018-2022ACS Table(s): B02001, B03001, DP05Data downloaded from: CensusBureau's API for American Community Survey Date of API call: January 18, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:Boundaries come from the Cartographic Boundaries via US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates, and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto Rico. The Counties (and equivalent) layer contains 3221 records - all counties and equivalent, Washington D.C., and Puerto Rico municipios. See Areas Published. Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells.Margin of error (MOE) values of -555555555 in the API (or "*****" (five asterisks) on data.census.gov) are displayed as 0 in this dataset. The estimates associated with these MOEs have been controlled to independent counts in the ACS weighting and have zero sampling error. So, the MOEs are effectively zeroes, and are treated as zeroes in MOE calculations. Other negative values on the API, such as -222222222, -666666666, -888888888, and -999999999, all represent estimates or MOEs that can't be calculated or can't be published, usually due to small sample sizes. All of these are rendered in this dataset as null (blank) values.
Statewide VA data on the demographic and economic characteristics of the labor force are published on an annual-average basis from the Current Population Survey (CPS), the sample survey of households used to calculate the U.S. unemployment rate. For VA state ,employment status data are tabulated for 67 sex, race, Hispanic or Latino ethnicity, marital status, and detailed age categories and evaluated against a minimum base, calculated to reflect an expected maximum coefficient of variation (CV) of 50 percent, to determine reliability for publication
https://www.icpsr.umich.edu/web/ICPSR/studies/9878/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/9878/terms
The MARS file contains modified race and age data based on the 1990 Census. Both race and age are tabulated by sex and Hispanic origin for several layers of geography. The race data were modified to make reporting categories comparable to those used by state and local agencies. The 1990 Census included 9,804,847 persons who checked the "other race" category and were therefore not included in one of the 15 racial categories listed on the Census form. "Other race" is usually not an acceptable reporting category for state and local agencies. Therefore, the Census Bureau assigned each "other race" person to the specified race reported by another person geographically close with an identical response to the Hispanic-origin question. Hispanic origin was taken into account because over 95 percent of the "other race" persons were of Hispanic origin. (Hispanic-origin persons may be of any race.) The assignment of race to Hispanic-origin persons did not affect the Hispanic-origin category that they checked (i.e, Mexican, Puerto Rican, Cuban, etc.). Age data were modified because respondents tended to report age as of the date they completed the 1990 questionnaire, instead of age as of the April 1, 1990 Census date. In addition, there may have been a tendency for respondents to round up their age if they were close to having a birthday. Age data for individuals in households were modified by adjusting the reported birth-year data by race and sex for each of the 1990 Census's 449 district offices to correspond with the national level quarterly distribution of births available from the National Center for Health Statistics. The data for persons in group quarters were adjusted similarly, but on a state basis. The age adjustment affects approximately 100 million people. In this file their adjusted age is one year different from that reported in the 1990 Census.
Vintage 2024 Population projections by race, sex and age group for North Carolina counties. Includes population by race (American Indian/Alaska Native), Asian & Pacific Islander (Asian), Black, White, Other (includes persons identified as two or more races). In some counties not all race groups will be reported separately. For population of less than 250 for any race group, the population by age will be reported within the other category and the "group n" for the other category show a number larger than 1 indicating that the other category includes population from other race groups that are separately reported for other counties. For this reason, users should take care in aggregating race group population across counties.
From 2021 to 2025, ** states had passed laws or approved similar state-level action to restrict teaching critical race theory in schools or limit how teachers can discuss racism, sexism, and issues of systemic inequality in the United States. In comparison, ** states vetoed, overturned, or stalled indefinitely any state-level action or bills introduced to restrict schools from teaching about race, sex, or inequality. Additionally, a bill was either proposed or was moving through the state legislature in North Carolina. Only *** states, along with the District of Columbia, did not have any such state-level action or bills introduced during that time period.
Table from the American Community Survey (ACS) 5-year series on race and ethnicity related topics for City of Seattle Council Districts, Comprehensive Plan Growth Areas and Community Reporting Areas. Table includes B03002 Hispanic or Latino Origin by Race, B02008-B02013 Race Alone or in Combination with One or More Other. Data is pulled from block group tables for the most recent ACS vintage and summarized to the neighborhoods based on block group assignment.Table created for and used in the Neighborhood Profiles application.Vintages: 2023ACS Table(s): B03002, B02008, B02009, B02010, B02011, B02012, B02013Data downloaded from: Census Bureau's Explore Census Data The United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2020 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.
Measure reports the percent of the State of Iowa's population that is classified as American Indian and Alaska Native Alone, Native Hawaiian and Other Pacific Islander Alone, or Some Other Race Alone based data collected over a 60 month period. Data is from the American Community Survey, Five Year Estimates, Table B02001.
This graph shows the population of the U.S. by race and ethnic group from 2000 to 2023. In 2023, there were around 21.39 million people of Asian origin living in the United States. A ranking of the most spoken languages across the world can be accessed here. U.S. populationCurrently, the white population makes up the vast majority of the United States’ population, accounting for some 252.07 million people in 2023. This ethnicity group contributes to the highest share of the population in every region, but is especially noticeable in the Midwestern region. The Black or African American resident population totaled 45.76 million people in the same year. The overall population in the United States is expected to increase annually from 2022, with the 320.92 million people in 2015 expected to rise to 341.69 million people by 2027. Thus, population densities have also increased, totaling 36.3 inhabitants per square kilometer as of 2021. Despite being one of the most populous countries in the world, following China and India, the United States is not even among the top 150 most densely populated countries due to its large land mass. Monaco is the most densely populated country in the world and has a population density of 24,621.5 inhabitants per square kilometer as of 2021. As population numbers in the U.S. continues to grow, the Hispanic population has also seen a similar trend from 35.7 million inhabitants in the country in 2000 to some 62.65 million inhabitants in 2021. This growing population group is a significant source of population growth in the country due to both high immigration and birth rates. The United States is one of the most racially diverse countries in the world.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Homeownership Rates by Race and Ethnicity: All Other Races: Total in the United States (AORHORUSQ156N) from Q1 1994 to Q1 2025 about homeownership, rate, and USA.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Covers almost all 99 legislative chambers from 1971 to 2021. Tracks the proportion of legislators who are 1) african-american, 2) Cuban, 3) East Asian, 4) Non-Cuban Latino, 5) MENA, 6) Native American, 7) Pacific Islander (includes Native Hawaiian), 8) South Asian and 9) non-Latino white. Also reports the average chamber and legislative tenure of each group in each chamber-session year. This dataset was computed from individual level legislator data from Carl Klarner’s State Legislator Race dataset.
This layer shows Race and Ethnicity. This is shown by state and county boundaries. This service contains the 2018-2022 release of data from the American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the percentage of population that are Hispanic or Latino (of any race). To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2018-2022ACS Table(s): B02001, B03001, DP05Data downloaded from: CensusBureau's API for American Community Survey Date of API call: January 18, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:Boundaries come from the Cartographic Boundaries via US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates, and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto Rico. The Counties (and equivalent) layer contains 3221 records - all counties and equivalent, Washington D.C., and Puerto Rico municipios. See Areas Published. Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells.Margin of error (MOE) values of -555555555 in the API (or "*****" (five asterisks) on data.census.gov) are displayed as 0 in this dataset. The estimates associated with these MOEs have been controlled to independent counts in the ACS weighting and have zero sampling error. So, the MOEs are effectively zeroes, and are treated as zeroes in MOE calculations. Other negative values on the API, such as -222222222, -666666666, -888888888, and -999999999, all represent estimates or MOEs that can't be calculated or can't be published, usually due to small sample sizes. All of these are rendered in this dataset as null (blank) values.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is published by the Research & Analytics Group at the Atlanta Regional Commission to show population change by utilizing the 2020 redistricting data and comparable data for 2010, 2000, and 1990 across multiple geographies for the State of Georgia. For a deep dive into the data model including every specific metric, see the Data Manifest. The manifest details ARC-defined naming conventions, names/descriptions and topics where applicable, summary levels; source tables; notes and so forth for all metrics.
It should be noted:The 2020 redistricting release is not as detailed in terms of data compared to ACS estimates; data include total population, population by race and ethnicity, and "voting age" population (i.e., adults) by race and ethnicity, adults are subtracted from the total population to show children (ages 0-17); total number of housing units, occupied housing units, and vacant housing units. Percent and change measures are calculated over four different Censuses.These data are expressed in terms of 2020 geographies such as the new 2020 Census tracts. This means that that historical data for geographies like cities have been estimated to the 2020 boundaries. For example, the city of Atlanta, which has made multiple annexations since 1990, has a higher estimated 1990 population of 400,452 (2020 boundaries) than the 394,017 reported in the 1990 Census (1990 boundaries).Due to changes in block geographies and annexations, 2010 population totals for custom geographies such as City of Atlanta NSAs may differ slightly from the numbers we have published in the past.The procedure to re-estimate historical data to 2020 blocks often results in fractional population (e.g., 1.25 instead of 1 or 2). Counts have been rounded to the nearest whole, but to be more precise, all aggregation, percent, and change measures were performed pre-rounding. Some change measures may appear curious as a result. For example, 100.4 - 20.8 = 79.6 which rounds to 80. But if rounded first, 100.4 rounds down to 100, 20.8 rounds up to 21; 100 - 21 = 79.Asian and Pacific Islander categories are combined to maximize compatibility with the 1990 release, which reported the two groups as a single category. Caution should be exercised with 1990 race data because the Census Bureau changed to the current system (which allows people to identify as biracial or multiracial) starting only in 2000.The "other" race category includes American Indian and Alaska Natives, people identifying with "some other race" and (for 2000 forward), people who identify as biracial or multiracial.For more information regarding Decennial Census source data, visit 2020 Census website
The ethnic and racial distribution of legal abortions in the United States varies greatly by state. For example, in Idaho non-Hispanic white women accounted for 66 percent of all legal abortions in 2022, whereas only 19 percent of abortions in Mississippi were among white women. Since the Supreme Court overturned Roe v. Wade in 2022 many states, such as Mississippi, have made abortion illegal with limited exceptions. Which states have the most abortions? In 2022, the states with the highest total number of legal abortions were Florida, New York, and Illinois. That year, there were around 82,581 legal abortions in the state of Florida. Florida also had the fourth-highest rate of legal abortion per 100,000 women, with New Mexico reporting the highest rate. The states with the lowest rates of abortion that year were Missouri and South Dakota. Out-of-state abortions As many states have banned or restricted abortion since the overturning of Roe v. Wade, it is likely that more women will now have to travel out of state if they would like to receive an abortion. Even before the overturning of Roe v. Wade, a significant percentage of abortions in many states were performed on out-of-state residents. In 2022, around 69 percent of legal abortions in Kansas were performed on out-of-state residents, while out-of-state residents accounted for 62 percent of abortions in New Mexico. At that time, Illinois was the state with the highest total number of abortions performed on out-of-state residents, with around 16,849 such procedures.
https://www.icpsr.umich.edu/web/ICPSR/studies/8384/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/8384/terms
This data collection contains intercensal estimates of the resident population of all counties in the United States by age, sex, and race. Figures were gathered annually on July 1 from 1971 to 1979 and are included here along with Census counts for 1970 and 1980. These estimates are for five-year age groups to age 85 and over for the total white and Black population, by sex. The records are arranged by county within each state.
This layer shows education level for adults (25+) by race by sex. This is shown by tract, county, and state centroids. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the count and percent of adults age 25+ who have a bachelor's degree or higher as their highest education level. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B15002, C15002B, C15002C, C15002D, C15002E, C15002F, C15002G, C15002H, C15002I (Not all lines of these ACS tables are available in this layer.)Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2020 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.
This layer shows Race and Ethnicity. This is shown by state and county boundaries. This service contains the 2018-2022 release of data from the American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the percentage of population that are Hispanic or Latino (of any race). To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2018-2022ACS Table(s): B02001, B03001, DP05Data downloaded from: CensusBureau's API for American Community Survey Date of API call: January 18, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:Boundaries come from the Cartographic Boundaries via US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates, and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto Rico. The Counties (and equivalent) layer contains 3221 records - all counties and equivalent, Washington D.C., and Puerto Rico municipios. See Areas Published. Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells.Margin of error (MOE) values of -555555555 in the API (or "*****" (five asterisks) on data.census.gov) are displayed as 0 in this dataset. The estimates associated with these MOEs have been controlled to independent counts in the ACS weighting and have zero sampling error. So, the MOEs are effectively zeroes, and are treated as zeroes in MOE calculations. Other negative values on the API, such as -222222222, -666666666, -888888888, and -999999999, all represent estimates or MOEs that can't be calculated or can't be published, usually due to small sample sizes. All of these are rendered in this dataset as null (blank) values.