100+ datasets found
  1. U.S. poverty rate in the United States 2023, by race and ethnicity

    • statista.com
    Updated Jun 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). U.S. poverty rate in the United States 2023, by race and ethnicity [Dataset]. https://www.statista.com/statistics/200476/us-poverty-rate-by-ethnic-group/
    Explore at:
    Dataset updated
    Jun 25, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    United States
    Description

    In 2023, **** percent of Black people living in the United States were living below the poverty line, compared to *** percent of white people. That year, the total poverty rate in the U.S. across all races and ethnicities was **** percent. Poverty in the United States Single people in the United States making less than ****** U.S. dollars a year and families of four making less than ****** U.S. dollars a year are considered to be below the poverty line. Women and children are more likely to suffer from poverty, due to women staying home more often than men to take care of children, and women suffering from the gender wage gap. Not only are women and children more likely to be affected, racial minorities are as well due to the discrimination they face. Poverty data Despite being one of the wealthiest nations in the world, the United States had the third highest poverty rate out of all OECD countries in 2019. However, the United States' poverty rate has been fluctuating since 1990, but has been decreasing since 2014. The average median household income in the U.S. has remained somewhat consistent since 1990, but has recently increased since 2014 until a slight decrease in 2020, potentially due to the pandemic. The state that had the highest number of people living below the poverty line in 2020 was California.

  2. Share of the population living in poverty by race in the United States...

    • statista.com
    • ai-chatbox.pro
    Updated Oct 28, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Share of the population living in poverty by race in the United States 1959-2023 [Dataset]. https://www.statista.com/statistics/1225017/poverty-share-by-race-race-us/
    Explore at:
    Dataset updated
    Oct 28, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In the U.S., the share of the population living in poverty fluctuated significantly throughout the six decades between 1987 and 2023. In 2023, the poverty level across all races and ethnicities was 11.1 percent. Black Americans have been the ethnic group with the highest share of their population living in poverty almost every year since 1974. In 1979 alone, Black poverty was well over double the national average, and over four times the poverty rate in white communities; in 1982, almost 48 percent of the Black population lived in poverty. Although poverty rates have been trending downward across all ethnic groups, 17.8 percent of Black Americans and 18.9 percent of American Indian and Alaskan Natives still lived below the poverty line in 2022.

  3. c

    Poverty Status by Town - Datasets - CTData.org

    • data.ctdata.org
    Updated Mar 16, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2016). Poverty Status by Town - Datasets - CTData.org [Dataset]. http://data.ctdata.org/dataset/poverty-status-by-town
    Explore at:
    Dataset updated
    Mar 16, 2016
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The Census Bureau determines that a person is living in poverty when his or her total household income compared with the size and composition of the household is below the poverty threshold. The Census Bureau uses the federal government's official definition of poverty to determine the poverty threshold. Beginning in 2000, individuals were presented with the option to select one or more races. In addition, the Census asked individuals to identify their race separately from identifying their Hispanic origin. The Census has published individual tables for the races and ethnicities provided as supplemental information to the main table that does not dissaggregate by race or ethnicity. Race categories include the following - White, Black or African American, American Indian or Alaska Native, Asian, Native Hawaiian or Other Pacific Islander, Some other race, and Two or more races. We are not including specific combinations of two or more races as the counts of these combinations are small. Ethnic categories include - Hispanic or Latino and White Non-Hispanic. This data comes from the American Community Survey (ACS) 5-Year estimates, table B17001. The ACS collects these data from a sample of households on a rolling monthly basis. ACS aggregates samples into one-, three-, or five-year periods. CTdata.org generally carries the five-year datasets, as they are considered to be the most accurate, especially for geographic areas that are the size of a county or smaller.Poverty status determined is the denominator for the poverty rate. It is the population for which poverty status was determined so when poverty is calculated they exclude institutionalized people, people in military group quarters, people in college dormitories, and unrelated individuals under 15 years of age.Below poverty level are households as determined by the thresholds based on the criteria of looking at household size, Below poverty level are households as determined by the thresholds based on the criteria of looking at household size, number of children, and age of householder.number of children, and age of householder.

  4. l

    Racially or Ethnically Concentrated Areas of Poverty (R/ECAPs)

    • data.lojic.org
    • catalog.data.gov
    • +2more
    Updated Aug 21, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Housing and Urban Development (2023). Racially or Ethnically Concentrated Areas of Poverty (R/ECAPs) [Dataset]. https://data.lojic.org/datasets/HUD::racially-or-ethnically-concentrated-areas-of-poverty-r-ecaps
    Explore at:
    Dataset updated
    Aug 21, 2023
    Dataset authored and provided by
    Department of Housing and Urban Development
    Area covered
    Description

    To assist communities in identifying racially/ethnically-concentrated areas of poverty (R/ECAPs), HUD has developed a census tract-based definition of R/ECAPs. The definition involves a racial/ethnic concentration threshold and a poverty test. The racial/ethnic concentration threshold is straightforward: R/ECAPs must have a non-white population of 50 percent or more. Regarding the poverty threshold, Wilson (1980) defines neighborhoods of extreme poverty as census tracts with 40 percent or more of individuals living at or below the poverty line. Because overall poverty levels are substantially lower in many parts of the country, HUD supplements this with an alternate criterion. Thus, a neighborhood can be a R/ECAP if it has a poverty rate that exceeds 40% or is three or more times the average tract poverty rate for the metropolitan/micropolitan area, whichever threshold is lower. Census tracts with this extreme poverty that satisfy the racial/ethnic concentration threshold are deemed R/ECAPs. This translates into the following equation: Where i represents census tracts, () is the metropolitan/micropolitan (CBSA) mean tract poverty rate, is the ith tract poverty rate, () is the non-Hispanic white population in tract i, and Pop is the population in tract i.While this definition of R/ECAP works well for tracts in CBSAs, place outside of these geographies are unlikely to have racial or ethnic concentrations as high as 50 percent. In these areas, the racial/ethnic concentration threshold is set at 20 percent.

    Data Source: American Community Survey (ACS), 2009-2013; Decennial Census (2010); Brown Longitudinal Tract Database (LTDB) based on decennial census data, 1990, 2000 & 2010.

    Related AFFH-T Local Government, PHA Tables/Maps: Table 4, 7; Maps 1-17. Related AFFH-T State Tables/Maps: Table 4, 7; Maps 1-15, 18.

    References:Wilson, William J. (1980). The Declining Significance of Race: Blacks and Changing American Institutions. Chicago: University of Chicago Press.

    To learn more about R/ECAPs visit:https://www.hud.gov/program_offices/fair_housing_equal_opp/affh ; https://www.hud.gov/sites/dfiles/FHEO/documents/AFFH-T-Data-Documentation-AFFHT0006-July-2020.pdf, for questions about the spatial attribution of this dataset, please reach out to us at GISHelpdesk@hud.gov. Date of Coverage: 11/2017

  5. U.S. poverty rate 2023, by age and gender

    • statista.com
    Updated Mar 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). U.S. poverty rate 2023, by age and gender [Dataset]. https://www.statista.com/statistics/233154/us-poverty-rate-by-gender/
    Explore at:
    Dataset updated
    Mar 19, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    United States
    Description

    In 2023 the poverty rate in the United States was highest among people between 18 and 24, with a rate of 16 percent for male Americans and a rate of 21 percent for female Americans. The lowest poverty rate for both men and women was for those aged between 45 and 54. What is the poverty line? The poverty line is a metric used by the U.S. Census Bureau to define poverty in the United States. It is a specific income level that is considered to be the bare minimum a person or family needs to meet their basic needs. If a family’s annual pre-tax income is below this income level, then they are considered impoverished. The poverty guideline for a family of four in 2021 was 26,500 U.S. dollars. Living below the poverty line According to the most recent data, almost one-fifth of African Americans in the United States live below the poverty line; the most out of any ethnic group. Additionally, over 7.42 million families in the U.S. live in poverty – a figure that has held mostly steady since 1990, outside the 2008 financial crisis which threw 9.52 million families into poverty by 2012. The poverty gender gap Wage inequality has been an ongoing discussion in U.S. discourse for many years now. The poverty gap for women is most pronounced during their child-bearing years, shrinks, and then grows again in old age. While progress has been made on the gender pay gap over the last 30 years, there are still significant disparities, even in occupations that predominantly employ men. Additionally, women are often having to spend more time attending to child and household duties than men.

  6. s

    Persistent low income

    • ethnicity-facts-figures.service.gov.uk
    csv
    Updated Jan 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Race Disparity Unit (2025). Persistent low income [Dataset]. https://www.ethnicity-facts-figures.service.gov.uk/work-pay-and-benefits/pay-and-income/low-income/latest
    Explore at:
    csv(81 KB), csv(304 KB)Available download formats
    Dataset updated
    Jan 23, 2025
    Dataset authored and provided by
    Race Disparity Unit
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Area covered
    United Kingdom
    Description

    Between 2018 and 2022, people in households in the ‘other’, Asian and black ethnic groups were the most likely to be in persistent low income, both before and after housing costs, out of all ethnic groups.

  7. a

    2023 Population and Poverty by Split Tract

    • egis-lacounty.hub.arcgis.com
    • geohub.lacity.org
    • +1more
    Updated May 31, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    County of Los Angeles (2024). 2023 Population and Poverty by Split Tract [Dataset]. https://egis-lacounty.hub.arcgis.com/datasets/2023-population-and-poverty-by-split-tract
    Explore at:
    Dataset updated
    May 31, 2024
    Dataset authored and provided by
    County of Los Angeles
    Area covered
    Description

    Population by age groups, race and gender, and the poverty by race is attached to the split tract geography to create this split tract with population and poverty data. Split tract data is the product of 2020 census tracts split by 2023 incorporated city boundaries and unincorporated community/countywide statistical areas (CSA) boundaries as of July 1, 2023. The census tract boundaries have been altered and aligned where necessary with legal city boundaries and unincorporated areas, including shoreline/coastal areas. Census Tract:Every 10 years the Census Bureau counts the population of the United States as mandated by Constitution. The Census Bureau (https://www.census.gov/)released 2020 geographic boundaries data including census tracts for the analysis and mapping of demographic information across the United States. City Boundary:City Boundary data is the base map information for the County of Los Angeles. These City Boundaries are based on the Los Angeles County Seamless Cadastral Landbase. The Landbase is jointly maintained by the Los Angeles County Assessor and the Los Angeles County Department of Public Works (DPW). This layer represents current city boundaries within Los Angeles County. The DPW provides the most current shapefiles representing city boundaries and city annexations. True, legal boundaries are only determined on the ground by surveyors licensed in the State of California.Countywide Statistical Areas (CSA): The countywide Statistical Area (CSA) was defined to provide a common geographic boundary for reporting departmental statistics for unincorporated areas and incorporated Los Angeles city to the Board of Supervisors. The CSA boundary and CSA names are established by the CIO and the LA County Enterprise GIS group worked with the Los Angeles County Board of Supervisors Unincorporated Area and Field Deputies that reflect as best as possible the general name preferences of residents and historical names of areas. This data is primarily focused on broad statistics and reporting, not mapping of communities. This data is not designed to perfectly represent communities, nor jurisdictional boundaries such as Angeles National Forest. CSA represent board approved geographies comprised of Census block groups split by cities.Data Fields:CT20: 2020 Census tractFIP22: 2023 City FIP CodeCITY: City name for incorporated cities and “Unincorporated” for unincorporated areas (as of July 1, 2023) CSA: Countywide Statistical Area (CSA) - Unincorporated area community names and LA City neighborhood names.CT20FIP23CSA: 2020 census tract with 2023 city FIPs for incorporated cities and unincorporated areas and LA neighborhoods. SPA22: 2022 Service Planning Area (SPA) number.SPA_NAME: Service Planning Area name.HD22: 2022 Health District (HD) number: HD_NAME: Health District name.POP23_AGE_0_4: 2023 population 0 to 4 years oldPOP23_AGE_5_9: 2023 population 5 to 9 years old POP23_AGE_10_14: 2023 population 10 to 14 years old POP23_AGE_15_17: 2022 population 15 to 17 years old POP23_AGE_18_19: 2023 population 18 to 19 years old POP23_AGE_20_44: 2023 population 20 to 24 years old POP23_AGE_25_29: 2023 population 25 to 29 years old POP23_AGE_30_34: 2023 population 30 to 34 years old POP23_AGE_35_44: 2023 population 35 to 44 years old POP23_AGE_45_54: 2023 population 45 to 54 years old POP23_AGE_55_64: 2023 population 55 to 64 years old POP23_AGE_65_74: 2023 population 65 to 74 years old POP23_AGE_75_84: 2023 population 75 to 84 years old POP23_AGE_85_100: 2023 population 85 years and older POP23_WHITE: 2023 Non-Hispanic White POP23_BLACK: 2023 Non-Hispanic African AmericanPOP23_AIAN: 2023 Non-Hispanic American Indian or Alaska NativePOP23_ASIAN: 2023 Non-Hispanic Asian POP23_HNPI: 2023 Non-Hispanic Hawaiian Native or Pacific IslanderPOP23_HISPANIC: 2023 HispanicPOP23_MALE: 2023 Male POP23_FEMALE: 2023 Female POV23_WHITE: 2023 Non-Hispanic White below 100% Federal Poverty Level POV23_BLACK: 2023 Non-Hispanic African American below 100% Federal Poverty Level POV23_AIAN: 2023 Non-Hispanic American Indian or Alaska Native below 100% Federal Poverty Level POV23_ASIAN: 2023 Non-Hispanic Asian below 100% Federal Poverty Level POV23_HNPI: 2023 Non-Hispanic Hawaiian Native or Pacific Islander below 100% Federal Poverty Level POV23_HISPANIC: 2023 Hispanic below 100% Federal Poverty Level POV23_TOTAL: 2023 Total population below 100% Federal Poverty Level POP23_TOTAL: 2023 Total PopulationAREA_SQMil: Area in square mile.POP23_DENSITY: 2023 Population per square mile.POV23_PERCENT: 2023 Poverty rate/percentage.How this data created?Population by age groups, ethnic groups and gender, and the poverty by ethnic groups is attributed to the split tract geography to create this data. Split tract polygon data is created by intersecting 2020 census tract polygons, LA Country City Boundary polygons and Countywide Statistical Areas (CSA) polygon data. The resulting polygon boundary aligned and matched with the legal city boundary whenever possible. Notes:1. Population and poverty data estimated as of July 1, 2023. 2. 2010 Census tract and 2020 census tracts are not the same. Similarly, city and community boundaries are as of July 1, 2023.

  8. a

    Which race has the highest rate of child poverty?

    • gis-for-racialequity.hub.arcgis.com
    Updated Jun 18, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS Living Atlas Team (2020). Which race has the highest rate of child poverty? [Dataset]. https://gis-for-racialequity.hub.arcgis.com/maps/87347344fa3443d89a372535a30dd522
    Explore at:
    Dataset updated
    Jun 18, 2020
    Dataset authored and provided by
    ArcGIS Living Atlas Team
    Area covered
    Description

    This map highlights child poverty in the US by which race has the highest percentage of children in poverty. The pattern is shown by county, and the popup provides a breakdown of child poverty rates by race (where available). Note that not all counties have data for all races, so the map will show the predominant value based on the data available.The data comes from County Health Rankings, a collaboration between the Robert Wood Johnson Foundation and the University of Wisconsin Population Health Institute, measure the health of nearly all counties in the nation and rank them within states. The layer used in the map comes from ArcGIS Living Atlas of the World, and the full documentation for the layer can be found here. To explore other child poverty patterns, visit the following maps:Where is Black child poverty higher than total child poverty?Black Children in Poverty in the US

  9. a

    Children in Poverty in the US

    • hub.arcgis.com
    Updated May 17, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban Observatory by Esri (2018). Children in Poverty in the US [Dataset]. https://hub.arcgis.com/maps/UrbanObservatory::children-in-poverty-in-the-us
    Explore at:
    Dataset updated
    May 17, 2018
    Dataset authored and provided by
    Urban Observatory by Esri
    Area covered
    Description

    This map shows the percent of children living within poverty by county in the United States. The popup shows the breakdown of children within poverty by race, if the data is available. According to the National Center for Children in Poverty, 21% of all children live within poverty. The map uses this figure to show areas that are above or below the national average. Areas in orange represent areas that have a higher amount of children living within poverty.The data comes from the County Health Rankings 2018 layer. The report is from a collaboration between the Robert Wood Johnson Foundation and the University of Wisconsin Population Health Institute.According to the County Health Rankings & Roadmaps site "By ranking the health of nearly every county in the nation, the County Health Rankings help communities understand what influences how healthy residents are and how long they will live. These comparisons among counties provide context and demonstrate that where you live, and many other factors including race/ethnicity, can deeply impact your ability to live a healthy life. The Rankings not only provide this snapshot of your county’s health, but also are used to drive conversations and action to address the health challenges and gaps highlighted in these findings."Download the Excel file here: 2018 County Health Rankings

  10. Poverty and low-income statistics by selected demographic characteristics

    • www150.statcan.gc.ca
    • open.canada.ca
    • +1more
    Updated May 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2025). Poverty and low-income statistics by selected demographic characteristics [Dataset]. http://doi.org/10.25318/1110009301-eng
    Explore at:
    Dataset updated
    May 1, 2025
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Government of Canadahttp://www.gg.ca/
    Area covered
    Canada
    Description

    Poverty and low-income statistics by visible minority group, Indigenous group and immigration status, Canada and provinces.

  11. c

    Poverty Rate

    • data.ccrpc.org
    • data.cuuats.cloud.ccrpc.org
    csv
    Updated Oct 17, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Champaign County Regional Planning Commission (2024). Poverty Rate [Dataset]. https://data.ccrpc.org/dataset/poverty-rate
    Explore at:
    csv(393)Available download formats
    Dataset updated
    Oct 17, 2024
    Dataset provided by
    Champaign County Regional Planning Commission
    Description

    This poverty rate data shows what percentage of the measured population* falls below the poverty line. Poverty is closely related to income: different “poverty thresholds” are in place for different sizes and types of household. A family or individual is considered to be below the poverty line if that family or individual’s income falls below their relevant poverty threshold. For more information on how poverty is measured by the U.S. Census Bureau (the source for this indicator’s data), visit the U.S. Census Bureau’s poverty webpage.

    The poverty rate is an important piece of information when evaluating an area’s economic health and well-being. The poverty rate can also be illustrative when considered in the contexts of other indicators and categories. As a piece of data, it is too important and too useful to omit from any indicator set.

    The poverty rate for all individuals in the measured population in Champaign County has hovered around roughly 20% since 2005. However, it reached its lowest rate in 2021 at 14.9%, and its second lowest rate in 2023 at 16.3%. Although the American Community Survey (ACS) data shows fluctuations between years, given their margins of error, none of the differences between consecutive years’ estimates are statistically significant, making it impossible to identify a trend.

    Poverty rate data was sourced from the U.S. Census Bureau’s American Community Survey 1-Year Estimates, which are released annually.

    As with any datasets that are estimates rather than exact counts, it is important to take into account the margins of error (listed in the column beside each figure) when drawing conclusions from the data.

    Due to the impact of the COVID-19 pandemic, instead of providing the standard 1-year data products, the Census Bureau released experimental estimates from the 1-year data in 2020. This includes a limited number of data tables for the nation, states, and the District of Columbia. The Census Bureau states that the 2020 ACS 1-year experimental tables use an experimental estimation methodology and should not be compared with other ACS data. For these reasons, and because data is not available for Champaign County, no data for 2020 is included in this Indicator.

    For interested data users, the 2020 ACS 1-Year Experimental data release includes a dataset on Poverty Status in the Past 12 Months by Age.

    *According to the U.S. Census Bureau document “How Poverty is Calculated in the ACS," poverty status is calculated for everyone but those in the following groups: “people living in institutional group quarters (such as prisons or nursing homes), people in military barracks, people in college dormitories, living situations without conventional housing, and unrelated individuals under 15 years old."

    Sources: U.S. Census Bureau; American Community Survey, 2023 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using data.census.gov; (17 October 2024).; U.S. Census Bureau; American Community Survey, 2022 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using data.census.gov; (25 September 2023).; U.S. Census Bureau; American Community Survey, 2021 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using data.census.gov; (16 September 2022).; U.S. Census Bureau; American Community Survey, 2019 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using data.census.gov; (8 June 2021).; U.S. Census Bureau; American Community Survey, 2018 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using data.census.gov; (8 June 2021).; U.S. Census Bureau; American Community Survey, 2017 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2016 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (14 September 2017).; U.S. Census Bureau; American Community Survey, 2015 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (19 September 2016).; U.S. Census Bureau; American Community Survey, 2014 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2013 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2012 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2011 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2010 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2009 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2008 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2007 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2006 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2005 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).

  12. l

    2018 Population and Poverty at Split Tract

    • data.lacounty.gov
    • hub.arcgis.com
    Updated May 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    County of Los Angeles (2024). 2018 Population and Poverty at Split Tract [Dataset]. https://data.lacounty.gov/datasets/2018-population-and-poverty-at-split-tract
    Explore at:
    Dataset updated
    May 7, 2024
    Dataset authored and provided by
    County of Los Angeles
    Area covered
    Description

    Tabular data of population by age groups, race and gender, and the poverty by race is attached to the split tract geography to create this split tract with population and poverty data. Split tract data is the product of 2010 census tracts split by 2018 incorporated city boundaries and unincorporated community/countywide statistical areas (CSA) boundaries. The census tract boundaries have been altered and aligned where necessary with legal city boundaries and unincorporated areas, including shoreline/coastal areas. Census Tract:Every 10 years the Census Bureau counts the population of the United States as mandated by Constitution. The Census Bureau (https://www.census.gov/) released 2010 geographic boundaries data including census tracts for the analysis and mapping of demographic information across the United States. City Boundary:City Boundary data is the base map information for the County of Los Angeles. These City Boundaries are based on the Los Angeles County Seamless Cadastral Landbase. The Landbase is jointly maintained by the Los Angeles County Assessor and the Los Angeles County Department of Public Works (DPW). This layer represents current city boundaries within Los Angeles County. The DPW provides the most current shapefiles representing city boundaries and city annexations. True, legal boundaries are only determined on the ground by surveyors licensed in the State of California.Countywide Statistical Areas (CSA): The countywide Statistical Area (CSA) was defined to provide a common geographic boundary for reporting departmental statistics for unincorporated areas and incorporated Los Angeles city to the Board of Supervisors. The CSA boundary and CSA names are established by the CIO and the LA County Enterprise GIS group worked with the Los Angeles County Board of Supervisors Unincorporated Area and Field Deputies that reflect as best as possible the general name preferences of residents and historical names of areas. This data is primarily focused on broad statistics and reporting, not mapping of communities. This data is not designed to perfectly represent communities, nor jurisdictional boundaries such as Angeles National Forest. CSA represent board approved geographies comprised of Census block groups split by cities.Data Field:CT10: 2010 Census tractFIP18: 2018 City FIP CodeCITY: City name for incorporated cities and “Unincorporated” for unincorporated areas (as of July 1, 2018) CSA: Countywide Statistical Area (CSA) - Unincorporated area community names and LA City neighborhood names.CT10FIP18CSA: 2010 census tract with 2018 city FIPs for incorporated cities, unincorporated areas and LA neighborhoods. SPA12: 2012 Service Planning Area (SPA) number.SPA_NAME: Service Planning Area name.HD12: 2012 Health District (HD) number: HD_NAME: Health District name.POP18_AGE_0_4: 2018 population 0 to 4 years oldPOP18_AGE_5_9: 2018 population 5 to 9 years old POP18_AGE_10_14: 2018 population 10 to 14 years old POP18_AGE_15_17: 2018 population 15 to 17 years old POP18_AGE_18_19: 2018 population 18 to 19 years old POP18_AGE_20_44: 2018 population 20 to 24 years old POP18_AGE_25_29: 2018 population 25 to 29 years old POP18_AGE_30_34: 2018 population 30 to 34 years old POP18_AGE_35_44: 2018 population 35 to 44 years old POP18_AGE_45_54: 2018 population 45 to 54 years old POP18_AGE_55_64: 2018 population 55 to 64 years old POP18_AGE_65_74: 2018 population 65 to 74 years old POP18_AGE_75_84: 2018 population 75 to 84 years old POP18_AGE_85_100: 2018 population 85 years and older POP18_WHITE: 2018 Non-Hispanic White POP18_BLACK: 2018 Non-Hispanic African AmericanPOP18_AIAN: 2018 Non-Hispanic American Indian or Alaska NativePOP18_ASIAN: 2018 Non-Hispanic Asian POP18_HNPI: 2018 Non-Hispanic Hawaiian Native or Pacific IslanderPOP18_HISPANIC: 2018 HispanicPOP18_MALE: 2018 Male POP18_FEMALE: 2018 Female POV18_WHITE: 2018 Non-Hispanic White below 100% Federal Poverty Level POV18_BLACK: 2018 Non-Hispanic African American below 100% Federal Poverty Level POV18_AIAN: 2018 Non-Hispanic American Indian or Alaska Native below 100% Federal Poverty Level POV18_ASIAN: 2018 Non-Hispanic Asian below 100% Federal Poverty Level POV18_HNPI: 2018 Non-Hispanic Hawaiian Native or Pacific Islander below 100% Federal Poverty Level POV18_HISPANIC: 2018 Hispanic below 100% Federal Poverty Level POV18_TOTAL: 2018 Total population below 100% Federal Poverty Level POP18_TOTAL: 2018 Total PopulationAREA_SQMIL: Area in square milePOP18_DENSITY: Population per square mile.POV18_PERCENT: Poverty percentage.How this data created?The tabular data of population by age groups, by ethnic groups and by gender, and the poverty by ethnic groups is attributed to the split tract geography to create this data. Split tract polygon data is created by intersecting 2010 census tract polygons, LA Country City Boundary polygons and Countywide Statistical Areas (CSA) polygon data. The resulting polygon boundary aligned and matched with the legal city boundary whenever possible. Note:1. Population and poverty data estimated as of July 1, 2019. 2. 2010 Census tract and 2020 census tracts are not the same. Similarly, city and community boundary are not the same because boundary is reviewed and updated annually.

  13. N

    Sheffield, AL Population Breakdown By Race (Excluding Ethnicity) Dataset:...

    • neilsberg.com
    csv, json
    Updated Feb 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Sheffield, AL Population Breakdown By Race (Excluding Ethnicity) Dataset: Population Counts and Percentages for 7 Racial Categories as Identified by the US Census Bureau // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/sheffield-al-population-by-race/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 21, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Sheffield, Alabama
    Variables measured
    Asian Population, Black Population, White Population, Some other race Population, Two or more races Population, American Indian and Alaska Native Population, Asian Population as Percent of Total Population, Black Population as Percent of Total Population, White Population as Percent of Total Population, Native Hawaiian and Other Pacific Islander Population, and 4 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the racial categories idetified by the US Census Bureau. It is ensured that the population estimates used in this dataset pertain exclusively to the identified racial categories, and do not rely on any ethnicity classification. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of Sheffield by race. It includes the population of Sheffield across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to understand the population distribution of Sheffield across relevant racial categories.

    Key observations

    The percent distribution of Sheffield population by race (across all racial categories recognized by the U.S. Census Bureau): 67.69% are white, 26.42% are Black or African American, 0.11% are Asian, 0.13% are Native Hawaiian and other Pacific Islander, 1.91% are some other race and 3.75% are multiracial.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Racial categories include:

    • White
    • Black or African American
    • American Indian and Alaska Native
    • Asian
    • Native Hawaiian and Other Pacific Islander
    • Some other race
    • Two or more races (multiracial)

    Variables / Data Columns

    • Race: This column displays the racial categories (excluding ethnicity) for the Sheffield
    • Population: The population of the racial category (excluding ethnicity) in the Sheffield is shown in this column.
    • % of Total Population: This column displays the percentage distribution of each race as a proportion of Sheffield total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Sheffield Population by Race & Ethnicity. You can refer the same here

  14. U.S. poverty rate 2023, by education level

    • statista.com
    Updated Sep 17, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). U.S. poverty rate 2023, by education level [Dataset]. https://www.statista.com/statistics/233162/us-poverty-rate-by-education/
    Explore at:
    Dataset updated
    Sep 17, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    United States
    Description

    In 2023, about four percent of the people with a Bachelor's degree or higher were living below the poverty line in the United States. This is far below the poverty rate of those without a high school diploma, which was 25.1 percent in 2023.

  15. a

    Race and Income

    • chi-phi-nmcdc.opendata.arcgis.com
    Updated Jul 21, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New Mexico Community Data Collaborative (2017). Race and Income [Dataset]. https://chi-phi-nmcdc.opendata.arcgis.com/maps/df83e5686e654b9b93d99577f1154de8
    Explore at:
    Dataset updated
    Jul 21, 2017
    Dataset authored and provided by
    New Mexico Community Data Collaborative
    Area covered
    Description

    This map displays data from the Selected Economic Indicators (DP03) dataset from the 2010 American Community Survey 5-Yr Estimates, U.S. Census Bureau. Data is shown at the level of Census Tract, County, and Small Area (aggregation of Census Tracts developed by the New Mexico Department of Health). Measuring poverty is a topic of much current discussion. See the following links: A Different Way to Measure Poverty - http://www.sanders.senate.gov/imo/media/image/census.jpg"Few topics in American society have more myths and stereotypes surrounding them than poverty, misconceptions that distort both our politics and our domestic policy making."They include the notion that poverty affects a relatively small number of Americans, that the poor are impoverished for years at a time, that most of those in poverty live in inner cities, that too much welfare assistance is provided and that poverty is ultimately a result of not working hard enough. Although pervasive, each assumption is flat-out wrong." -Mark Rank, Professor of Social Welfare at Washington University: http://opinionator.blogs.nytimes.com/2013/11/02/poverty-in-america-is-mainstream/

  16. U.S. poverty rate 1990-2023

    • statista.com
    Updated Sep 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). U.S. poverty rate 1990-2023 [Dataset]. https://www.statista.com/statistics/200463/us-poverty-rate-since-1990/
    Explore at:
    Dataset updated
    Sep 16, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In 2023, the around 11.1 percent of the population was living below the national poverty line in the United States. Poverty in the United StatesAs shown in the statistic above, the poverty rate among all people living in the United States has shifted within the last 15 years. The United Nations Educational, Scientific and Cultural Organization (UNESCO) defines poverty as follows: “Absolute poverty measures poverty in relation to the amount of money necessary to meet basic needs such as food, clothing, and shelter. The concept of absolute poverty is not concerned with broader quality of life issues or with the overall level of inequality in society.” The poverty rate in the United States varies widely across different ethnic groups. American Indians and Alaska Natives are the ethnic group with the most people living in poverty in 2022, with about 25 percent of the population earning an income below the poverty line. In comparison to that, only 8.6 percent of the White (non-Hispanic) population and the Asian population were living below the poverty line in 2022. Children are one of the most poverty endangered population groups in the U.S. between 1990 and 2022. Child poverty peaked in 1993 with 22.7 percent of children living in poverty in that year in the United States. Between 2000 and 2010, the child poverty rate in the United States was increasing every year; however,this rate was down to 15 percent in 2022. The number of people living in poverty in the U.S. varies from state to state. Compared to California, where about 4.44 million people were living in poverty in 2022, the state of Minnesota had about 429,000 people living in poverty.

  17. l

    2022 Population and Poverty at Split Tract

    • data.lacounty.gov
    Updated May 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    County of Los Angeles (2024). 2022 Population and Poverty at Split Tract [Dataset]. https://data.lacounty.gov/datasets/2022-population-and-poverty-at-split-tract
    Explore at:
    Dataset updated
    May 8, 2024
    Dataset authored and provided by
    County of Los Angeles
    Area covered
    Description

    Tabular data of population by age groups, race and gender, and the poverty by race is attached to the split tract geography to create this split tract with population and poverty data. Split tract data is the product of 2020 census tracts split by 2022 incorporated city boundaries and unincorporated community/countywide statistical areas (CSA) boundaries. The census tract boundaries have been altered and aligned where necessary with legal city boundaries and unincorporated areas, including shoreline/coastal areas. Census Tract:Every 10 years the Census Bureau counts the population of the United States as mandated by Constitution. The Census Bureau (https://www.census.gov/) released 2020 geographic boundaries data including census tracts for the analysis and mapping of demographic information across the United States. City Boundary:City Boundary data is the base map information for the County of Los Angeles. These City Boundaries are based on the Los Angeles County Seamless Cadastral Landbase. The Landbase is jointly maintained by the Los Angeles County Assessor and the Los Angeles County Department of Public Works (DPW). This layer represents current city boundaries within Los Angeles County. The DPW provides the most current shapefiles representing city boundaries and city annexations. True, legal boundaries are only determined on the ground by surveyors licensed in the State of California.Countywide Statistical Areas (CSA): The countywide Statistical Area (CSA) was defined to provide a common geographic boundary for reporting departmental statistics for unincorporated areas and incorporated Los Angeles city to the Board of Supervisors. The CSA boundary and CSA names are established by the CIO and the LA County Enterprise GIS group worked with the Los Angeles County Board of Supervisors Unincorporated Area and Field Deputies that reflect as best as possible the general name preferences of residents and historical names of areas. This data is primarily focused on broad statistics and reporting, not mapping of communities. This data is not designed to perfectly represent communities, nor jurisdictional boundaries such as Angeles National Forest. CSA represent board approved geographies comprised of Census block groups split by cities.Data Field:CT20: 2020 Census tractFIP22: 2022 City FIP CodeCITY: City name for incorporated cities and “Unincorporated” for unincorporated areas (as of July 1, 2022) CSA: Countywide Statistical Area (CSA) - Unincorporated area community names and LA City neighborhood names.CT20FIP22CSA: 2020 census tract with 2022 city FIPs for incorporated cities and unincorporated areas and LA neighborhoods. SPA22: 2022 Service Planning Area (SPA) number.SPA_NAME: Service Planning Area name.HD22: 2022 Health District (HD) number: HD_NAME: Health District name.POP22_AGE_0_4: 2022 population 0 to 4 years oldPOP22_AGE_5_9: 2022 population 5 to 9 years old POP22_AGE_10_14: 2022 population 10 to 14 years old POP22_AGE_15_17: 2022 population 15 to 17 years old POP22_AGE_18_19: 2022 population 18 to 19 years old POP22_AGE_20_44: 2022 population 20 to 24 years old POP22_AGE_25_29: 2022 population 25 to 29 years old POP22_AGE_30_34: 2022 population 30 to 34 years old POP22_AGE_35_44: 2022 population 35 to 44 years old POP22_AGE_45_54: 2022 population 45 to 54 years old POP22_AGE_55_64: 2022 population 55 to 64 years old POP22_AGE_65_74: 2022 population 65 to 74 years old POP22_AGE_75_84: 2022 population 75 to 84 years old POP22_AGE_85_100: 2022 population 85 years and older POP22_WHITE: 2022 Non-Hispanic White POP22_BLACK: 2022 Non-Hispanic African AmericanPOP22_AIAN: 2022 Non-Hispanic American Indian or Alaska NativePOP22_ASIAN: 2022 Non-Hispanic Asian POP22_HNPI: 2022 Non-Hispanic Hawaiian Native or Pacific IslanderPOP22_HISPANIC: 2022 HispanicPOP22_MALE: 2022 Male POP22_FEMALE: 2022 Female POV22_WHITE: 2022 Non-Hispanic White below 100% Federal Poverty Level POV22_BLACK: 2022 Non-Hispanic African American below 100% Federal Poverty Level POV22_AIAN: 2022 Non-Hispanic American Indian or Alaska Native below 100% Federal Poverty Level POV22_ASIAN: 2022 Non-Hispanic Asian below 100% Federal Poverty Level POV22_HNPI: 2022 Non-Hispanic Hawaiian Native or Pacific Islander below 100% Federal Poverty Level POV22_HISPANIC: 2022 Hispanic below 100% Federal Poverty Level POV22_TOTAL: 2022 Total population below 100% Federal Poverty Level POP22_TOTAL: 2022 Total PopulationAREA_SQMil: Area in square mile.POP22_DENSITY: Population per square mile.POV22_PERCENT: Poverty rate/percentage.How this data created?The tabular data of population by age groups, by ethnic groups and by gender, and the poverty by ethnic groups is attributed to the split tract geography to create this data. Split tract polygon data is created by intersecting 2020 census tract polygons, LA Country City Boundary polygons and Countywide Statistical Areas (CSA) polygon data. The resulting polygon boundary aligned and matched with the legal city boundary whenever possible. Note:1. Population and poverty data estimated as of July 1, 2022. 2. 2010 Census tract and 2020 census tracts are not the same. Similarly, city and community boundary are not the same because boundary is reviewed and updated annually.

  18. l

    2013 Population and Poverty at Split Tract

    • geohub.lacity.org
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    Updated May 7, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    County of Los Angeles (2024). 2013 Population and Poverty at Split Tract [Dataset]. https://geohub.lacity.org/maps/lacounty::2013-population-and-poverty-at-split-tract/about
    Explore at:
    Dataset updated
    May 7, 2024
    Dataset authored and provided by
    County of Los Angeles
    Area covered
    Description

    Tabular data of population by age groups, race and gender, and the poverty by race is attached to the split tract geography to create this split tract with population and poverty data. Split tract data is the product of 2010 census tracts split by 2013 incorporated city boundaries and unincorporated community/countywide statistical areas (CSA) boundaries. The census tract boundaries have been altered and aligned where necessary with legal city boundaries and unincorporated areas, including shoreline/coastal areas. Census Tract:Every 10 years the Census Bureau counts the population of the United States as mandated by Constitution. The Census Bureau (https://www.census.gov/) released 2010 geographic boundaries data including census tracts for the analysis and mapping of demographic information across the United States. City Boundary:City Boundary data is the base map information for the County of Los Angeles. These City Boundaries are based on the Los Angeles County Seamless Cadastral Landbase. The Landbase is jointly maintained by the Los Angeles County Assessor and the Los Angeles County Department of Public Works (DPW). This layer represents current city boundaries within Los Angeles County. The DPW provides the most current shapefiles representing city boundaries and city annexations. True, legal boundaries are only determined on the ground by surveyors licensed in the State of California.Countywide Statistical Areas (CSA): The countywide Statistical Area (CSA) was defined to provide a common geographic boundary for reporting departmental statistics for unincorporated areas and incorporated Los Angeles city to the Board of Supervisors. The CSA boundary and CSA names are established by the CIO and the LA County Enterprise GIS group worked with the Los Angeles County Board of Supervisors Unincorporated Area and Field Deputies that reflect as best as possible the general name preferences of residents and historical names of areas. This data is primarily focused on broad statistics and reporting, not mapping of communities. This data is not designed to perfectly represent communities, nor jurisdictional boundaries such as Angeles National Forest. CSA represent board approved geographies comprised of Census block groups split by cities.Data Field:CT10: 2010 Census tractFIP13: 2013 City FIP CodeCITY: City name for incorporated cities and “Unincorporated” for unincorporated areas (as of July 1, 2013) CT10FIP13: 2010 census tract with 2013 city FIPs for incorporated cities and unincorporated areas. SPA12: 2012 Service Planning Area (SPA) number.SPA_NAME: Service Planning Area name.HD12: 2012 Health District (HD) number: HD_NAME: Health District name.POP13_AGE_0_4: 2013 population 0 to 4 years oldPOP13_AGE_5_9: 2013 population 5 to 9 years old POP13_AGE_10_14: 2013 population 10 to 14 years old POP13_AGE_15_17: 2013 population 15 to 17 years old POP13_AGE_18_19: 2013 population 18 to 19 years old POP13_AGE_20_44: 2013 population 20 to 24 years old POP13_AGE_25_29: 2013 population 25 to 29 years old POP13_AGE_30_34: 2013 population 30 to 34 years old POP13_AGE_35_44: 2013 population 35 to 44 years old POP13_AGE_45_54: 2013 population 45 to 54 years old POP13_AGE_55_64: 2013 population 55 to 64 years old POP13_AGE_65_74: 2013 population 65 to 74 years old POP13_AGE_75_84: 2013 population 75 to 84 years old POP13_AGE_85_100: 2013 population 85 years and older POP13_WHITE: 2013 Non-Hispanic White POP13_BLACK: 2013 Non-Hispanic African AmericanPOP13_AIAN: 2013 Non-Hispanic American Indian or Alaska NativePOP13_ASIAN: 2013 Non-Hispanic Asian POP13_HNPI: 2013 Non-Hispanic Hawaiian Native or Pacific IslanderPOP13_HISPANIC: 2013 HispanicPOP13_MALE: 2013 Male POP13_FEMALE: 2013 Female POV13_WHITE: 2013 Non-Hispanic White below 100% Federal Poverty Level POV13_BLACK: 2013 Non-Hispanic African American below 100% Federal Poverty Level POV13_AIAN: 2013 Non-Hispanic American Indian or Alaska Native below 100% Federal Poverty Level POV13_ASIAN: 2013 Non-Hispanic Asian below 100% Federal Poverty Level POV13_HNPI: 2013 Non-Hispanic Hawaiian Native or Pacific Islander below 100% Federal Poverty Level POV13_HISPANIC: 2013 Hispanic below 100% Federal Poverty Level POV13_TOTAL: 2013 Total population below 100% Federal Poverty Level POP13_TOTAL: 2013 Total PopulationAREA_SQMIL: Area in square milePOP13_DENSITY: Population per square mile.POV13_PERCENT: Poverty rate/percentage.How this data created?Split tract polygon data is created by intersecting 2010 census tract polygons, LA Country City Boundary polygons and Countywide Statistical Areas (CSA) polygon data. The resulting polygon boundary aligned and matched with the legal city boundary whenever possible. Population by age, race/ethnicity and gender are extracted from census data at blocks, and allocated to each area of split tracts by aggregating block-based population count. The poverty population is allocated to split tracts according to population proportion. The tabular data of population by age groups, by ethnic groups and by gender, and the poverty by ethnic groups is then attached to the split tract geography to create this data.Note:1. Population and poverty data estimated as of July 1, 2013. 2. 2010 Census tract and 2020 census tracts are not the same. Similarly, city and community boundary are not the same because boundary is reviewed and updated annually.

  19. d

    Poverty Rate Time Series

    • data.ore.dc.gov
    Updated Aug 28, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Washington, DC (2024). Poverty Rate Time Series [Dataset]. https://data.ore.dc.gov/datasets/poverty-rate-time-series
    Explore at:
    Dataset updated
    Aug 28, 2024
    Dataset authored and provided by
    City of Washington, DC
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    2020 data excluded because the U.S. Census Bureau did not release 2020 ACS 1-year estimates due to COVID-19. Some racial and ethnic categories are suppressed to avoid misleading estimates when the relative standard error exceeds 30%.

    Data Source: American Community Survey (ACS) 1-Year Estimates

    Why This Matters

    Poverty threatens the overall well-being of individuals and families, limiting access to stable housing, healthy foods, health care, and educational and employment opportunities, among other basic needs.Poverty is associated with a higher risk of adverse health outcomes, including chronic physical and mental illness, lower life expectancy, developmental delays, and others.

    Racist policies and practices have contributed to racial economic inequities. Nationally, Black, Indigenous, and people of color experience poverty at higher rates than white Americans, on average.

    The District's Response

    Boosting assistance programs that provide temporary cash and health benefits to help low-income residents meet their basic needs, including Medicaid, TANF For District Families, SNAP, etc.

    Housing assistance and employment and career training programs to support resident’s housing and employment security. These include the Emergency Rental Assistance Program, Permanent Supportive Housing vouchers, Career MAP, the DC Infrastructure Academy, among other programs and services.

    Creation of the DC Commission on Poverty to study poverty issues, evaluate poverty reduction initiatives, and make recommendations to the Mayor and the Council.

  20. a

    Poverty, Income, Education, Race, and Life Expectancy

    • chi-phi-nmcdc.opendata.arcgis.com
    Updated Jan 25, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New Mexico Community Data Collaborative (2015). Poverty, Income, Education, Race, and Life Expectancy [Dataset]. https://chi-phi-nmcdc.opendata.arcgis.com/datasets/poverty-income-education-race-and-life-expectancy
    Explore at:
    Dataset updated
    Jan 25, 2015
    Dataset authored and provided by
    New Mexico Community Data Collaborative
    Area covered
    Description

    This map displays data from the Selected Social and Economic Indicators dataset (tables DP02 and DP03) from the American Community Survey 5-Yr Estimates, U.S. Census Bureau. Economic and education measures are from 2010, while race/ethnicity estimates are from 2011, these data are presented at the census tract level. Life expectancy is presented at the small area level, as defined by NMDOH, and is based on birth/mortality records for the period 2007-2011.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). U.S. poverty rate in the United States 2023, by race and ethnicity [Dataset]. https://www.statista.com/statistics/200476/us-poverty-rate-by-ethnic-group/
Organization logo

U.S. poverty rate in the United States 2023, by race and ethnicity

Explore at:
32 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jun 25, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
2023
Area covered
United States
Description

In 2023, **** percent of Black people living in the United States were living below the poverty line, compared to *** percent of white people. That year, the total poverty rate in the U.S. across all races and ethnicities was **** percent. Poverty in the United States Single people in the United States making less than ****** U.S. dollars a year and families of four making less than ****** U.S. dollars a year are considered to be below the poverty line. Women and children are more likely to suffer from poverty, due to women staying home more often than men to take care of children, and women suffering from the gender wage gap. Not only are women and children more likely to be affected, racial minorities are as well due to the discrimination they face. Poverty data Despite being one of the wealthiest nations in the world, the United States had the third highest poverty rate out of all OECD countries in 2019. However, the United States' poverty rate has been fluctuating since 1990, but has been decreasing since 2014. The average median household income in the U.S. has remained somewhat consistent since 1990, but has recently increased since 2014 until a slight decrease in 2020, potentially due to the pandemic. The state that had the highest number of people living below the poverty line in 2020 was California.

Search
Clear search
Close search
Google apps
Main menu