100+ datasets found
  1. US Race and Ethnicity Codes

    • johnsnowlabs.com
    csv
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    John Snow Labs, US Race and Ethnicity Codes [Dataset]. https://www.johnsnowlabs.com/marketplace/us-race-and-ethnicity-codes/
    Explore at:
    csvAvailable download formats
    Dataset authored and provided by
    John Snow Labs
    Area covered
    United States, N/A
    Description

    This dataset contains Race/Ethinicty codes. It is used to enter in patient demographics information.

  2. d

    Race and Ethnicity - ACS 2018-2022 - Tempe Zip Code

    • catalog.data.gov
    • data.tempe.gov
    • +6more
    Updated May 10, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Tempe (2025). Race and Ethnicity - ACS 2018-2022 - Tempe Zip Code [Dataset]. https://catalog.data.gov/dataset/race-and-ethnicity-acs-2018-2022-tempe-zip-code
    Explore at:
    Dataset updated
    May 10, 2025
    Dataset provided by
    City of Tempe
    Area covered
    Tempe
    Description

    This layer shows the population broken down by race and Hispanic origin. Data is from US Census American Community Survey (ACS) 5-year estimates.To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right (in ArcGIS Online). A ‘Null’ entry in the estimate indicates that data for this geographic area cannot be displayed because the number of sample cases is too small (per the U.S. Census).Vintage: 2018-2022ACS Table(s): B03002 (Not all lines of this ACS table are available in this feature layer.)Data downloaded from: Census Bureau's API for American Community Survey Data Preparation: Data table was downloaded and joined with Zip Code boundaries in the City of Tempe.Date of Census update: December 15, 2023National Figures: data.census.gov

  3. RACE ETHNICITY Persons by Race BGs 2000

    • catalog.data.gov
    • gstore.unm.edu
    • +1more
    Updated Dec 2, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Commerce, Bureau of the Census, Geography Division (Point of Contact) (2020). RACE ETHNICITY Persons by Race BGs 2000 [Dataset]. https://catalog.data.gov/dataset/race-ethnicity-persons-by-race-bgs-2000
    Explore at:
    Dataset updated
    Dec 2, 2020
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Description

    TIGER, TIGER/Line, and Census TIGER are registered trademarks of the Bureau of the Census. The Redistricting Census 2000 TIGER/Line files are an extract of selected geographic and cartographic information from the Census TIGER data base. The geographic coverage for a single TIGER/Line file is a county or statistical equivalent entity, with the coverage area based on January 1, 2000 legal boundaries. A complete set of Redistricting Census 2000 TIGER/Line files includes all counties and statistically equivalent entities in the United States and Puerto Rico. The Redistricting Census 2000 TIGER/Line files will not include files for the Island Areas. The Census TIGER data base represents a seamless national file with no overlaps or gaps between parts. However, each county-based TIGER/Line file is designed to stand alone as an independent data set or the files can be combined to cover the whole Nation. The Redistricting Census 2000 TIGER/Line files consist of line segments representing physical features and governmental and statistical boundaries. The Redistricting Census 2000 TIGER/Line files do NOT contain the ZIP Code Tabulation Areas (ZCTAs) and the address ranges are of approximately the same vintage as those appearing in the 1999 TIGER/Line files. That is, the Census Bureau is producing the Redistricting Census 2000 TIGER/Line files in advance of the computer processing that will ensure that the address ranges in the TIGER/Line files agree with the final Master Address File (MAF) used for tabulating Census 2000. The files contain information distributed over a series of record types for the spatial objects of a county. There are 17 record types, including the basic data record, the shape coordinate points, and geographic codes that can be used with appropriate software to prepare maps. Other geographic information contained in the files includes attributes such as feature identifiers/census feature class codes (CFCC) used to differentiate feature types, address ranges and ZIP Codes, codes for legal and statistical entities, latitude/longitude coordinates of linear and point features, landmark point features, area landmarks, key geographic features, and area boundaries. The Redistricting Census 2000 TIGER/Line data dictionary contains a complete list of all the fields in the 17 record types.

  4. a

    Racial Ethnic Distribution GIS

    • hub.arcgis.com
    • data-sccphd.opendata.arcgis.com
    Updated Aug 24, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Santa Clara County Public Health (2022). Racial Ethnic Distribution GIS [Dataset]. https://hub.arcgis.com/maps/sccphd::racial-ethnic-distribution-gis/about
    Explore at:
    Dataset updated
    Aug 24, 2022
    Dataset authored and provided by
    Santa Clara County Public Health
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Table contains count and percent distribution of county residents by racial/ethnic categories. Data are summarized at county, city, zip code and census tract of residence. Data are presented for zip codes (ZCTAs) fully within the county. People of color category includes people who identify as Latino, African American, American Indian/Alaska Native, Asian, Pacific Islander, or multi-race. Source: U.S. Census Bureau, 2016-2020 American Community Survey 5-year estimates, Table B03002; data accessed on April 11, 2022 from https://api.census.gov. The 2020 Decennial geographies are used for data summarization.METADATA:notes (String): Lists table title, notes, sourcesgeolevel (String): Level of geographyGEOID (String): Geography IDNAME (String): Name of geographyt_pop (Numeric): Total populationAfrican_American_NH (Numeric): Number of non-Hispanic African Americansp_African_American_NH (Numeric): Percent of non-Hispanic African AmericansAsian_NH (Numeric): Number of non-Hispanic Asiansp_Asian_NH (Numeric): Percent of non-Hispanic AsiansLatino (Numeric): Number of Latinosp_Latino (Numeric): Percent of LatinosWhite_NH (Numeric): Number of non-Hispanic Whitep_White_NH (Numeric): Percent of non-Hispanic Whitepeople_of_color2 (Numeric): Number of people of colorp_poc2 (Numeric): Percent of people of color

  5. d

    Race and Ethnicity - ACS 2016-2020 - Tempe Zip Codes

    • catalog.data.gov
    • data.tempe.gov
    • +5more
    Updated Apr 5, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Tempe (2025). Race and Ethnicity - ACS 2016-2020 - Tempe Zip Codes [Dataset]. https://catalog.data.gov/dataset/race-and-ethnicity-acs-2016-2020-tempe-zip-codes-47b0a
    Explore at:
    Dataset updated
    Apr 5, 2025
    Dataset provided by
    City of Tempe
    Area covered
    Tempe
    Description

    This layer shows population broken down by race and Hispanic origin. Data is from US Census American Community Survey (ACS) 5-year estimates.To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right (in ArcGIS Online). A ‘Null’ entry in the estimate indicates that data for this geographic area cannot be displayed because the number of sample cases is too small (per the U.S. Census).Vintage: 2016-2020ACS Table(s): B03002 (Not all lines of this ACS table are available in this feature layer.)Data downloaded from: Census Bureau's API for American Community Survey Data Preparation: Data table downloaded and joined with Zip Code boundaries in the City of Tempe.Date of Census update: March 17, 2022National Figures: data.census.gov

  6. Mapping detailed SNOMED ethnicity codes to harmonised Census 2021 ethnic...

    • ons.gov.uk
    • cy.ons.gov.uk
    xlsx
    Updated Nov 6, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2023). Mapping detailed SNOMED ethnicity codes to harmonised Census 2021 ethnic categories, England [Dataset]. https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/healthinequalities/datasets/mappingdetailedsnomedethnicitycodestoharmonisedcensus2021ethniccategoriesengland
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Nov 6, 2023
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Area covered
    England
    Description

    Comparing NHS England SNOMED code mapping with how individuals self-identified their ethnicity in Census 2021.

  7. a

    Race/Ethnicity (by Neighborhood Planning Unit) 2017

    • opendata.atlantaregional.com
    Updated Jun 21, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2019). Race/Ethnicity (by Neighborhood Planning Unit) 2017 [Dataset]. https://opendata.atlantaregional.com/datasets/b2e62b485b2346fab495136d574e5cec
    Explore at:
    Dataset updated
    Jun 21, 2019
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This layer was developed by the Research & Analytics Group of the Atlanta Regional Commission, using data from the U.S. Census Bureau’s American Community Survey 5-year estimates for 2013-2017, to show population by race/ethnicity and change data by Neighborhood Planning Unit in the Atlanta region. The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2013-2017). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website. Naming conventions: Prefixes:NoneCountpPercentrRatemMedianaMean (average)tAggregate (total)chChange in absolute terms (value in t2 - value in t1)pchPercent change ((value in t2 - value in t1) / value in t1)chpChange in percent (percent in t2 - percent in t1)Suffixes:NoneChange over two periods_eEstimate from most recent ACS_mMargin of Error from most recent ACS_00Decennial 2000 Attributes: SumLevelSummary level of geographic unit (e.g., County, Tract, NSA, NPU, DSNI, SuperDistrict, etc)GEOIDCensus tract Federal Information Processing Series (FIPS) code NAMEName of geographic unitPlanning_RegionPlanning region designation for ARC purposesAcresTotal area within the tract (in acres)SqMiTotal area within the tract (in square miles)CountyCounty identifier (combination of Federal Information Processing Series (FIPS) codes for state and county)CountyNameCounty NameTotPop_e# Total population, 2017TotPop_m# Total population, 2017 (MOE)Hisp_e# Hispanic or Latino (of any race), 2017Hisp_m# Hispanic or Latino (of any race), 2017 (MOE)pHisp_e% Hispanic or Latino (of any race), 2017pHisp_m% Hispanic or Latino (of any race), 2017 (MOE)Not_Hisp_e# Not Hispanic or Latino, 2017Not_Hisp_m# Not Hispanic or Latino, 2017 (MOE)pNot_Hisp_e% Not Hispanic or Latino, 2017pNot_Hisp_m% Not Hispanic or Latino, 2017 (MOE)NHWhite_e# Not Hispanic, White alone, 2017NHWhite_m# Not Hispanic, White alone, 2017 (MOE)pNHWhite_e% Not Hispanic, White alone, 2017pNHWhite_m% Not Hispanic, White alone, 2017 (MOE)NHBlack_e# Not Hispanic, Black or African American alone, 2017NHBlack_m# Not Hispanic, Black or African American alone, 2017 (MOE)pNHBlack_e% Not Hispanic, Black or African American alone, 2017pNHBlack_m% Not Hispanic, Black or African American alone, 2017 (MOE)NH_AmInd_e# Not Hispanic, American Indian and Alaska Native alone, 2017NH_AmInd_m# Not Hispanic, American Indian and Alaska Native alone, 2017 (MOE)pNH_AmInd_e% Not Hispanic, American Indian and Alaska Native alone, 2017pNH_AmInd_m% Not Hispanic, American Indian and Alaska Native alone, 2017 (MOE)NH_Asian_e# Not Hispanic, Asian alone, 2017NH_Asian_m# Not Hispanic, Asian alone, 2017 (MOE)pNH_Asian_e% Not Hispanic, Asian alone, 2017pNH_Asian_m% Not Hispanic, Asian alone, 2017 (MOE)NH_PacIsl_e# Not Hispanic, Native Hawaiian and Other Pacific Islander alone, 2017NH_PacIsl_m# Not Hispanic, Native Hawaiian and Other Pacific Islander alone, 2017 (MOE)pNH_PacIsl_e% Not Hispanic, Native Hawaiian and Other Pacific Islander alone, 2017pNH_PacIsl_m% Not Hispanic, Native Hawaiian and Other Pacific Islander alone, 2017 (MOE)NH_OthRace_e# Not Hispanic, some other race alone, 2017NH_OthRace_m# Not Hispanic, some other race alone, 2017 (MOE)pNH_OthRace_e% Not Hispanic, some other race alone, 2017pNH_OthRace_m% Not Hispanic, some other race alone, 2017 (MOE)NH_TwoRace_e# Not Hispanic, two or more races, 2017NH_TwoRace_m# Not Hispanic, two or more races, 2017 (MOE)pNH_TwoRace_e% Not Hispanic, two or more races, 2017pNH_TwoRace_m% Not Hispanic, two or more races, 2017 (MOE)NH_AsianPI_e# Non-Hispanic Asian or Pacific Islander, 2017NH_AsianPI_m# Non-Hispanic Asian or Pacific Islander, 2017 (MOE)pNH_AsianPI_e% Non-Hispanic Asian or Pacific Islander, 2017pNH_AsianPI_m% Non-Hispanic Asian or Pacific Islander, 2017 (MOE)NH_Other_e# Non-Hispanic other (Native American, other one race, two or more races), 2017NH_Other_m# Non-Hispanic other (Native American, other one race, two or more races), 2017 (MOE)pNH_Other_e% Non-Hispanic other (Native American, other one race, two or more races), 2017pNH_Other_m% Non-Hispanic other (Native American, other one race, two or more races), 2017 (MOE)last_edited_dateLast date the feature was edited by ARC Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2013-2017 For additional information, please visit the Census ACS website.

  8. o

    Data and code for: Sundown Towns and Racial Exclusion: The Southern White...

    • openicpsr.org
    Updated Mar 7, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Samuel Bazzi; Andreas Ferrara; Martin Fiszbein; Thomas Pearson; Patrick A. Testa (2022). Data and code for: Sundown Towns and Racial Exclusion: The Southern White Diaspora and the “Great Retreat” [Dataset]. http://doi.org/10.3886/E164162V1
    Explore at:
    Dataset updated
    Mar 7, 2022
    Dataset provided by
    American Economic Association
    Authors
    Samuel Bazzi; Andreas Ferrara; Martin Fiszbein; Thomas Pearson; Patrick A. Testa
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    1880 - 1940
    Area covered
    United States
    Description

    Abstract: "This paper studies the rise of sundown towns - places where Blacks and other minorities were excluded after dark - outside the South after 1890. We provide a new dataset on the timing of sundown town establishment using full count Census records. Using a shift-share instrumental variables approach, we show that the presence of Southern whites is causally related to the appearance of sundown towns, with lynchings and the establishment of KKK chapters as plausible mechanisms for racial exclusion."This repository contains the replications files for "Sundown Towns and Racial Exclusion: The Southern White Diaspora and the “Great Retreat”"

  9. ARCHIVED: COVID-19 Testing by Race/Ethnicity Over Time

    • healthdata.gov
    • data.sfgov.org
    • +1more
    application/rdfxml +5
    Updated Apr 8, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.sfgov.org (2025). ARCHIVED: COVID-19 Testing by Race/Ethnicity Over Time [Dataset]. https://healthdata.gov/dataset/ARCHIVED-COVID-19-Testing-by-Race-Ethnicity-Over-T/ntmc-mxb8
    Explore at:
    tsv, csv, json, application/rssxml, application/rdfxml, xmlAvailable download formats
    Dataset updated
    Apr 8, 2025
    Dataset provided by
    data.sfgov.org
    Description

    A. SUMMARY This dataset includes San Francisco COVID-19 tests by race/ethnicity and by date. This dataset represents the daily count of tests collected, and the breakdown of test results (positive, negative, or indeterminate). Tests in this dataset include all those collected from persons who listed San Francisco as their home address at the time of testing. It also includes tests that were collected by San Francisco providers for persons who were missing a locating address. This dataset does not include tests for residents listing a locating address outside of San Francisco, even if they were tested in San Francisco.

    The data were de-duplicated by individual and date, so if a person gets tested multiple times on different dates, all tests will be included in this dataset (on the day each test was collected). If a person tested multiple times on the same date, only one test is included from that date. When there are multiple tests on the same date, a positive result, if one exists, will always be selected as the record for the person. If a PCR and antigen test are taken on the same day, the PCR test will supersede. If a person tests multiple times on the same day and the results are all the same (e.g. all negative or all positive) then the first test done is selected as the record for the person.

    The total number of positive test results is not equal to the total number of COVID-19 cases in San Francisco.

    When a person gets tested for COVID-19, they may be asked to report information about themselves. One piece of information that might be requested is a person's race and ethnicity. These data are often incomplete in the laboratory and provider reports of the test results sent to the health department. The data can be missing or incomplete for several possible reasons:

    • The person was not asked about their race and ethnicity.
    • The person was asked, but refused to answer.
    • The person answered, but the testing provider did not include the person's answers in the reports.
    • The testing provider reported the person's answers in a format that could not be used by the health department.
    

    For any of these reasons, a person's race/ethnicity will be recorded in the dataset as “Unknown.”

    B. NOTE ON RACE/ETHNICITY The different values for Race/Ethnicity in this dataset are "Asian;" "Black or African American;" "Hispanic or Latino/a, all races;" "American Indian or Alaska Native;" "Native Hawaiian or Other Pacific Islander;" "White;" "Multi-racial;" "Other;" and “Unknown."

    The Race/Ethnicity categorization increases data clarity by emulating the methodology used by the U.S. Census in the American Community Survey. Specifically, persons who identify as "Asian," "Black or African American," "American Indian or Alaska Native," "Native Hawaiian or Other Pacific Islander," "White," "Multi-racial," or "Other" do NOT include any person who identified as Hispanic/Latino at any time in their testing reports that either (1) identified them as SF residents or (2) as someone who tested without a locating address by an SF provider. All persons across all races who identify as Hispanic/Latino are recorded as “"Hispanic or Latino/a, all races." This categorization increases data accuracy by correcting the way “Other” persons were counted. Previously, when a person reported “Other” for Race/Ethnicity, they would be recorded “Unknown.” Under the new categorization, they are counted as “Other” and are distinct from “Unknown.”

    If a person records their race/ethnicity as “Asian,” “Black or African American,” “American Indian or Alaska Native,” “Native Hawaiian or Other Pacific Islander,” “White,” or “Other” for their first COVID-19 test, then this data will not change—even if a different race/ethnicity is reported for this person for any future COVID-19 test. There are two exceptions to this rule. The first exception is if a person’s race/ethnicity value i

  10. Race/Ethnicity of Newly Medi-Cal Eligible Individuals

    • data.chhs.ca.gov
    • data.ca.gov
    • +2more
    csv, zip
    Updated Mar 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Health Care Services (2025). Race/Ethnicity of Newly Medi-Cal Eligible Individuals [Dataset]. https://data.chhs.ca.gov/dataset/race-ethnicity-of-newly-medi-cal-eligible-individuals
    Explore at:
    zip, csv(24654)Available download formats
    Dataset updated
    Mar 19, 2025
    Dataset provided by
    California Department of Health Care Serviceshttp://www.dhcs.ca.gov/
    Authors
    Department of Health Care Services
    Description

    This dataset includes race/ethnicity of newly Medi-Cal eligible individuals who identified their race/ethnicity as Hispanic, White, Other Asian or Pacific Islander, Black, Chinese, Filipino, Vietnamese, Asian Indian, Korean, Alaskan Native or American Indian, Japanese, Cambodian, Samoan, Laotian, Hawaiian, Guamanian, Amerasian, or Other, by reporting period. The race/ethnicity data is from the Medi-Cal Eligibility Data System (MEDS) and includes eligible individuals without prior Medi-Cal Eligibility. This dataset is part of the public reporting requirements set forth in California Welfare and Institutions Code 14102.5.

  11. o

    Quantifying Racial Discrimination in the 1944 G.I. Bill: Replication code

    • openicpsr.org
    Updated Jul 28, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Maya Eden (2023). Quantifying Racial Discrimination in the 1944 G.I. Bill: Replication code [Dataset]. http://doi.org/10.3886/E193007V2
    Explore at:
    Dataset updated
    Jul 28, 2023
    Dataset provided by
    Brandeis
    Authors
    Maya Eden
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Did the G.I. bill discriminate against Black World War II veterans? Using a variety of historical sources, I estimate the average amounts of G.I. benefits received by Black and white World War II veterans, as well as their cash-equivalents. These estimates suggest that Black veterans received more in benefits than white veterans, but that their cash-equivalents were lower. However, these estimates are associated with significant uncertainty.

  12. o

    Code for Marriage Penalties and Bonuses by Race and Ethnicity: An...

    • openicpsr.org
    Updated Apr 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Emily Lin; Rachel Costello; Portia DeFilippes; Robin Fisher; Ben Klemens (2024). Code for Marriage Penalties and Bonuses by Race and Ethnicity: An Application of Race and Ethnicity Imputation [Dataset]. http://doi.org/10.3886/E201462V1
    Explore at:
    Dataset updated
    Apr 26, 2024
    Dataset provided by
    American Economic Association
    Authors
    Emily Lin; Rachel Costello; Portia DeFilippes; Robin Fisher; Ben Klemens
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    We use the race and Hispanic origin information imputed to the Treasury’s tax model to examine group differences in the marriage penalty and bonus. The microsimulation results show that, for married couples in higher income categories, the marriage penalty rate is higher, and the marriage bonus rate is lower, for Black and Hispanic couples than for White couples. In contrast, White couples in several lower income categories face a higher penalty rate and a lower bonus rate. These Black-White differences in marriage penalty rates are consistent with the patterns of spousal income splits in the underlying data. Unlike survey data, the tax model does not suggest a higher prevalence of two equal-earning spouses among Black families throughout the entire range of the income distribution. Because of the different conclusions that would be drawn about group differences in the marriage penalty and bonus outcomes, further investigation regarding the data differences should be pursued.

  13. u

    Data from: Replication Code and Data for "New OMB's race and ethnicity...

    • knowledge.uchicago.edu
    Updated Dec 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Flores, René D. (2024). Replication Code and Data for "New OMB's race and ethnicity standards will affect how Americans self-identify" [Dataset]. http://doi.org/10.7910/DVN/NLDF3N
    Explore at:
    Dataset updated
    Dec 16, 2024
    Dataset provided by
    Harvard Dataverse
    Authors
    Flores, René D.
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    United States
    Description

    Replication Code and Data to recreate tables and graphs from "New OMB's race and ethnicity standards will affect how Americans self-identify." (2024-10-04)

  14. a

    Race/Ethnicity (by Zip Code) 2019

    • opendata.atlantaregional.com
    Updated Feb 25, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2021). Race/Ethnicity (by Zip Code) 2019 [Dataset]. https://opendata.atlantaregional.com/datasets/race-ethnicity-by-zip-code-2019
    Explore at:
    Dataset updated
    Feb 25, 2021
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This dataset was developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau.For a deep dive into the data model including every specific metric, see the Infrastructure Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics.Naming conventions:Prefixes: None Countp Percentr Ratem Mediana Mean (average)t Aggregate (total)ch Change in absolute terms (value in t2 - value in t1)pch Percent change ((value in t2 - value in t1) / value in t1)chp Change in percent (percent in t2 - percent in t1)s Significance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computed Suffixes: _e19 Estimate from 2014-19 ACS_m19 Margin of Error from 2014-19 ACS_00_v19 Decennial 2000, re-estimated to 2019 geography_00_19 Change, 2000-19_e10_v19 2006-10 ACS, re-estimated to 2019 geography_m10_v19 Margin of Error from 2006-10 ACS, re-estimated to 2019 geography_e10_19 Change, 2010-19The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2015-2019). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2015-2019Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the manifest: https://www.arcgis.com/sharing/rest/content/items/3d489c725bb24f52a987b302147c46ee/data

  15. f

    ACS 2020 Race Ethnicity

    • gisdata.fultoncountyga.gov
    Updated Apr 20, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2022). ACS 2020 Race Ethnicity [Dataset]. https://gisdata.fultoncountyga.gov/maps/a2a9562f602e419e9a52bd9c6297b26c
    Explore at:
    Dataset updated
    Apr 20, 2022
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This dataset was developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau across all standard and custom geographies at statewide summary level where applicable.

    For a deep dive into the data model including every specific metric, see the ACS 2016-2020 Data Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics.

    Prefixes:

    None

    Count

    p

    Percent

    r

    Rate

    m

    Median

    a

    Mean (average)

    t

    Aggregate (total)

    ch

    Change in absolute terms (value in t2 - value in t1)

    pch

    Percent change ((value in t2 - value in t1) / value in t1)

    chp

    Change in percent (percent in t2 - percent in t1)

    s

    Significance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computed

    Suffixes:

    _e20

    Estimate from 2016-20 ACS

    _m20

    Margin of Error from 2016-20 ACS

    _e10

    2006-10 ACS, re-estimated to 2020 geography

    _m10

    Margin of Error from 2006-10 ACS, re-estimated to 2020 geography

    _e10_20

    Change, 2010-20 (holding constant at 2020 geography)

    Geographies

    AAA = Area Agency on Aging (12 geographic units formed from counties providing statewide coverage)

    ARWDB7 = Atlanta Regional Workforce Development Board (7 counties merged to a single geographic unit)

    Census Tracts (statewide)

    CFGA23 = Community Foundation for Greater Atlanta (23 counties merged to a single geographic unit)

    City (statewide)

    City of Atlanta Council Districts (City of Atlanta)

    City of Atlanta Neighborhood Planning Unit (City of Atlanta)

    City of Atlanta Neighborhood Planning Unit STV (subarea of City of Atlanta)

    City of Atlanta Neighborhood Statistical Areas (City of Atlanta)

    County (statewide)

    Georgia House (statewide)

    Georgia Senate (statewide)

    MetroWater15 = Atlanta Metropolitan Water District (15 counties merged to a single geographic unit)

    Regional Commissions (statewide)

    State of Georgia (statewide)

    Superdistrict (ARC region)

    US Congress (statewide)

    UWGA13 = United Way of Greater Atlanta (13 counties merged to a single geographic unit)

    WFF = Westside Future Fund (subarea of City of Atlanta)

    ZIP Code Tabulation Areas (statewide)

    The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent.

    The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2016-2020). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available.

    For further explanation of ACS estimates and margin of error, visit Census ACS website.

    Source: U.S. Census Bureau, Atlanta Regional Commission Date: 2016-2020 Data License: Creative Commons Attribution 4.0 International (CC by 4.0)

    Link to the manifest: https://opendata.atlantaregional.com/documents/GARC::acs-2020-data-manifest/about

  16. o

    Code for: Racial Disparities in the US Mortgage Market

    • openicpsr.org
    Updated Apr 27, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Agustin Hurtado; Jung Sakong (2024). Code for: Racial Disparities in the US Mortgage Market [Dataset]. http://doi.org/10.3886/E201481V1
    Explore at:
    Dataset updated
    Apr 27, 2024
    Dataset provided by
    American Economic Association
    Authors
    Agustin Hurtado; Jung Sakong
    License

    https://opensource.org/licenses/BSD-3-Clausehttps://opensource.org/licenses/BSD-3-Clause

    Description

    We study racial disparities in the U.S. mortgage market. Using new data from Hurtado and Sakong (2024), we present three findings. First, we document access disparities between minority and otherwise-identical White borrowers even within the same bank and loan officer. In contrast, cost disparities are nearly zero. Second, the use of automated underwriting algorithms is associated with smaller access disparities but slightly larger cost disparities. Third, individual factors such as loan officers’ race and whether borrowers’ race is observed at application do not seem to matter much.

  17. 2018 American Community Survey: EEOALL1R | EEO 1R. DETAILED CENSUS...

    • data.census.gov
    Updated Nov 16, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ACS (2023). 2018 American Community Survey: EEOALL1R | EEO 1R. DETAILED CENSUS OCCUPATION BY SEX AND RACE/ETHNICITY FOR RESIDENCE GEOGRAPHY (ACS 5-Year Estimates Equal Employment Opportunity) [Dataset]. https://data.census.gov/cedsci/table?q=eeo
    Explore at:
    Dataset updated
    Nov 16, 2023
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ACS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2018
    Description

    The EEO Tabulation is sponsored by four Federal agencies consisting of the Equal Employment Opportunity Commission (EEOC), the Employment Litigation Section of the Civil Rights Division at the Department of Justice (DOJ), the Office of Federal Contract Compliance Programs (OFCCP), and the Office of Personnel Management (OPM), and developed in conjunction with the U.S. Census Bureau..Supporting documentation on code lists and subject definitions can be found on the Equal Employment Opportunity Tabulation website. https://www.census.gov/topics/employment/equal-employment-opportunity-tabulation.html.Source: U.S. Census Bureau, 2014-2018 American Community Survey.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see https://www.census.gov/programs-surveys/acs/technical-documentation.html The effect of nonsampling error is not represented in these tables)..The U.S. Census Bureau collects race data in accordance with guidelines provided by the U.S. Office of Management and Budget (OMB). Except for the total, all race and ethnicity categories are mutually exclusive. "Black" refers to Black or African American; "AIAN" refers to American Indian and Alaska Native; and "NHPI" refers to Native Hawaiian and Other Pacific Islander. "Balance of Not Hispanic or Latino" includes the balance of non-Hispanic individuals who reported multiple races or reported Some Other Race alone. For more information on race and Hispanic origin, see the Subject Definitions at https://www.census.gov/programs-surveys/acs/technical-documentation.html..Race and Hispanic origin are separate concepts on the American Community Survey. "White alone Hispanic or Latino" includes respondents who reported Hispanic or Latino origin and reported race as "White" and no other race. "All other Hispanic or Latino" includes respondents who reported Hispanic or Latino origin and reported a race other than "White," either alone or in combination..Occupation titles and their 4-digit codes are based on the 2018 Standard Occupational Classification..The 2014-2018 American Community Survey (ACS) data generally reflect the September 2018 Office of Management and Budget (OMB) delineations of metropolitan and micropolitan statistical areas. In certain instances the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB delineations due to differences in the effective dates of the geographic entities..Explanation of Symbols:An "-" entry in the estimate column indicates that either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution, or the margin of error associated with a median was larger than the median itself.An "(X)" means that the estimate is not applicable or not available.An "**" entry in the margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.An "***" entry in the margin of error column indicates that the median falls in the lowest interval or upper interval of an open-ended distribution. A statistical test is not appropriate.An "*****" entry in the margin of error column indicates that the estimate is controlled. A statistical test for sampling variability is not appropriate.An "N" entry in the estimate and margin of error columns indicates that data for this geographic area cannot be displayed because the number of sample cases is too small.An "-" following a median estimate means the median falls in the lowest interval of an open-ended distribution.An "+" following a median estimate means the median falls in the upper interval of an open-ended distribution.

  18. h

    race

    • huggingface.co
    • tensorflow.org
    Updated Feb 4, 2012
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eduard Hovy (2012). race [Dataset]. https://huggingface.co/datasets/ehovy/race
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 4, 2012
    Authors
    Eduard Hovy
    License

    https://choosealicense.com/licenses/other/https://choosealicense.com/licenses/other/

    Description

    Dataset Card for "race"

      Dataset Summary
    

    RACE is a large-scale reading comprehension dataset with more than 28,000 passages and nearly 100,000 questions. The dataset is collected from English examinations in China, which are designed for middle school and high school students. The dataset can be served as the training and test sets for machine comprehension.

      Supported Tasks and Leaderboards
    

    More Information Needed

      Languages
    

    More Information Needed… See the full description on the dataset page: https://huggingface.co/datasets/ehovy/race.

  19. Detailed Race by Zip Code Tabulation Area 2012-2016

    • johnsnowlabs.com
    csv
    Updated Jan 20, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    John Snow Labs (2021). Detailed Race by Zip Code Tabulation Area 2012-2016 [Dataset]. https://www.johnsnowlabs.com/marketplace/detailed-race-by-zip-code-tabulation-area-2012-2016/
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jan 20, 2021
    Dataset authored and provided by
    John Snow Labs
    Time period covered
    2012 - 2016
    Area covered
    United States
    Description

    This American Community Survey (ACS) dataset identifies race in detail by zip code tabulation areas within the United States, from 2012 through 2016. The races included in this dataset are White, Black or African American, American Indian and Alaskan Native, Asian, Native Hawaiian and other Pacific Islander, and other. The survey also looks at races alone, and two or more races combined.

  20. a

    Race/Ethnicity (by Zip Code) 2018

    • opendata.atlantaregional.com
    Updated Mar 4, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2020). Race/Ethnicity (by Zip Code) 2018 [Dataset]. https://opendata.atlantaregional.com/datasets/race-ethnicity-by-zip-code-2018/data
    Explore at:
    Dataset updated
    Mar 4, 2020
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This layer was developed by the Research & Analytics Division of the Atlanta Regional Commission using data from the U.S. Census Bureau.

    The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent.

    The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2014-2018). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available.

    For a deep dive into the data model including every specific metric, see the Infrastructure Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics.

    For further explanation of ACS estimates and margin of error, visit Census ACS website.

    Naming conventions:

    Prefixes:

    None

    Count

    p

    Percent

    r

    Rate

    m

    Median

    a

    Mean (average)

    t

    Aggregate (total)

    ch

    Change in absolute terms (value in t2 - value in t1)

    pch

    Percent change ((value in t2 - value in t1) / value in t1)

    chp

    Change in percent (percent in t2 - percent in t1)

    s

    Significance flag for change: 1 = statistically significant with a 90% Confidence Interval, 0 = not statistically significant, blank = cannot be computed

    Suffixes:

    _e18

    Estimate from 2014-18 ACS

    _m18

    Margin of Error from 2014-18 ACS

    _00_v18

    Decennial 2000 in 2018 geography boundary

    _00_18

    Change, 2000-18

    _e10_v18

    Estimate from 2006-10 ACS in 2018 geography boundary

    _m10_v18

    Margin of Error from 2006-10 ACS in 2018 geography boundary

    _e10_18

    Change, 2010-18

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
John Snow Labs, US Race and Ethnicity Codes [Dataset]. https://www.johnsnowlabs.com/marketplace/us-race-and-ethnicity-codes/
Organization logo

US Race and Ethnicity Codes

Explore at:
csvAvailable download formats
Dataset authored and provided by
John Snow Labs
Area covered
United States, N/A
Description

This dataset contains Race/Ethinicty codes. It is used to enter in patient demographics information.

Search
Clear search
Close search
Google apps
Main menu