100+ datasets found
  1. e

    Race in the US by Dot Density

    • coronavirus-resources.esri.com
    • hub.arcgis.com
    • +2more
    Updated Jan 10, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS Living Atlas Team (2020). Race in the US by Dot Density [Dataset]. https://coronavirus-resources.esri.com/maps/71df79b33d4e4db28c915a9f16c3074e
    Explore at:
    Dataset updated
    Jan 10, 2020
    Dataset authored and provided by
    ArcGIS Living Atlas Team
    Area covered
    Description

    This map is designed to work in the new ArcGIS Online Map Viewer. Open in Map Viewer to view map. What does this map show?This map shows the population in the US by race. The map shows this pattern nationwide for states, counties, and tracts. Open the map in the new ArcGIS Online Map Viewer Beta to see the dot density pattern. What is dot density?The density is visualized by randomly placing one dot per a given value for the desired attribute. Unlike choropleth visualizations, dot density can be mapped using total counts since the size of the polygon plays a significant role in the perceived density of the attribute.Where is the data from?The data in this map comes from the most current American Community Survey (ACS) from the U.S. Census Bureau. Table B03002. The layer being used if updated with the most current data each year when the Census releases new estimates. The layer can be found in ArcGIS Living Atlas of the World: ACS Race and Hispanic Origin Variables - Boundaries.What questions does this map answer?Where do people of different races live?Do people of a similar race live close to people of their own race?Which cities have a diverse range of different races? Less diverse?

  2. t

    Neighborhood Race Demographics

    • gisdata.tucsonaz.gov
    • data-cotgis.opendata.arcgis.com
    • +3more
    Updated Nov 26, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Tucson (2019). Neighborhood Race Demographics [Dataset]. https://gisdata.tucsonaz.gov/items/35fda63efad14a7b8c2a0a68d77020b7
    Explore at:
    Dataset updated
    Nov 26, 2019
    Dataset authored and provided by
    City of Tucson
    Area covered
    Description

    This layer shows race data in Tucson by neighborhood, aggregated from block level data, between 2010-2019. For questions, contact GIS_IT@tucsonaz.gov. The data shown is from Esri's 2019 Updated Demographic estimates.Esri's U.S. Updated Demographic (2019/2024) Data - Population, age, income, sex, race, home value, and marital status are among the variables included in the database. Each year, Esri's Data Development team employs its proven methodologies to update more than 2,000 demographic variables for a variety of U.S. geographies.Additional Esri Resources:Esri DemographicsU.S. 2019/2024 Esri Updated DemographicsEssential demographic vocabularyPermitted use of this data is covered in the DATA section of the Esri Master Agreement (E204CW) and these supplemental terms.

  3. b

    Racial Diversity Index

    • data.baltimorecity.gov
    • vital-signs-bniajfi.hub.arcgis.com
    • +1more
    Updated Feb 27, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Baltimore Neighborhood Indicators Alliance (2020). Racial Diversity Index [Dataset]. https://data.baltimorecity.gov/maps/d588f7de06cf4815951e105bb8a390b1
    Explore at:
    Dataset updated
    Feb 27, 2020
    Dataset authored and provided by
    Baltimore Neighborhood Indicators Alliance
    Area covered
    Description

    The percent chance that two people picked at random within an area will be of a different race/ethnicity. This number does not reflect which race/ethnicity is predominant within an area. The higher the value, the more racially and ethnically diverse an area. Source: U.S. Bureau of the Census, American Community Survey Years Available: 2010, 2011-2015, 2012-2016, 2013-2017, 2014-2018, 2015-2019, 2017-2021, 2018-2022

  4. a

    Race & Ethnicity 2022 (all geographies, statewide)

    • opendata.atlantaregional.com
    • gisdata.fultoncountyga.gov
    Updated Mar 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2024). Race & Ethnicity 2022 (all geographies, statewide) [Dataset]. https://opendata.atlantaregional.com/maps/b57e042f1c9e49c887d3bb048dd56daa
    Explore at:
    Dataset updated
    Mar 1, 2024
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    These data were developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau across all standard and custom geographies at statewide summary level where applicable. .
    For a deep dive into the data model including every specific metric, see the ACS 2018-2022 Data Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics. Find naming convention prefixes/suffixes, geography definitions and user notes below.Prefixes:NoneCountpPercentrRatemMedianaMean (average)tAggregate (total)chChange in absolute terms (value in t2 - value in t1)pchPercent change ((value in t2 - value in t1) / value in t1)chpChange in percent (percent in t2 - percent in t1)sSignificance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computedSuffixes:_e22Estimate from 2018-22 ACS_m22Margin of Error from 2018-22 ACS_e102006-10 ACS, re-estimated to 2020 geography_m10Margin of Error from 2006-10 ACS, re-estimated to 2020 geography_e10_22Change, 2010-22 (holding constant at 2020 geography)GeographiesAAA = Area Agency on Aging (12 geographic units formed from counties providing statewide coverage)ARC21 = Atlanta Regional Commission modeling area (21 counties merged to a single geographic unit)ARWDB7 = Atlanta Regional Workforce Development Board (7 counties merged to a single geographic unit)BeltLineStatistical (buffer)BeltLineStatisticalSub (subareas)Census Tract (statewide)CFGA23 = Community Foundation for Greater Atlanta (23 counties merged to a single geographic unit)City (statewide)City of Atlanta Council Districts (City of Atlanta)City of Atlanta Neighborhood Planning Unit (City of Atlanta)City of Atlanta Neighborhood Statistical Areas (City of Atlanta)County (statewide)Georgia House (statewide)Georgia Senate (statewide)HSSA = High School Statistical Area (11 county region)MetroWater15 = Atlanta Metropolitan Water District (15 counties merged to a single geographic unit)Regional Commissions (statewide)State of Georgia (single geographic unit)Superdistrict (ARC region)US Congress (statewide)UWGA13 = United Way of Greater Atlanta (13 counties merged to a single geographic unit)ZIP Code Tabulation Areas (statewide)The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2018-2022). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2018-2022Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the data manifest: https://opendata.atlantaregional.com/documents/3b86ee614e614199ba66a3ff1ebfe3b5/about

  5. a

    Demographic x Race & Ethnicity 2020 (DHC, all geographies, statewide)

    • opendata.atlantaregional.com
    • gisdata.fultoncountyga.gov
    Updated Mar 28, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2024). Demographic x Race & Ethnicity 2020 (DHC, all geographies, statewide) [Dataset]. https://opendata.atlantaregional.com/maps/b86a0d55c5a647e380d54265972265b8
    Explore at:
    Dataset updated
    Mar 28, 2024
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    These data were developed by the Research & Analytics group at the Atlanta Regional Commission using data from the U.S. Census Bureau across all standard and custom geographies at statewide summary level where applicable.For a deep dive into the data model including every specific metric, see the DHC 2020 Data Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics. Find geography definitions and user notes below.These are indicators built from the 2020 Decennial CensusThis is the second release based on the 2020 Census following the Redistricting Data release previously. The DHC release lets us drill deeper on age than the redistricting data (that only breaks at 0-17 and 18+). Additionally, we get some data on household type and housing tenure.Geographies AAA = Area Agency on Aging (12 geographic units formed from counties providing statewide coverage) ARC21 = Atlanta Regional Commission modeling area (21 counties merged to a single geographic unit) ARWDB7 = Atlanta Regional Workforce Development Board (7 counties merged to a single geographic unit) BeltLineStatistical (buffer) BeltLineStatisticalSub (subareas) Census Tract (statewide) CFGA23 = Community Foundation for Greater Atlanta (23 counties merged to a single geographic unit) City (statewide) City of Atlanta Council Districts (City of Atlanta) City of Atlanta Neighborhood Planning Unit (City of Atlanta) City of Atlanta Neighborhood Statistical Areas (City of Atlanta) County (statewide) Georgia House (statewide) Georgia Senate (statewide) HSSA = High School Statistical Area (11 county region) MetroWater15 = Atlanta Metropolitan Water District (15 counties merged to a single geographic unit) Regional Commissions (statewide) State of Georgia (single geographic unit) Superdistrict (ARC region) US Congress (statewide) UWGA13 = United Way of Greater Atlanta (13 counties merged to a single geographic unit) ZIP Code Tabulation Areas (statewide) Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2020Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the data manifest: https://opendata.atlantaregional.com/documents/GARC::data-manifest-for-arc-census-demographic-and-housing-characteristics-dhc-2020-release/aboutFor more information, visit the US Census DHC Technical Documentation webpage.

  6. a

    NYC Population by Generation Demographics Map

    • nyccovid-19response-nycgov.hub.arcgis.com
    • nyc-open-data-statelocalps.hub.arcgis.com
    • +3more
    Updated Mar 19, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    pkunduNYC (2020). NYC Population by Generation Demographics Map [Dataset]. https://nyccovid-19response-nycgov.hub.arcgis.com/datasets/nyc-population-by-generation-demographics-map
    Explore at:
    Dataset updated
    Mar 19, 2020
    Dataset authored and provided by
    pkunduNYC
    Area covered
    Description

    This map contains NYC administrative boundaries enriched with various demographics datasets.Learn more about Esri's Enrich Layer / Geoenrichment analysis tool.Learn more about Esri's Demographics, Psychographic, and Socioeconomic datasets.Search for a specific location or site using the search bar. Toggle layer visibility with the layer list. Click on a layer to see more information about the feature.

  7. g

    Population Density Around the Globe

    • globalfistulahub.org
    • covid19.esriuk.com
    • +6more
    Updated May 20, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Direct Relief (2020). Population Density Around the Globe [Dataset]. https://www.globalfistulahub.org/maps/b71f7fd5dbc8486b8b37362726a11452
    Explore at:
    Dataset updated
    May 20, 2020
    Dataset authored and provided by
    Direct Relief
    Area covered
    Description

    Census data reveals that population density varies noticeably from area to area. Small area census data do a better job depicting where the crowded neighborhoods are. In this map, the yellow areas of highest density range from 30,000 to 150,000 persons per square kilometer. In those areas, if the people were spread out evenly across the area, there would be just 4 to 9 meters between them. Very high density areas exceed 7,000 persons per square kilometer. High density areas exceed 5,200 persons per square kilometer. The last categories break at 3,330 persons per square kilometer, and 1,500 persons per square kilometer.This dataset is comprised of multiple sources. All of the demographic data are from Michael Bauer Research with the exception of the following countries:Australia: Esri Australia and MapData ServicesCanada: Esri Canada and EnvironicsFrance: Esri FranceGermany: Esri Germany and NexigaIndia: Esri India and IndicusJapan: Esri JapanSouth Korea: Esri Korea and OPENmateSpain: Esri España and AISUnited States: Esri Demographics

  8. l

    Population by Race and Ethnicity

    • data.lacounty.gov
    • geohub.lacity.org
    • +1more
    Updated Jan 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    County of Los Angeles (2024). Population by Race and Ethnicity [Dataset]. https://data.lacounty.gov/maps/lacounty::population-by-race-and-ethnicity
    Explore at:
    Dataset updated
    Jan 4, 2024
    Dataset authored and provided by
    County of Los Angeles
    Area covered
    Description

    Race categories for White, Black, Asian, American Indian or Alaska Native, Native Hawaiian or Pacific Islander, other race, and two or more races are non-Hispanic. Due to rounding, race and ethnicity categories may not sum to 100%. Estimates are based on provisional data and subject to change.For more information about the Community Health Profiles Data Initiative, please see the initiative homepage.

  9. a

    Race Ethnicity 2021 (all geographies, statewide)

    • opendata.atlantaregional.com
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    Updated Mar 9, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2023). Race Ethnicity 2021 (all geographies, statewide) [Dataset]. https://opendata.atlantaregional.com/maps/613e7bed192e485e9162ef11dc70f7e8
    Explore at:
    Dataset updated
    Mar 9, 2023
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This dataset was developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau across all standard and custom geographies at statewide summary level where applicable. For a deep dive into the data model including every specific metric, see the ACS 2017-2021 Data Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics. Find naming convention prefixes/suffixes, geography definitions and user notes below.Prefixes:NoneCountpPercentrRatemMedianaMean (average)tAggregate (total)chChange in absolute terms (value in t2 - value in t1)pchPercent change ((value in t2 - value in t1) / value in t1)chpChange in percent (percent in t2 - percent in t1)sSignificance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computedSuffixes:_e21Estimate from 2017-21 ACS_m21Margin of Error from 2017-21 ACS_e102006-10 ACS, re-estimated to 2020 geography_m10Margin of Error from 2006-10 ACS, re-estimated to 2020 geography_e10_21Change, 2010-21 (holding constant at 2020 geography)GeographiesAAA = Area Agency on Aging (12 geographic units formed from counties providing statewide coverage)ARC21 = Atlanta Regional Commission modeling area (21 counties merged to a single geographic unit)ARWDB7 = Atlanta Regional Workforce Development Board (7 counties merged to a single geographic unit)BeltLine (buffer)BeltLine Study (subareas)Census Tract (statewide)CFGA23 = Community Foundation for Greater Atlanta (23 counties merged to a single geographic unit)City (statewide)City of Atlanta Council Districts (City of Atlanta)City of Atlanta Neighborhood Planning Unit (City of Atlanta)City of Atlanta Neighborhood Planning Unit STV (3 NPUs merged to a single geographic unit within City of Atlanta)City of Atlanta Neighborhood Statistical Areas (City of Atlanta)City of Atlanta Neighborhood Statistical Areas E02E06 (2 NSAs merged to single geographic unit within City of Atlanta)County (statewide)Georgia House (statewide)Georgia Senate (statewide)MetroWater15 = Atlanta Metropolitan Water District (15 counties merged to a single geographic unit)Regional Commissions (statewide)SPARCC = Strong, Prosperous And Resilient Communities ChallengeState of Georgia (single geographic unit)Superdistrict (ARC region)US Congress (statewide)UWGA13 = United Way of Greater Atlanta (13 counties merged to a single geographic unit)WFF = Westside Future Fund (subarea of City of Atlanta)ZIP Code Tabulation Areas (statewide)The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2017-2021). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2017-2021Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the data manifest: https://garc.maps.arcgis.com/sharing/rest/content/items/34b9adfdcc294788ba9c70bf433bd4c1/data

  10. Race in the US by Dot Density

    • data.amerigeoss.org
    esri rest, html
    Updated Apr 14, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ESRI (2020). Race in the US by Dot Density [Dataset]. https://data.amerigeoss.org/dataset/race-in-the-us-by-dot-density
    Explore at:
    html, esri restAvailable download formats
    Dataset updated
    Apr 14, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Area covered
    United States
    Description
    Map only works in the new Map Viewer Beta. Open in new map viewer to view map. You must be logged in to have this option. If you do not have a login, click here to view the map.

    What does this map show?
    This map shows the population in the US by race. The map shows this pattern nationwide for states, counties, and tracts. Open the map in the new ArcGIS Online Map Viewer Beta to see the dot density pattern.

    What is dot density?
    The density is visualized by randomly placing one dot per a given value for the desired attribute. Unlike choropleth visualizations, dot density can be mapped using total counts since the size of the polygon plays a significant role in the perceived density of the attribute.

    Where is the data from?
    The data in this map comes from the most current American Community Survey (ACS) from the U.S. Census Bureau. Table B03002. The layer being used if updated with the most current data each year when the Census releases new estimates. The layer can be found in ArcGIS Living Atlas of the World: ACS Race and Hispanic Origin Variables - Boundaries.

    What questions does this map answer?
    Where do people of different races live?
    Do people of a similar race live close to people of their own race?
    Which cities have a diverse range of different races? Less diverse?
  11. T

    Austin MSA Racial and Ethnic Diversity Index

    • datahub.austintexas.gov
    • data.austintexas.gov
    • +1more
    application/rdfxml +5
    Updated Oct 30, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Austin, Texas - data.austintexas.gov (2024). Austin MSA Racial and Ethnic Diversity Index [Dataset]. https://datahub.austintexas.gov/City-Government/Austin-MSA-Racial-and-Ethnic-Diversity-Index/izag-sk98
    Explore at:
    tsv, json, csv, application/rdfxml, application/rssxml, xmlAvailable download formats
    Dataset updated
    Oct 30, 2024
    Dataset authored and provided by
    City of Austin, Texas - data.austintexas.gov
    Area covered
    Austin Metropolitan Area
    Description

    These are the data used for the Racial and Ethnic Diversity for the Austin MSA story map. The story map was published July 2024 but displays data from 2000, 2010, and 2020.

    Decennial census data were used for all three years. 2000: DEC Summary File 1, P004 2010: DEC Redistricting Data (PL 94-171), P2 2020: DEC Redistricting Data (PL 94-171), P2

    Geographic crosswalks were used to harmonize 2000, 2010, and 2020 geographies.

    Racial and Ethnic Diversity Index for the Austin MSA Storymap: https://storymaps.arcgis.com/stories/88ee265f00934af7a750b57f7faebd2c

    City of Austin Open Data Terms of Use – https://data.austintexas.gov/stories/s/ranj-cccq

  12. World Population Density

    • globalfistulahub.org
    • icm-directrelief.opendata.arcgis.com
    • +1more
    Updated May 20, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Direct Relief (2020). World Population Density [Dataset]. https://www.globalfistulahub.org/maps/8d57f7094eb64d58bdb994f6aad72ce6
    Explore at:
    Dataset updated
    May 20, 2020
    Dataset authored and provided by
    Direct Reliefhttp://directrelief.org/
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    North Pacific Ocean, Pacific Ocean
    Description

    This layer was created by Duncan Smith and based on work by the European Commission JRC and CIESIN. A description from his website follows:--------------------A brilliant new dataset produced by the European Commission JRC and CIESIN Columbia University was recently released- the Global Human Settlement Layer (GHSL). This is the first time that detailed and comprehensive population density and built-up area for the world has been available as open data. As usual, my first thought was to make an interactive map, now online at- http://luminocity3d.org/WorldPopDen/The World Population Density map is exploratory, as the dataset is very rich and new, and I am also testing out new methods for navigating statistics at both national and city scales on this site. There are clearly many applications of this data in understanding urban geographies at different scales, urban development, sustainability and change over time.

  13. Percentage of U.S. population as of 2016 and 2060, by race and Hispanic...

    • statista.com
    Updated Jul 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Percentage of U.S. population as of 2016 and 2060, by race and Hispanic origin [Dataset]. https://www.statista.com/statistics/270272/percentage-of-us-population-by-ethnicities/
    Explore at:
    Dataset updated
    Jul 5, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2016
    Area covered
    United States
    Description

    The statistic shows the share of U.S. population, by race and Hispanic origin, in 2016 and a projection for 2060. As of 2016, about 17.79 percent of the U.S. population was of Hispanic origin. Race and ethnicity in the U.S. For decades, America was a melting pot of the racial and ethnical diversity of its population. The number of people of different ethnic groups in the United States has been growing steadily over the last decade, as has the population in total. For example, 35.81 million Black or African Americans were counted in the U.S. in 2000, while 43.5 million Black or African Americans were counted in 2017.

    The median annual family income in the United States in 2017 earned by Black families was about 50,870 U.S. dollars, while the average family income earned by the Asian population was about 92,784 U.S. dollars. This is more than 15,000 U.S. dollars higher than the U.S. average family income, which was 75,938 U.S. dollars.

    The unemployment rate varies by ethnicity as well. In 2018, about 6.5 percent of the Black or African American population in the United States were unemployed. In contrast to that, only three percent of the population with Asian origin was unemployed.

  14. a

    Justice40 Disadvantaged or Partially Disadvantaged Tracts by Race/Ethnicity...

    • hub.arcgis.com
    • regionaldatahub-brag.hub.arcgis.com
    • +1more
    Updated Jun 10, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS Living Atlas Team (2022). Justice40 Disadvantaged or Partially Disadvantaged Tracts by Race/Ethnicity (Archive) [Dataset]. https://hub.arcgis.com/maps/945b3f2e39a64569ab2d0700a527361b
    Explore at:
    Dataset updated
    Jun 10, 2022
    Dataset authored and provided by
    ArcGIS Living Atlas Team
    Area covered
    Description

    This map uses an archive of Version 1.0 of the CEJST data as a fully functional GIS layer. See an archive of the latest version of the CEJST tool using Version 2.0 of the data released in December 2024 here.This map shows Census tracts throughout the US based on if they are considered disadvantaged or partially disadvantaged according to Justice40 Initiative criteria. This is overlaid with the most recent American Community Survey (ACS) figures from the U.S. Census Bureau to communicate the predominant race that lives within these disadvantaged or partially disadvantaged tracts. Predominance helps us understand the group of population which has the largest count within an area. Colors are more transparent if the predominant race has a similar count to another race/ethnicity group. The colors on the map help us better understand the predominant race or ethnicity:Hispanic or LatinoWhite Alone, not HispanicBlack or African American Alone, not HispanicAsian Alone, not HispanicAmerican Indian and Alaska Native Alone, not HispanicTwo or more races, not HispanicNative Hawaiian and Other Pacific Islander, not HispanicSome other race, not HispanicSearch for any region, city, or neighborhood throughout the US, DC, and Puerto Rico to learn more about the population in the disadvantaged tracts. Click on any tract to learn more. Zoom to your area, filter to your county or state, and save this web map focused on your area to share the pattern with others. You can also use this web map within an ArcGIS app such as a dashboard, instant app, or story. This map uses these hosted feature layers containing the most recent American Community Survey data. These layers are part of the ArcGIS Living Atlas, and are updated every year when the American Community Survey releases new estimates, so values in the map always reflect the newest data available.Note: Justice40 tracts use 2010-based boundaries, while the most recent ACS figures are offered on 2020-based boundaries. When you click on an area, there will be multiple pop-ups returned due to the differences in these boundaries. From Justice40 data source:"Census tract geographical boundaries are determined by the U.S. Census Bureau once every ten years. This tool utilizes the census tract boundaries from 2010 because they match the datasets used in the tool. The U.S. Census Bureau will update these tract boundaries in 2020.Under the current formula, a census tract will be identified as disadvantaged in one or more categories of criteria:IF the tract is above the threshold for one or more environmental or climate indicators AND the tract is above the threshold for the socioeconomic indicatorsCommunities are identified as disadvantaged by the current version of the tool for the purposes of the Justice40 Initiative if they are located in census tracts that are at or above the combined thresholds in one or more of eight categories of criteria.The goal of the Justice40 Initiative is to provide 40 percent of the overall benefits of certain Federal investments in [eight] key areas to disadvantaged communities. These [eight] key areas are: climate change, clean energy and energy efficiency, clean transit, affordable and sustainable housing, training and workforce development, the remediation and reduction of legacy pollution, [health burdens] and the development of critical clean water infrastructure." Source: Climate and Economic Justice Screening toolPurpose"Sec. 219. Policy. To secure an equitable economic future, the United States must ensure that environmental and economic justice are key considerations in how we govern. That means investing and building a clean energy economy that creates well‑paying union jobs, turning disadvantaged communities — historically marginalized and overburdened — into healthy, thriving communities, and undertaking robust actions to mitigate climate change while preparing for the impacts of climate change across rural, urban, and Tribal areas. Agencies shall make achieving environmental justice part of their missions by developing programs, policies, and activities to address the disproportionately high and adverse human health, environmental, climate-related and other cumulative impacts on disadvantaged communities, as well as the accompanying economic challenges of such impacts. It is therefore the policy of my Administration to secure environmental justice and spur economic opportunity for disadvantaged communities that have been historically marginalized and overburdened by pollution and underinvestment in housing, transportation, water and wastewater infrastructure, and health care." Source: Executive Order on Tackling the Climate Crisis at Home and AbroadUse of this Data"The pilot identifies 21 priority programs to immediately begin enhancing benefits for disadvantaged communities. These priority programs will provide a blueprint for other agencies to help inform their work to implement the Justice40 Initiative across government." Source: The Path to Achieving Justice 40

  15. a

    ACS2021 Race Demographic AAA

    • opendata.atlantaregional.com
    Updated Mar 10, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2023). ACS2021 Race Demographic AAA [Dataset]. https://opendata.atlantaregional.com/maps/acs2021-race-demographic-aaa
    Explore at:
    Dataset updated
    Mar 10, 2023
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This dataset was developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau across all standard and custom geographies at statewide summary level where applicable. For a deep dive into the data model including every specific metric, see the ACS 2017-2021 Data Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics. Find naming convention prefixes/suffixes, geography definitions and user notes below.Prefixes:NoneCountpPercentrRatemMedianaMean (average)tAggregate (total)chChange in absolute terms (value in t2 - value in t1)pchPercent change ((value in t2 - value in t1) / value in t1)chpChange in percent (percent in t2 - percent in t1)sSignificance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computedSuffixes:_e21Estimate from 2017-21 ACS_m21Margin of Error from 2017-21 ACS_e102006-10 ACS, re-estimated to 2020 geography_m10Margin of Error from 2006-10 ACS, re-estimated to 2020 geography_e10_21Change, 2010-21 (holding constant at 2020 geography)GeographiesAAA = Area Agency on Aging (12 geographic units formed from counties providing statewide coverage)ARC21 = Atlanta Regional Commission modeling area (21 counties merged to a single geographic unit)ARWDB7 = Atlanta Regional Workforce Development Board (7 counties merged to a single geographic unit)BeltLine (buffer)BeltLine Study (subareas)Census Tract (statewide)CFGA23 = Community Foundation for Greater Atlanta (23 counties merged to a single geographic unit)City (statewide)City of Atlanta Council Districts (City of Atlanta)City of Atlanta Neighborhood Planning Unit (City of Atlanta)City of Atlanta Neighborhood Planning Unit STV (3 NPUs merged to a single geographic unit within City of Atlanta)City of Atlanta Neighborhood Statistical Areas (City of Atlanta)City of Atlanta Neighborhood Statistical Areas E02E06 (2 NSAs merged to single geographic unit within City of Atlanta)County (statewide)Georgia House (statewide)Georgia Senate (statewide)MetroWater15 = Atlanta Metropolitan Water District (15 counties merged to a single geographic unit)Regional Commissions (statewide)SPARCC = Strong, Prosperous And Resilient Communities ChallengeState of Georgia (single geographic unit)Superdistrict (ARC region)US Congress (statewide)UWGA13 = United Way of Greater Atlanta (13 counties merged to a single geographic unit)WFF = Westside Future Fund (subarea of City of Atlanta)ZIP Code Tabulation Areas (statewide)The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2017-2021). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2017-2021Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the data manifest: https://garc.maps.arcgis.com/sharing/rest/content/items/34b9adfdcc294788ba9c70bf433bd4c1/data

  16. Population of the U.S. by race 2000-2023

    • statista.com
    Updated Aug 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Population of the U.S. by race 2000-2023 [Dataset]. https://www.statista.com/statistics/183489/population-of-the-us-by-ethnicity-since-2000/
    Explore at:
    Dataset updated
    Aug 20, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jul 2000 - Jul 2023
    Area covered
    United States
    Description

    This graph shows the population of the U.S. by race and ethnic group from 2000 to 2023. In 2023, there were around 21.39 million people of Asian origin living in the United States. A ranking of the most spoken languages across the world can be accessed here. U.S. populationCurrently, the white population makes up the vast majority of the United States’ population, accounting for some 252.07 million people in 2023. This ethnicity group contributes to the highest share of the population in every region, but is especially noticeable in the Midwestern region. The Black or African American resident population totaled 45.76 million people in the same year. The overall population in the United States is expected to increase annually from 2022, with the 320.92 million people in 2015 expected to rise to 341.69 million people by 2027. Thus, population densities have also increased, totaling 36.3 inhabitants per square kilometer as of 2021. Despite being one of the most populous countries in the world, following China and India, the United States is not even among the top 150 most densely populated countries due to its large land mass. Monaco is the most densely populated country in the world and has a population density of 24,621.5 inhabitants per square kilometer as of 2021. As population numbers in the U.S. continues to grow, the Hispanic population has also seen a similar trend from 35.7 million inhabitants in the country in 2000 to some 62.65 million inhabitants in 2021. This growing population group is a significant source of population growth in the country due to both high immigration and birth rates. The United States is one of the most racially diverse countries in the world.

  17. b

    Census 2020 Block Group

    • newgis.brla.gov
    • gisdata.brla.gov
    • +1more
    Updated Aug 13, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    East Baton Rouge GIS Map Portal (2021). Census 2020 Block Group [Dataset]. https://newgis.brla.gov/datasets/census-2020-block-group/about
    Explore at:
    Dataset updated
    Aug 13, 2021
    Dataset authored and provided by
    East Baton Rouge GIS Map Portal
    Area covered
    Description

    Hosted feature layer displaying 2020 population and racial/ethnicity breakdown by Census block group for East Baton Rouge Parish, Louisiana.

  18. d

    Premium GIS Data | Asia/ MENA | Latest Estimates on Population, Consuming...

    • datarade.ai
    .json, .csv
    Updated Nov 23, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GapMaps (2024). Premium GIS Data | Asia/ MENA | Latest Estimates on Population, Consuming Class, Retail Spend, Demographics | Map Data | Demographic Data [Dataset]. https://datarade.ai/data-products/gapmaps-premium-demographics-gis-data-asia-mena-150m-x-1-gapmaps
    Explore at:
    .json, .csvAvailable download formats
    Dataset updated
    Nov 23, 2024
    Dataset authored and provided by
    GapMaps
    Area covered
    Philippines, Saudi Arabia, Singapore, India, Indonesia, Malaysia
    Description

    Sourcing accurate and up-to-date demographics GIS data across Asia and MENA has historically been difficult for retail brands looking to expand their store networks in these regions. Either the data does not exist or it isn't readily accessible or updated regularly.

    GapMaps uses known population data combined with billions of mobile device location points to provide highly accurate and globally consistent geodemographic datasets across Asia and MENA at 150m x 150m grid levels in major cities and 1km grids outside of major cities.

    With this information, brands can get a detailed understanding of who lives in a catchment, where they work and their spending potential which allows you to:

    • Better understand your customers
    • Identify optimal locations to expand your retail footprint
    • Define sales territories for franchisees
    • Run targeted marketing campaigns.

    Premium demographics GIS data for Asia and MENA includes the latest estimates (updated annually) on:

    1. Population (how many people live in your local catchment)
    2. Demographics (who lives within your local catchment)
    3. Worker population (how many people work within your local catchment)
    4. Consuming Class and Premium Consuming Class (who can can afford to buy goods & services beyond their basic needs and /or shop at premium retailers)
    5. Retail Spending (Food & Beverage, Grocery, Apparel, Other). How much are consumers spending on retail goods and services by category.

    Primary Use Cases for GapMaps Demographics GIS Data:

    1. Retail (eg. Fast Food/ QSR, Cafe, Fitness, Supermarket/Grocery)
    2. Customer Profiling: get a detailed understanding of the demographic profile of your customers, where they work and their spending potential
    3. Analyse your trade areas at a granular 150m x 150m grid levels using all the key metrics
    4. Site Selection: Identify optimal locations for future expansion and benchmark performance across existing locations.
    5. Target Marketing: Develop effective marketing strategies to acquire more customers.
    6. Integrate GapMaps demographic data with your existing GIS or BI platform to generate powerful visualizations.

    7. Commercial Real-Estate (Brokers, Developers, Investors, Single & Multi-tenant O/O)

    8. Tenant Recruitment

    9. Target Marketing

    10. Market Potential / Gap Analysis

    11. Marketing / Advertising (Billboards/OOH, Marketing Agencies, Indoor Screens)

    12. Customer Profiling

    13. Target Marketing

    14. Market Share Analysis

  19. a

    Detroit Demographic Analysis

    • hub.arcgis.com
    • africageoportal.com
    Updated Feb 12, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Africa GeoPortal (2021). Detroit Demographic Analysis [Dataset]. https://hub.arcgis.com/maps/11dd67fa606a4c8cb2fb9777d392be4e
    Explore at:
    Dataset updated
    Feb 12, 2021
    Dataset authored and provided by
    Africa GeoPortal
    Area covered
    Description

    This map shows demographic and income data in Detroit. Assuming an assignment where the poverty fighting charity I work for would like to alleviate suffering among impoverished children in Detroit. Detroit is a Michigan city that always ranks among America's poorest urban centers. Orange circles have below average median household income, the darker shades indicate households with a very low income-close to poverty level. The size of the circles: larger circles indicate a greater number of children in the area.What stands out is the obvioud pattern of low-income households in the city center combined with areas of high child population. This pattern helps answer where in Detroit our charity will focus its resources to help children living in poverty-in places shown on the map where there is a cluster of several large dark Orange circles like Dearborn and Pontiac (for example). The charity may and will offer free after school care and/Or but not limited to breakfast programs.

  20. c

    Dot-density race map (Bill Rankin, 2010)

    • hub.chicagowilderness.org
    Updated Nov 17, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Field Museum (2021). Dot-density race map (Bill Rankin, 2010) [Dataset]. https://hub.chicagowilderness.org/documents/fa26472f46364a6ba157f0ee185de244
    Explore at:
    Dataset updated
    Nov 17, 2021
    Dataset authored and provided by
    Field Museum
    Description

    This dot map shows three kinds of urban transitions. First, there are indeed areas where changes take place at very precise boundaries — such as between Lawndale and the Little Village, or Austin and Oak Park — and Chicago has more of these stark borders than most cities in the world. But transitions also take place through gradients and gaps as well, especially in the northwest and southeast. Using graphic conventions which allow these other possibilities to appear takes much more data, and requires more nuance in the way we talk about urban geography, but a cartography without boundaries can also make simplistic policy or urban design more difficult — in a good way.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
ArcGIS Living Atlas Team (2020). Race in the US by Dot Density [Dataset]. https://coronavirus-resources.esri.com/maps/71df79b33d4e4db28c915a9f16c3074e

Race in the US by Dot Density

Explore at:
Dataset updated
Jan 10, 2020
Dataset authored and provided by
ArcGIS Living Atlas Team
Area covered
Description

This map is designed to work in the new ArcGIS Online Map Viewer. Open in Map Viewer to view map. What does this map show?This map shows the population in the US by race. The map shows this pattern nationwide for states, counties, and tracts. Open the map in the new ArcGIS Online Map Viewer Beta to see the dot density pattern. What is dot density?The density is visualized by randomly placing one dot per a given value for the desired attribute. Unlike choropleth visualizations, dot density can be mapped using total counts since the size of the polygon plays a significant role in the perceived density of the attribute.Where is the data from?The data in this map comes from the most current American Community Survey (ACS) from the U.S. Census Bureau. Table B03002. The layer being used if updated with the most current data each year when the Census releases new estimates. The layer can be found in ArcGIS Living Atlas of the World: ACS Race and Hispanic Origin Variables - Boundaries.What questions does this map answer?Where do people of different races live?Do people of a similar race live close to people of their own race?Which cities have a diverse range of different races? Less diverse?

Search
Clear search
Close search
Google apps
Main menu