35 datasets found
  1. Provisional COVID-19 Deaths: Distribution of Deaths by Race and Hispanic...

    • catalog.data.gov
    • healthdata.gov
    • +2more
    Updated Apr 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). Provisional COVID-19 Deaths: Distribution of Deaths by Race and Hispanic Origin [Dataset]. https://catalog.data.gov/dataset/provisional-death-counts-for-coronavirus-disease-covid-19-distribution-of-deaths-by-race-a
    Explore at:
    Dataset updated
    Apr 23, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    Effective September 27, 2023, this dataset will no longer be updated. Similar data are accessible from wonder.cdc.gov. This data file contains the following indicators that can be used to illustrate potential differences in the burden of deaths due to COVID-19 according to race and ethnicity: count of COVID-19 deaths, distribution of COVID-19 deaths, unweighted distribution of population, and weighted distribution of population.

  2. f

    DataSheet1_The Magnitude of Black/Hispanic Disparity in COVID-19 Mortality...

    • figshare.com
    pdf
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cindy Im; Lalani L. Munasinghe; José M. Martínez; William Letsou; Farideh Bagherzadeh-Khiabani; Soudabeh Marin; Yutaka Yasui (2023). DataSheet1_The Magnitude of Black/Hispanic Disparity in COVID-19 Mortality Across United States Counties During the First Waves of the COVID-19 Pandemic.PDF [Dataset]. http://doi.org/10.3389/ijph.2021.1604004.s001
    Explore at:
    pdfAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    Frontiers
    Authors
    Cindy Im; Lalani L. Munasinghe; José M. Martínez; William Letsou; Farideh Bagherzadeh-Khiabani; Soudabeh Marin; Yutaka Yasui
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    Objectives: To quantify the Black/Hispanic disparity in COVID-19 mortality in the United States (US).Methods: COVID-19 deaths in all US counties nationwide were analyzed to estimate COVID-19 mortality rate ratios by county-level proportions of Black/Hispanic residents, using mixed-effects Poisson regression. Excess COVID-19 mortality counts, relative to predicted under a counterfactual scenario of no racial/ethnic disparity gradient, were estimated.Results: County-level COVID-19 mortality rates increased monotonically with county-level proportions of Black and Hispanic residents, up to 5.4-fold (≥43% Black) and 11.6-fold (≥55% Hispanic) higher compared to counties with

  3. D

    COVID-19 Deaths by Population Characteristics

    • data.sfgov.org
    • healthdata.gov
    • +2more
    application/rdfxml +5
    Updated Jun 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). COVID-19 Deaths by Population Characteristics [Dataset]. https://data.sfgov.org/w/kv9m-37qh/ikek-yizv?cur=Cz9wSjj1-K4&from=root
    Explore at:
    csv, application/rdfxml, xml, application/rssxml, tsv, jsonAvailable download formats
    Dataset updated
    Jun 26, 2025
    Description

    A. SUMMARY This dataset shows San Francisco COVID-19 deaths by population characteristics. This data may not be immediately available for recently reported deaths. Data updates as more information becomes available. Because of this, death totals may increase or decrease.

    Population characteristics are subgroups, or demographic cross-sections, like age, race, or gender. The City tracks how deaths have been distributed among different subgroups. This information can reveal trends and disparities among groups.

    B. HOW THE DATASET IS CREATED As of January 1, 2023, COVID-19 deaths are defined as persons who had COVID-19 listed as a cause of death or a significant condition contributing to their death on their death certificate. This definition is in alignment with the California Department of Public Health and the national https://preparedness.cste.org/wp-content/uploads/2022/12/CSTE-Revised-Classification-of-COVID-19-associated-Deaths.Final_.11.22.22.pdf">Council of State and Territorial Epidemiologists. Death certificates are maintained by the California Department of Public Health.

    Data on the population characteristics of COVID-19 deaths are from: *Case reports *Medical records *Electronic lab reports *Death certificates

    Data are continually updated to maximize completeness of information and reporting on San Francisco COVID-19 deaths.

    To protect resident privacy, we summarize COVID-19 data by only one population characteristic at a time. Data are not shown until cumulative citywide deaths reach five or more.

    Data notes on select population characteristic types are listed below.

    Race/ethnicity * We include all race/ethnicity categories that are collected for COVID-19 cases.

    Gender * The City collects information on gender identity using these guidelines.

    C. UPDATE PROCESS Updates automatically at 06:30 and 07:30 AM Pacific Time on Wednesday each week.

    Dataset will not update on the business day following any federal holiday.

    D. HOW TO USE THIS DATASET Population estimates are only available for age groups and race/ethnicity categories. San Francisco population estimates for race/ethnicity and age groups can be found in a dataset based on the San Francisco Population and Demographic Census dataset.These population estimates are from the 2018-2022 5-year American Community Survey (ACS).

    This dataset includes several characteristic types. Filter the “Characteristic Type” column to explore a topic area. Then, the “Characteristic Group” column shows each group or category within that topic area and the number of cumulative deaths.

    Cumulative deaths are the running total of all San Francisco COVID-19 deaths in that characteristic group up to the date listed.

    To explore data on the total number of deaths, use the COVID-19 Deaths Over Time dataset.

    E. CHANGE LOG

  4. Respondents who know someone hospitalized or dead due to COVID-19, Apr....

    • statista.com
    Updated Apr 23, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2020). Respondents who know someone hospitalized or dead due to COVID-19, Apr. 2020, by race [Dataset]. https://www.statista.com/statistics/1112250/personally-know-covid-death-hospitalization-us-by-race/
    Explore at:
    Dataset updated
    Apr 23, 2020
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Apr 7, 2020 - Apr 12, 2020
    Area covered
    United States
    Description

    Racial disparities exist in the U.S. regarding personal experiences with knowing people who have had serious illnesses arising from COVID-19. Approximately a quarter of black U.S. adults say they personally know someone who has been hospitalized or died due to having COVID-19, whereas only 13 percent of both white and Hispanic U.S. adults said the same. This statistic shows the percentage of respondents who personally know someone who has been hospitalized or died as a result of having COVID-19 in the U.S. as of April 12, 2020, by race.

  5. A

    ‘Provisional Death Counts for Coronavirus Disease (COVID-19): Distribution...

    • analyst-2.ai
    Updated Feb 12, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2022). ‘Provisional Death Counts for Coronavirus Disease (COVID-19): Distribution of Deaths by Race and Hispanic Origin’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/data-gov-provisional-death-counts-for-coronavirus-disease-covid-19-distribution-of-deaths-by-race-and-hispanic-origin-c2d3/40eff206/?iid=008-191&v=presentation
    Explore at:
    Dataset updated
    Feb 12, 2022
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘Provisional Death Counts for Coronavirus Disease (COVID-19): Distribution of Deaths by Race and Hispanic Origin’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/b37009b0-e393-4cd8-a217-bc6b5d04a16b on 12 February 2022.

    --- Dataset description provided by original source is as follows ---

    This data file contains the following indicators that can be used to illustrate potential differences in the burden of deaths due to COVID-19 according to race and ethnicity: count of COVID-19 deaths, distribution of COVID-19 deaths, unweighted distribution of population, and weighted distribution of population.

    --- Original source retains full ownership of the source dataset ---

  6. f

    County-level high dimensional regression models assessing racial disparities...

    • plos.figshare.com
    xls
    Updated Jun 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sara Kazemian; Sam Fuller; Carlos Algara (2023). County-level high dimensional regression models assessing racial disparities in COVID-19 death, January 21st–December 31st 2020. [Dataset]. http://doi.org/10.1371/journal.pone.0254127.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 10, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Sara Kazemian; Sam Fuller; Carlos Algara
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    County-level high dimensional regression models assessing racial disparities in COVID-19 death, January 21st–December 31st 2020.

  7. distribution-of-covid-19-deaths-and-populations-by

    • huggingface.co
    Updated Apr 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Health and Human Services (2025). distribution-of-covid-19-deaths-and-populations-by [Dataset]. https://huggingface.co/datasets/HHS-Official/distribution-of-covid-19-deaths-and-populations-by
    Explore at:
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    United States Department of Health and Human Serviceshttp://www.hhs.gov/
    Authors
    Department of Health and Human Services
    Description

    Distribution of COVID-19 Deaths and Populations, by Jurisdiction, Age, and Race and Hispanic Origin

      Description
    

    Effective September 27, 2023, this dataset will no longer be updated. Similar data are accessible from wonder.cdc.gov. This visualization provides data that can be used to illustrate potential differences in the burden of deaths due to COVID-19 by race and ethnicity.

      Dataset Details
    

    Publisher: Centers for Disease Control and Prevention Geographic… See the full description on the dataset page: https://huggingface.co/datasets/HHS-Official/distribution-of-covid-19-deaths-and-populations-by.

  8. [Archived] COVID-19 Deaths by Population Characteristics Over Time

    • healthdata.gov
    • data.sfgov.org
    • +1more
    application/rdfxml +5
    Updated Apr 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.sfgov.org (2025). [Archived] COVID-19 Deaths by Population Characteristics Over Time [Dataset]. https://healthdata.gov/dataset/-Archived-COVID-19-Deaths-by-Population-Characteri/hs5f-amst
    Explore at:
    csv, json, xml, application/rssxml, tsv, application/rdfxmlAvailable download formats
    Dataset updated
    Apr 8, 2025
    Dataset provided by
    data.sfgov.org
    Description

    As of July 2nd, 2024 the COVID-19 Deaths by Population Characteristics Over Time dataset has been retired. This dataset is archived and will no longer update. We will be publishing a cumulative deaths by population characteristics dataset that will update moving forward.

    A. SUMMARY This dataset shows San Francisco COVID-19 deaths by population characteristics and by date. This data may not be immediately available for recently reported deaths. Data updates as more information becomes available. Because of this, death totals for previous days may increase or decrease. More recent data is less reliable.

    Population characteristics are subgroups, or demographic cross-sections, like age, race, or gender. The City tracks how deaths have been distributed among different subgroups. This information can reveal trends and disparities among groups.

    B. HOW THE DATASET IS CREATED As of January 1, 2023, COVID-19 deaths are defined as persons who had COVID-19 listed as a cause of death or a significant condition contributing to their death on their death certificate. This definition is in alignment with the California Department of Public Health and the national https://preparedness.cste.org/wp-content/uploads/2022/12/CSTE-Revised-Classification-of-COVID-19-associated-Deaths.Final_.11.22.22.pdf">Council of State and Territorial Epidemiologists. Death certificates are maintained by the California Department of Public Health.

    Data on the population characteristics of COVID-19 deaths are from: *Case reports *Medical records *Electronic lab reports *Death certificates

    Data are continually updated to maximize completeness of information and reporting on San Francisco COVID-19 deaths.

    To protect resident privacy, we summarize COVID-19 data by only one characteristic at a time. Data are not shown until cumulative citywide deaths reach five or more.

    Data notes on each population characteristic type is listed below.

    Race/ethnicity * We include all race/ethnicity categories that are collected for COVID-19 cases.

    Gender * The City collects information on gender identity using these guidelines.

    C. UPDATE PROCESS Updates automatically at 06:30 and 07:30 AM Pacific Time on Wednesday each week.

    Dataset will not update on the business day following any federal holiday.

    D. HOW TO USE THIS DATASET Population estimates are only available for age groups and race/ethnicity categories. San Francisco population estimates for race/ethnicity and age groups can be found in a view based on the San Francisco Population and Demographic Census dataset. These population estimates are from the 2016-2020 5-year American Community Survey (ACS).

    This dataset includes many different types of characteristics. Filter the “Characteristic Type” column to explore a topic area. Then, the “Characteristic Group” column shows each group or category within that topic area and the number of deaths on each date.

    New deaths are the count of deaths within that characteristic group on that specific date. Cumulative deaths are the running total of all San Francisco COVID-19 deaths in that characteristic group up to the date listed.

    This data may not be immediately available for more recent deaths. Data updates as more information becomes available.

    To explore data on the total number of deaths, use the COVID-19 Deaths Over Time dataset.

    E. CHANGE LOG

    • 9/11/2023 - on this date, we began using an updated definition of a COVID-19 death to align with the California Department o

  9. A

    ‘COVID-19 Deaths by Population Characteristics Over Time’ analyzed by...

    • analyst-2.ai
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com), ‘COVID-19 Deaths by Population Characteristics Over Time’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/data-gov-covid-19-deaths-by-population-characteristics-over-time-2fe1/3045abf4/?iid=004-667&v=presentation
    Explore at:
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘COVID-19 Deaths by Population Characteristics Over Time’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/60f5842f-a359-4b03-ad21-1bcfc3bf7fe6 on 13 February 2022.

    --- Dataset description provided by original source is as follows ---

    Note: On January 22, 2022, system updates to improve the timeliness and accuracy of San Francisco COVID-19 cases and deaths data were implemented. You might see some fluctuations in historic data as a result of this change.

    A. SUMMARY This dataset shows San Francisco COVID-19 deaths by population characteristics and by date. Deaths are included on the date the individual died.

    Population characteristics are subgroups, or demographic cross-sections, like age, race, or gender. The City tracks how deaths have been distributed among different subgroups. This information can reveal trends and disparities among groups.

    Data is lagged by five days, meaning the most date included is 5 days prior to today. All data update daily as more information becomes available.

    B. HOW THE DATASET IS CREATED COVID-19 deaths are suspected to be associated with COVID-19. This means COVID-19 is listed as a cause of death or significant condition on the death certificate.

    Data on the population characteristics of COVID-19 deaths are from: * Case interviews * Laboratories * Medical providers

    These multiple streams of data are merged, deduplicated, and undergo data verification processes. It takes time to process this data. Because of this, data is lagged by 5 days and death totals for previous days may increase or decrease. More recent data is less reliable.

    Data are continually updated to maximize completeness of information and reporting on San Francisco COVID-19 deaths.

    Data notes on each population characteristic type is listed below.

    Race/ethnicity * We include all race/ethnicity categories that are collected for COVID-19 cases.

    Sexual orientation * Sexual orientation data is collected from individuals who are 18 years old or older. These individuals can choose whether to provide this information during case interviews. Learn more about our data collection guidelines. * The City began asking for this information on April 28, 2020. Gender * The City collects information on gender identity using these guidelines.

    Comorbidities * Underlying conditions are reported when a person has one or more underlying health conditions at the time of diagnosis or death.

    Transmission type * Information on transmission of COVID-19 is based on case interviews with individuals who have a confirmed positive test. Individuals are asked if they have been in close contact with a known COVID-19 case. If they answer yes, transmission category is recorded as contact with a known case. If they report no contact with a known case, transmission category is recorded as community transmission. If the case is not interviewed or was not asked the question, they are counted as unknown.

    Homelessness Persons are identified as homeless based on several data sources: * self-reported living situation
    * the location at the time of testing * Department of Public Health homelessness and health databases * Residents in Single-Room Occupancy hotels are not included in these figures.
    These methods serve as an estimate of persons experiencing homelessness. They may not meet other homelessness definitions.

    Skilled Nursing Facility (SNF) occupancy * A Skilled Nursing Facility (SNF) is a type of long-term care facility that provides care to individuals, generally in their 60s and older, who need functional assistance in their daily lives. * Facilities are mandated to report COVID-19 cases or deaths among their residents. The City follows up with these facilities to confirm.
    * There may be differences between the City’s SNF data and the California Department of Public Health (CDPH) dashboard. The difference may be because the City and the State use dif

    --- Original source retains full ownership of the source dataset ---

  10. COVID-19 cases and deaths per million in 210 countries as of July 13, 2022

    • statista.com
    • ai-chatbox.pro
    Updated Nov 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). COVID-19 cases and deaths per million in 210 countries as of July 13, 2022 [Dataset]. https://www.statista.com/statistics/1104709/coronavirus-deaths-worldwide-per-million-inhabitants/
    Explore at:
    Dataset updated
    Nov 25, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    Based on a comparison of coronavirus deaths in 210 countries relative to their population, Peru had the most losses to COVID-19 up until July 13, 2022. As of the same date, the virus had infected over 557.8 million people worldwide, and the number of deaths had totaled more than 6.3 million. Note, however, that COVID-19 test rates can vary per country. Additionally, big differences show up between countries when combining the number of deaths against confirmed COVID-19 cases. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.

    The difficulties of death figures

    This table aims to provide a complete picture on the topic, but it very much relies on data that has become more difficult to compare. As the coronavirus pandemic developed across the world, countries already used different methods to count fatalities, and they sometimes changed them during the course of the pandemic. On April 16, for example, the Chinese city of Wuhan added a 50 percent increase in their death figures to account for community deaths. These deaths occurred outside of hospitals and went unaccounted for so far. The state of New York did something similar two days before, revising their figures with 3,700 new deaths as they started to include “assumed” coronavirus victims. The United Kingdom started counting deaths in care homes and private households on April 29, adjusting their number with about 5,000 new deaths (which were corrected lowered again by the same amount on August 18). This makes an already difficult comparison even more difficult. Belgium, for example, counts suspected coronavirus deaths in their figures, whereas other countries have not done that (yet). This means two things. First, it could have a big impact on both current as well as future figures. On April 16 already, UK health experts stated that if their numbers were corrected for community deaths like in Wuhan, the UK number would change from 205 to “above 300”. This is exactly what happened two weeks later. Second, it is difficult to pinpoint exactly which countries already have “revised” numbers (like Belgium, Wuhan or New York) and which ones do not. One work-around could be to look at (freely accessible) timelines that track the reported daily increase of deaths in certain countries. Several of these are available on our platform, such as for Belgium, Italy and Sweden. A sudden large increase might be an indicator that the domestic sources changed their methodology.

    Where are these numbers coming from?

    The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.

  11. A

    ‘Distribution of COVID-19 deaths and populations, by jurisdiction, age, and...

    • analyst-2.ai
    Updated Jan 27, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2022). ‘Distribution of COVID-19 deaths and populations, by jurisdiction, age, and race and Hispanic origin’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/data-gov-distribution-of-covid-19-deaths-and-populations-by-jurisdiction-age-and-race-and-hispanic-origin-c5f7/78079f55/?iid=003-881&v=presentation
    Explore at:
    Dataset updated
    Jan 27, 2022
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘Distribution of COVID-19 deaths and populations, by jurisdiction, age, and race and Hispanic origin’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/c28cb3cd-ec46-4837-bd49-4e27f4e808c6 on 27 January 2022.

    --- Dataset description provided by original source is as follows ---

    This visualization provides data that can be used to illustrate potential differences in the burden of deaths due to COVID-19 by race and ethnicity.

    --- Original source retains full ownership of the source dataset ---

  12. f

    Summary of regression results.

    • plos.figshare.com
    xls
    Updated Aug 31, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Max Jordan Nguemeni Tiako; Alyssa Browne (2023). Summary of regression results. [Dataset]. http://doi.org/10.1371/journal.pone.0288383.t003
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Aug 31, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Max Jordan Nguemeni Tiako; Alyssa Browne
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    BackgroundCOVID-19 has had a disproportionate impact on racial and ethnic minorities compared to White people. Studies have not sufficiently examined how sex and age interact with race/ethnicity, and potentially shape COVID-19 outcomes. We sought to examine disparities in COVID-19 outcomes by race, sex and age over time, leveraging data from Michigan, the only state whose Department of Health and Human Services (DHSS) publishes cross-sectional race, sex and age data on COVID-19.MethodsThis is an observational study using publicly available COVID-19 data (weekly cases, deaths, and vaccinations) from August 31 2020 to June 9 2021. Outcomes for descriptive analysis were age-standardized COVID-19 incidence and mortality rates, case-fatality rates by race, sex, and age, and within-gender and within-race incidence rate ratios and mortality rate ratios. We used descriptive statistics and linear regressions with age, race, and sex as independent variables.ResultsThe within-sex Black-White racial gap in COVID-19 incidence and mortality decreased at a similar rate among men and women but the remained wider among men. As of June 2021, compared to White people, incidence was lower among Asian American and Pacific Islander people by 2644 cases per 100,000 people and higher among Black people by 1464 cases per 100,000 people. Mortality was higher among those aged 60 or greater by 743.6 deaths per 100,000 people vs those 0–39. The interaction between race and age was significant between Black race and age 60 or greater, with an additional 708.5 deaths per 100,000 people vs White people aged 60 or greater. Black people had a higher case fatality rate than White people.ConclusionCOVID-19 incidence, mortality and vaccination patterns varied over time by race, age and sex. Black-White disparities decreased over time, with a larger effect on Black men, and Older Black people were particularly more vulnerable to COVID-19 in terms of mortality. Considering different individual characteristics such as age may further help elucidate the mechanisms behind racial and gender health disparities.

  13. o

    Replication code for: Increased homicide played a key role in driving...

    • openicpsr.org
    Updated Jul 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Michael Light; Karl Karl Vachuska (2024). Replication code for: Increased homicide played a key role in driving Black-White disparities in life expectancy among men during the COVID-19 pandemic [Dataset]. http://doi.org/10.3886/E208088V1
    Explore at:
    Dataset updated
    Jul 22, 2024
    Dataset provided by
    University of Wisconsin-Madison
    Authors
    Michael Light; Karl Karl Vachuska
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Disparities in life expectancy between Black and White Americans increased substantially during the COVID-19 pandemic. During the same period, the US experienced the largest increase in homicide on record. Yet, little research has examined the contribution of homicide to Black-White disparities in longevity in recent years. Using mortality data and population estimates, we conduct a comprehensive decomposition of the drivers of Black-White inequality in life expectancy and lifespan variability between 2019 and 2021 among men. We find that homicide is one of the principal reasons why lifespans have become shorter for Black men than White men in recent years. In 2020 and 2021, homicide was the leading contributor to inequality in both life expectancy and lifespan variability between Black and White men, accounting for far more of the racial gap in longevity and variability than deaths from COVID-19. Addressing homicides should be at the forefront of any public health discussion aimed at promoting racial health equity.

  14. f

    S1 Raw data -

    • plos.figshare.com
    xlsx
    Updated Aug 31, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Max Jordan Nguemeni Tiako; Alyssa Browne (2023). S1 Raw data - [Dataset]. http://doi.org/10.1371/journal.pone.0288383.s001
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Aug 31, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Max Jordan Nguemeni Tiako; Alyssa Browne
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    BackgroundCOVID-19 has had a disproportionate impact on racial and ethnic minorities compared to White people. Studies have not sufficiently examined how sex and age interact with race/ethnicity, and potentially shape COVID-19 outcomes. We sought to examine disparities in COVID-19 outcomes by race, sex and age over time, leveraging data from Michigan, the only state whose Department of Health and Human Services (DHSS) publishes cross-sectional race, sex and age data on COVID-19.MethodsThis is an observational study using publicly available COVID-19 data (weekly cases, deaths, and vaccinations) from August 31 2020 to June 9 2021. Outcomes for descriptive analysis were age-standardized COVID-19 incidence and mortality rates, case-fatality rates by race, sex, and age, and within-gender and within-race incidence rate ratios and mortality rate ratios. We used descriptive statistics and linear regressions with age, race, and sex as independent variables.ResultsThe within-sex Black-White racial gap in COVID-19 incidence and mortality decreased at a similar rate among men and women but the remained wider among men. As of June 2021, compared to White people, incidence was lower among Asian American and Pacific Islander people by 2644 cases per 100,000 people and higher among Black people by 1464 cases per 100,000 people. Mortality was higher among those aged 60 or greater by 743.6 deaths per 100,000 people vs those 0–39. The interaction between race and age was significant between Black race and age 60 or greater, with an additional 708.5 deaths per 100,000 people vs White people aged 60 or greater. Black people had a higher case fatality rate than White people.ConclusionCOVID-19 incidence, mortality and vaccination patterns varied over time by race, age and sex. Black-White disparities decreased over time, with a larger effect on Black men, and Older Black people were particularly more vulnerable to COVID-19 in terms of mortality. Considering different individual characteristics such as age may further help elucidate the mechanisms behind racial and gender health disparities.

  15. f

    Data from: Racial inequalities and death on the horizon: COVID-19 and...

    • scielo.figshare.com
    jpeg
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Roberta Gondim de Oliveira; Ana Paula da Cunha; Ana Giselle dos Santos Gadelha; Christiane Goulart Carpio; Rachel Barros de Oliveira; Roseane Maria Corrêa (2023). Racial inequalities and death on the horizon: COVID-19 and structural racism [Dataset]. http://doi.org/10.6084/m9.figshare.14280810.v1
    Explore at:
    jpegAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    SciELO journals
    Authors
    Roberta Gondim de Oliveira; Ana Paula da Cunha; Ana Giselle dos Santos Gadelha; Christiane Goulart Carpio; Rachel Barros de Oliveira; Roseane Maria Corrêa
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    COVID-19 incidence and mortality in countries with heavy social inequalities differ in population terms. In countries like Brazil with colonial histories and traditions, the social markers of differences are heavily anchored in social and racial demarcation, and the political and social dynamics and processes based on structural racism act on this demarcation. The pandemic’s actual profile in Brazil clashes with narratives according to which COVID-19 is a democratic pandemic, an argument aligned with the rhetoric of racial democracy that represents a powerful strategy aimed at maintaining the subaltern place of racialized populations such as indigenous peoples and blacks, as a product of modern coloniality. This essay focuses on the pandemic’s profile in the Brazilian black population, in dialogue with decolonial contributions and critical readings of racism. The authors discuss government responses and COVID-19 indicators according to race/color, demonstrating the maintenance of historical storylines that continue to threaten black lives. The article also discusses the importance of local resistance movements, organized in the favelas, precarious urban spaces underserved by the State and occupied by black Brazilians.

  16. A

    ‘COVID-19 Cases by Population Characteristics Over Time’ analyzed by...

    • analyst-2.ai
    Updated Feb 15, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2022). ‘COVID-19 Cases by Population Characteristics Over Time’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/data-gov-covid-19-cases-by-population-characteristics-over-time-097d/6c8f14dd/?iid=004-510&v=presentation
    Explore at:
    Dataset updated
    Feb 15, 2022
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘COVID-19 Cases by Population Characteristics Over Time’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/a3291d85-0076-43c5-a59c-df49480cdc6d on 13 February 2022.

    --- Dataset description provided by original source is as follows ---

    Note: On January 22, 2022, system updates to improve the timeliness and accuracy of San Francisco COVID-19 cases and deaths data were implemented. You might see some fluctuations in historic data as a result of this change. Due to the changes, starting on January 22, 2022, the number of new cases reported daily will be higher than under the old system as cases that would have taken longer to process will be reported earlier.

    A. SUMMARY This dataset shows San Francisco COVID-19 cases by population characteristics and by specimen collection date. Cases are included on the date the positive test was collected.

    Population characteristics are subgroups, or demographic cross-sections, like age, race, or gender. The City tracks how cases have been distributed among different subgroups. This information can reveal trends and disparities among groups.

    Data is lagged by five days, meaning the most recent specimen collection date included is 5 days prior to today. Tests take time to process and report, so more recent data is less reliable.

    B. HOW THE DATASET IS CREATED Data on the population characteristics of COVID-19 cases and deaths are from: * Case interviews * Laboratories * Medical providers

    These multiple streams of data are merged, deduplicated, and undergo data verification processes. This data may not be immediately available for recently reported cases because of the time needed to process tests and validate cases. Daily case totals on previous days may increase or decrease. Learn more.

    Data are continually updated to maximize completeness of information and reporting on San Francisco residents with COVID-19.

    Data notes on each population characteristic type is listed below.

    Race/ethnicity * We include all race/ethnicity categories that are collected for COVID-19 cases. * The population estimates for the "Other" or “Multi-racial” groups should be considered with caution. The Census definition is likely not exactly aligned with how the City collects this data. For that reason, we do not recommend calculating population rates for these groups.

    Sexual orientation * Sexual orientation data is collected from individuals who are 18 years old or older. These individuals can choose whether to provide this information during case interviews. Learn more about our data collection guidelines. * The City began asking for this information on April 28, 2020.

    Gender * The City collects information on gender identity using these guidelines.

    Comorbidities * Underlying conditions are reported when a person has one or more underlying health conditions at the time of diagnosis or death.

    Transmission type * Information on transmission of COVID-19 is based on case interviews with individuals who have a confirmed positive test. Individuals are asked if they have been in close contact with a known COVID-19 case. If they answer yes, transmission category is recorded as contact with a known case. If they report no contact with a known case, transmission category is recorded as community transmission. If the case is not interviewed or was not asked the question, they are counted as unknown.

    Homelessness Persons are identified as homeless based on several data sources: * self-reported living situation
    * the location at the time of testing * Department of Public Health homelessness and health databases * Residents in Single-Room Occupancy hotels are not included in these figures.
    These methods serve as an estimate of persons experiencing homelessness. They may not meet other homelessness definitions.

    Skilled Nursing Facility (SNF) occupancy * A Skilled Nursing

    --- Original source retains full ownership of the source dataset ---

  17. Leading causes of death among the white population in the United States...

    • statista.com
    Updated Jun 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Leading causes of death among the white population in the United States 2020-2022 [Dataset]. https://www.statista.com/statistics/233304/distribution-of-the-10-leading-causes-of-death-among-whites-in-2016/
    Explore at:
    Dataset updated
    Jun 25, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    The leading causes of death among the white population of the United States are cardiovascular diseases and cancer. Cardiovascular diseases and cancer accounted for a combined **** percent of all deaths among this population in 2022. In 2020 and 2021, COVID-19 was the third leading cause of death among white people. Disparities in causes of death In the United States, there exist disparities in the leading causes of death based on race and ethnicity. For example, chronic liver disease and cirrhosis is the ***** leading cause of death among the white population and the ****** among the Hispanic population, but is not among the ten leading causes for Black people. On the other hand, homicide is the ******* leading cause of death among the Black population, but is not among the 10 leading causes for whites or Hispanics. However, cardiovascular diseases and cancer by far account for the highest share of deaths for every race and ethnicity. Diseases of despair The American Indian and Alaska Native population in the United States has the highest rates of death from suicide, drug overdose, and alcohol. Together, these three behavior-related conditions are often referred to as diseases of despair. Asians have by far the lowest rates of death due to drug overdose and alcohol, as well as slightly lower rates of suicide.

  18. COVID-19 Case Surveillance Public Use Data

    • data.cdc.gov
    • healthdata.gov
    • +6more
    application/rdfxml +5
    Updated Jul 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CDC Data, Analytics and Visualization Task Force (2024). COVID-19 Case Surveillance Public Use Data [Dataset]. https://data.cdc.gov/w/vbim-akqf/tdwk-ruhb?cur=Il2CHDHWMfO
    Explore at:
    csv, application/rssxml, application/rdfxml, tsv, xml, jsonAvailable download formats
    Dataset updated
    Jul 9, 2024
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Authors
    CDC Data, Analytics and Visualization Task Force
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Description

    Note: Reporting of new COVID-19 Case Surveillance data will be discontinued July 1, 2024, to align with the process of removing SARS-CoV-2 infections (COVID-19 cases) from the list of nationally notifiable diseases. Although these data will continue to be publicly available, the dataset will no longer be updated.

    Authorizations to collect certain public health data expired at the end of the U.S. public health emergency declaration on May 11, 2023. The following jurisdictions discontinued COVID-19 case notifications to CDC: Iowa (11/8/21), Kansas (5/12/23), Kentucky (1/1/24), Louisiana (10/31/23), New Hampshire (5/23/23), and Oklahoma (5/2/23). Please note that these jurisdictions will not routinely send new case data after the dates indicated. As of 7/13/23, case notifications from Oregon will only include pediatric cases resulting in death.

    This case surveillance public use dataset has 12 elements for all COVID-19 cases shared with CDC and includes demographics, any exposure history, disease severity indicators and outcomes, presence of any underlying medical conditions and risk behaviors, and no geographic data.

    CDC has three COVID-19 case surveillance datasets:

    The following apply to all three datasets:

    Overview

    The COVID-19 case surveillance database includes individual-level data reported to U.S. states and autonomous reporting entities, including New York City and the District of Columbia (D.C.), as well as U.S. territories and affiliates. On April 5, 2020, COVID-19 was added to the Nationally Notifiable Condition List and classified as “immediately notifiable, urgent (within 24 hours)” by a Council of State and Territorial Epidemiologists (CSTE) Interim Position Statement (Interim-20-ID-01). CSTE updated the position statement on August 5, 2020, to clarify the interpretation of antigen detection tests and serologic test results within the case classification (Interim-20-ID-02). The statement also recommended that all states and territories enact laws to make COVID-19 reportable in their jurisdiction, and that jurisdictions conducting surveillance should submit case notifications to CDC. COVID-19 case surveillance data are collected by jurisdictions and reported voluntarily to CDC.

    For more information: NNDSS Supports the COVID-19 Response | CDC.

    The deidentified data in the “COVID-19 Case Surveillance Public Use Data” include demographic characteristics, any exposure history, disease severity indicators and outcomes, clinical data, laboratory diagnostic test results, and presence of any underlying medical conditions and risk behaviors. All data elements can be found on the COVID-19 case report form located at www.cdc.gov/coronavirus/2019-ncov/downloads/pui-form.pdf.

    COVID-19 Case Reports

    COVID-19 case reports have been routinely submitted using nationally standardized case reporting forms. On April 5, 2020, CSTE released an Interim Position Statement with national surveillance case definitions for COVID-19 included. Current versions of these case definitions are available here: https://ndc.services.cdc.gov/case-definitions/coronavirus-disease-2019-2021/.

    All cases reported on or after were requested to be shared by public health departments to CDC using the standardized case definitions for laboratory-confirmed or probable cases. On May 5, 2020, the standardized case reporting form was revised. Case reporting using this new form is ongoing among U.S. states and territories.

    Data are Considered Provisional

    • The COVID-19 case surveillance data are dynamic; case reports can be modified at any time by the jurisdictions sharing COVID-19 data with CDC. CDC may update prior cases shared with CDC based on any updated information from jurisdictions. For instance, as new information is gathered about previously reported cases, health departments provide updated data to CDC. As more information and data become available, analyses might find changes in surveillance data and trends during a previously reported time window. Data may also be shared late with CDC due to the volume of COVID-19 cases.
    • Annual finalized data: To create the final NNDSS data used in the annual tables, CDC works carefully with the reporting jurisdictions to reconcile the data received during the year until each state or territorial epidemiologist confirms that the data from their area are correct.
    • Access Addressing Gaps in Public Health Reporting of Race and Ethnicity for COVID-19, a report from the Council of State and Territorial Epidemiologists, to better understand the challenges in completing race and ethnicity data for COVID-19 and recommendations for improvement.

    Data Limitations

    To learn more about the limitations in using case surveillance data, visit FAQ: COVID-19 Data and Surveillance.

    Data Quality Assurance Procedures

    CDC’s Case Surveillance Section routinely performs data quality assurance procedures (i.e., ongoing corrections and logic checks to address data errors). To date, the following data cleaning steps have been implemented:

    • Questions that have been left unanswered (blank) on the case report form are reclassified to a Missing value, if applicable to the question. For example, in the question “Was the individual hospitalized?” where the possible answer choices include “Yes,” “No,” or “Unknown,” the blank value is recoded to Missing because the case report form did not include a response to the question.
    • Logic checks are performed for date data. If an illogical date has been provided, CDC reviews the data with the reporting jurisdiction. For example, if a symptom onset date in the future is reported to CDC, this value is set to null until the reporting jurisdiction updates the date appropriately.
    • Additional data quality processing to recode free text data is ongoing. Data on symptoms, race and ethnicity, and healthcare worker status have been prioritized.

    Data Suppression

    To prevent release of data that could be used to identify people, data cells are suppressed for low frequency (<5) records and indirect identifiers (e.g., date of first positive specimen). Suppression includes rare combinations of demographic characteristics (sex, age group, race/ethnicity). Suppressed values are re-coded to the NA answer option; records with data suppression are never removed.

    For questions, please contact Ask SRRG (eocevent394@cdc.gov).

    Additional COVID-19 Data

    COVID-19 data are available to the public as summary or aggregate count files, including total counts of cases and deaths by state and by county. These

  19. Leading causes of death in the United States 2022

    • statista.com
    • ai-chatbox.pro
    Updated Apr 11, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Leading causes of death in the United States 2022 [Dataset]. https://www.statista.com/statistics/248619/leading-causes-of-death-in-the-us/
    Explore at:
    Dataset updated
    Apr 11, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2022
    Area covered
    United States
    Description

    Heart disease is currently the leading cause of death in the United States. In 2022, COVID-19 was the fourth leading cause of death in the United States, accounting for almost six percent of all deaths that year. The leading causes of death worldwide are similar to those in the United States. However, diarrheal diseases and neonatal conditions are major causes of death worldwide, but are not among the leading causes in the United States. Instead, accidents and chronic liver disease have a larger impact in the United States.

    Racial differences

    In the United States, there exist slight differences in leading causes of death depending on race and ethnicity. For example, assault, or homicide, accounts for around three percent of all deaths among the Black population but is not even among the leading causes of death for other races and ethnicities. However, heart disease and cancer are still the leading causes of death for all races and ethnicities.

    Leading causes of death among men vs women

    Similarly, there are also differences in the leading causes of death in the U.S. between men and women. For example, among men, intentional self-harm accounts for around two percent of all deaths but is not among the leading causes of death among women. On the other hand, influenza and pneumonia account for more deaths among women than men.

  20. Excess mortality in England and English regions: March 2020 to December 2023...

    • gov.uk
    Updated Feb 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for Health Improvement and Disparities (2024). Excess mortality in England and English regions: March 2020 to December 2023 [Dataset]. https://www.gov.uk/government/statistics/excess-mortality-in-england-and-english-regions
    Explore at:
    Dataset updated
    Feb 20, 2024
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    Office for Health Improvement and Disparities
    Area covered
    England
    Description

    This analysis is no longer being updated. This is because the methodology and data for baseline measurements is no longer applicable.

    From February 2024, excess mortality reporting is available at: Excess mortality in England.

    Measuring excess mortality: a guide to the main reports details the different analysis available and how and when they should be used for the UK and England.

    The data in these reports is from 20 March 2020 to 29 December 2023. The first 2 reports on this page provide an estimate of excess mortality during and after the COVID-19 pandemic in:

    • England
    • English regions

    ‘Excess mortality’ in these analyses is defined as the number of deaths that are above the estimated number expected. The expected number of deaths is modelled using 5 years of data from preceding years to estimate the number of death registrations expected in each week.

    In both reports, excess deaths are broken down by age, sex, upper tier local authority, ethnic group, level of deprivation, cause of death and place of death. The England report also includes a breakdown by region.

    For previous reports, see:

    If you have any comments, questions or feedback, contact us at pha-ohid@dhsc.gov.uk.

    Other excess mortality analyses

    We also publish a set of bespoke analyses using the same excess mortality methodology and data but cut in ways that are not included in the England and English regions reports on this page.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Centers for Disease Control and Prevention (2025). Provisional COVID-19 Deaths: Distribution of Deaths by Race and Hispanic Origin [Dataset]. https://catalog.data.gov/dataset/provisional-death-counts-for-coronavirus-disease-covid-19-distribution-of-deaths-by-race-a
Organization logo

Provisional COVID-19 Deaths: Distribution of Deaths by Race and Hispanic Origin

Explore at:
Dataset updated
Apr 23, 2025
Dataset provided by
Centers for Disease Control and Preventionhttp://www.cdc.gov/
Description

Effective September 27, 2023, this dataset will no longer be updated. Similar data are accessible from wonder.cdc.gov. This data file contains the following indicators that can be used to illustrate potential differences in the burden of deaths due to COVID-19 according to race and ethnicity: count of COVID-19 deaths, distribution of COVID-19 deaths, unweighted distribution of population, and weighted distribution of population.

Search
Clear search
Close search
Google apps
Main menu