59 datasets found
  1. e

    Race in the US by Dot Density

    • coronavirus-resources.esri.com
    • hub.arcgis.com
    • +1more
    Updated Jan 10, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS Living Atlas Team (2020). Race in the US by Dot Density [Dataset]. https://coronavirus-resources.esri.com/maps/71df79b33d4e4db28c915a9f16c3074e
    Explore at:
    Dataset updated
    Jan 10, 2020
    Dataset authored and provided by
    ArcGIS Living Atlas Team
    Area covered
    Description

    This map is designed to work in the new ArcGIS Online Map Viewer. Open in Map Viewer to view map. What does this map show?This map shows the population in the US by race. The map shows this pattern nationwide for states, counties, and tracts. Open the map in the new ArcGIS Online Map Viewer Beta to see the dot density pattern. What is dot density?The density is visualized by randomly placing one dot per a given value for the desired attribute. Unlike choropleth visualizations, dot density can be mapped using total counts since the size of the polygon plays a significant role in the perceived density of the attribute.Where is the data from?The data in this map comes from the most current American Community Survey (ACS) from the U.S. Census Bureau. Table B03002. The layer being used if updated with the most current data each year when the Census releases new estimates. The layer can be found in ArcGIS Living Atlas of the World: ACS Race and Hispanic Origin Variables - Boundaries.What questions does this map answer?Where do people of different races live?Do people of a similar race live close to people of their own race?Which cities have a diverse range of different races? Less diverse?

  2. a

    Global Ethnic Groups

    • hub.arcgis.com
    • sdgs-uneplive.opendata.arcgis.com
    Updated Jul 23, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UN Environment, Early Warning &Data Analytics (2015). Global Ethnic Groups [Dataset]. https://hub.arcgis.com/maps/uneplive::global-ethnic-groups/about
    Explore at:
    Dataset updated
    Jul 23, 2015
    Dataset authored and provided by
    UN Environment, Early Warning &Data Analytics
    Area covered
    Description

    This ethnicity dataset (GREG) is a digital version of the paper Soviet Narodov Mira atlas created in 1964. In 2010 the GREG (Geo-referencing of ethnic groups) project, used maps and data drawn from the Narodov Mira atlas to create a GIS (Geographic Information Systems) version of the atlas (2010). ETH ZurichFirst developed by G.P. Murdock in the 1940s, is an ethnographic classification system on human behavior, social life and customs, material culture, and human-ecological environments (2003). University of California

  3. 10 powerful tools and maps with which to teach about population and...

    • library.ncge.org
    Updated Jul 27, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NCGE (2021). 10 powerful tools and maps with which to teach about population and demographics [Dataset]. https://library.ncge.org/documents/bae1d5f1cba243ea88d09b043b8444ee
    Explore at:
    Dataset updated
    Jul 27, 2021
    Dataset provided by
    National Council for Geographic Educationhttp://www.ncge.org/
    Authors
    NCGE
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    Author: Joseph Kerski, post_secondary_educator, Esri and University of DenverGrade/Audience: high school, ap human geography, post secondary, professional developmentResource type: lessonSubject topic(s): population, maps, citiesRegion: africa, asia, australia oceania, europe, north america, south america, united states, worldStandards: All APHG population tenets. Geography for Life cultural and population geography standards. Objectives: 1. Understand how population change and demographic characteristics are evident at a variety of scales in a variety of places around the world. 2. Understand the whys of where through analysis of change over space and time. 3. Develop skills using spatial data and interactive maps. 4. Understand how population data is communicated using 2D and 3D maps, visualizations, and symbology. Summary: Teaching and learning about demographics and population change in an effective, engaging manner is enriched and enlivened through the use of web mapping tools and spatial data. These tools, enabled by the advent of cloud-based geographic information systems (GIS) technology, bring problem solving, critical thinking, and spatial analysis to every classroom instructor and student (Kerski 2003; Jo, Hong, and Verma 2016).

  4. s

    ESRI DATA: World Base Maps

    • geo2.scholarsportal.info
    Updated Nov 1, 2012
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2012). ESRI DATA: World Base Maps [Dataset]. http://geo2.scholarsportal.info/proxy.html?http:_giseditor.scholarsportal.info/details/view.html?uri=/NAP/UT/1455.xml
    Explore at:
    Dataset updated
    Nov 1, 2012
    Time period covered
    Jan 1, 2012 - Nov 1, 2012
    Area covered
    Description

    ESRI DATA: World Countries and World Administrative Areas; 2010 US Census datasets with their new geometry and attributes. Block Group, Tract, County and State are all represented as polygons with over 40 attribute fields containing population totals by age and race, along with family and household information. Census Blocks are represented as points with total population and household information; European demographics datasets, North America Street Map, World Base Maps, mainly topographic data such as roads, lakes, administrative boundaries

  5. World Demographics

    • hub.arcgis.com
    • data.amerigeoss.org
    Updated Sep 3, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2013). World Demographics [Dataset]. https://hub.arcgis.com/maps/56bb3556bc5542cfa217348b09c80efb
    Explore at:
    Dataset updated
    Sep 3, 2013
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    ArcGIS includes a comprehensive set of demographic and purchasing maps and data for dozens of countries around the world. This includes recent demographic information such as total population, family size, marital status, population by age, and more. It also includes purchasing information on many types of products. This information can be accessed as ready-to-use map layers, including pre-configured popups, which can be re-styled and added to your maps and apps. The primary source of this information is Michael Bauer Research.This map features a small selection of these map layers that are available to users with an ArcGIS Online subscription. You can preview several of the map layers in this map. To access the map layers individually, please visit the Demographics and Lifestyle group, which features a complete set of ready-to-use maps and map layers, and can be searched for maps in specific countries.

  6. c

    Dot-density race map (Bill Rankin, 2010)

    • hub.chicagowilderness.org
    • cw-fieldmuseum.hub.arcgis.com
    Updated Nov 17, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Field Museum (2021). Dot-density race map (Bill Rankin, 2010) [Dataset]. https://hub.chicagowilderness.org/documents/fa26472f46364a6ba157f0ee185de244
    Explore at:
    Dataset updated
    Nov 17, 2021
    Dataset authored and provided by
    Field Museum
    Description

    This dot map shows three kinds of urban transitions. First, there are indeed areas where changes take place at very precise boundaries — such as between Lawndale and the Little Village, or Austin and Oak Park — and Chicago has more of these stark borders than most cities in the world. But transitions also take place through gradients and gaps as well, especially in the northwest and southeast. Using graphic conventions which allow these other possibilities to appear takes much more data, and requires more nuance in the way we talk about urban geography, but a cartography without boundaries can also make simplistic policy or urban design more difficult — in a good way.

  7. Population Density Around the Globe

    • directrelief.hub.arcgis.com
    • covid19.esriuk.com
    • +2more
    Updated May 20, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Direct Relief (2020). Population Density Around the Globe [Dataset]. https://directrelief.hub.arcgis.com/datasets/DirectRelief::population-density-around-the-globe
    Explore at:
    Dataset updated
    May 20, 2020
    Dataset authored and provided by
    Direct Reliefhttp://directrelief.org/
    Area covered
    Description

    Census data reveals that population density varies noticeably from area to area. Small area census data do a better job depicting where the crowded neighborhoods are. In this map, the yellow areas of highest density range from 30,000 to 150,000 persons per square kilometer. In those areas, if the people were spread out evenly across the area, there would be just 4 to 9 meters between them. Very high density areas exceed 7,000 persons per square kilometer. High density areas exceed 5,200 persons per square kilometer. The last categories break at 3,330 persons per square kilometer, and 1,500 persons per square kilometer.This dataset is comprised of multiple sources. All of the demographic data are from Michael Bauer Research with the exception of the following countries:Australia: Esri Australia and MapData ServicesCanada: Esri Canada and EnvironicsFrance: Esri FranceGermany: Esri Germany and NexigaIndia: Esri India and IndicusJapan: Esri JapanSouth Korea: Esri Korea and OPENmateSpain: Esri España and AISUnited States: Esri Demographics

  8. Distribution of the global population by continent 2024

    • statista.com
    • ai-chatbox.pro
    Updated Mar 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Distribution of the global population by continent 2024 [Dataset]. https://www.statista.com/statistics/237584/distribution-of-the-world-population-by-continent/
    Explore at:
    Dataset updated
    Mar 27, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    In the middle of 2023, about 60 percent of the global population was living in Asia.The total world population amounted to 8.1 billion people on the planet. In other words 4.7 billion people were living in Asia as of 2023. Global populationDue to medical advances, better living conditions and the increase of agricultural productivity, the world population increased rapidly over the past century, and is expected to continue to grow. After reaching eight billion in 2023, the global population is estimated to pass 10 billion by 2060. Africa expected to drive population increase Most of the future population increase is expected to happen in Africa. The countries with the highest population growth rate in 2024 were mostly African countries. While around 1.47 billion people live on the continent as of 2024, this is forecast to grow to 3.9 billion by 2100. This is underlined by the fact that most of the countries wit the highest population growth rate are found in Africa. The growing population, in combination with climate change, puts increasing pressure on the world's resources.

  9. Percentage of U.S. population as of 2016 and 2060, by race and Hispanic...

    • statista.com
    Updated Jul 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Percentage of U.S. population as of 2016 and 2060, by race and Hispanic origin [Dataset]. https://www.statista.com/statistics/270272/percentage-of-us-population-by-ethnicities/
    Explore at:
    Dataset updated
    Jul 5, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2016
    Area covered
    United States
    Description

    The statistic shows the share of U.S. population, by race and Hispanic origin, in 2016 and a projection for 2060. As of 2016, about 17.79 percent of the U.S. population was of Hispanic origin. Race and ethnicity in the U.S. For decades, America was a melting pot of the racial and ethnical diversity of its population. The number of people of different ethnic groups in the United States has been growing steadily over the last decade, as has the population in total. For example, 35.81 million Black or African Americans were counted in the U.S. in 2000, while 43.5 million Black or African Americans were counted in 2017.

    The median annual family income in the United States in 2017 earned by Black families was about 50,870 U.S. dollars, while the average family income earned by the Asian population was about 92,784 U.S. dollars. This is more than 15,000 U.S. dollars higher than the U.S. average family income, which was 75,938 U.S. dollars.

    The unemployment rate varies by ethnicity as well. In 2018, about 6.5 percent of the Black or African American population in the United States were unemployed. In contrast to that, only three percent of the population with Asian origin was unemployed.

  10. Non-White Population in the US (Current ACS)

    • gis-for-racialequity.hub.arcgis.com
    Updated Jul 2, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban Observatory by Esri (2021). Non-White Population in the US (Current ACS) [Dataset]. https://gis-for-racialequity.hub.arcgis.com/maps/bd59d1d55f064d1b815997f4b6c7735f
    Explore at:
    Dataset updated
    Jul 2, 2021
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Urban Observatory by Esri
    Area covered
    Description

    This map shows the percentage of people who identify as something other than non-Hispanic white throughout the US according to the most current American Community Survey. The pattern is shown by states, counties, and Census tracts. Zoom or search for anywhere in the US to see a local pattern. Click on an area to learn more. Filter to your area and save a new version of the map to use for your own mapping purposes.The Arcade expression used was: 100 - B03002_calc_pctNHWhiteE, which is simply 100 minus the percent of population who identifies as non-Hispanic white. The data is from the U.S. Census Bureau's American Community Survey (ACS). The figures in this map update automatically annually when the newest estimates are released by ACS. For more detailed metadata, visit the ArcGIS Living Atlas Layer: ACS Race and Hispanic Origin Variables - Boundaries.The data on race were derived from answers to the question on race that was asked of individuals in the United States. The Census Bureau collects racial data in accordance with guidelines provided by the U.S. Office of Management and Budget (OMB), and these data are based on self-identification. The racial categories included in the census questionnaire generally reflect a social definition of race recognized in this country and not an attempt to define race biologically, anthropologically, or genetically. The categories represent a social-political construct designed for collecting data on the race and ethnicity of broad population groups in this country, and are not anthropologically or scientifically based. Learn more here.Other maps of interest:American Indian or Alaska Native Population in the US (Current ACS)Asian Population in the US (Current ACS)Black or African American Population in the US (Current ACS)Hawaiian or Other Pacific Islander Population in the US (Current ACS)Hispanic or Latino Population in the US (Current ACS) (some people prefer Latinx)Population who are Some Other Race in the US (Current ACS)Population who are Two or More Races in the US (Current ACS) (some people prefer mixed race or multiracial)White Population in the US (Current ACS)Race in the US by Dot DensityWhat is the most common race/ethnicity?

  11. a

    Where are there racial disparities in homeownership?

    • gis-for-racialequity.hub.arcgis.com
    Updated Jul 2, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS Living Atlas Team (2020). Where are there racial disparities in homeownership? [Dataset]. https://gis-for-racialequity.hub.arcgis.com/maps/f0866cb108a7404dad035bb27cf8fe2d
    Explore at:
    Dataset updated
    Jul 2, 2020
    Dataset authored and provided by
    ArcGIS Living Atlas Team
    Area covered
    Description

    This map compares homeownership rates between households with a non-Hispanic White householder and households with a Black or African American householder. This map shows us where there is a disparity in home ownership based on race/ethnicity. The pattern is shown at the state, county, and tract levels. Zoom or pan around the map to explore the map. You can also search for your city and explore the pattern in your local area. If you zoom out, you can see the nationwide pattern. The data comes from the most current release of American Community Survey (ACS) estimates from the U.S. Census Bureau. The layer being used in this map can be found here, and also within ArcGIS Living Atlas of the World. Click here to find more ACS layers within Living Atlas. Note: areas where there are no Black or White householders, no symbol is shown. This map compares areas where there are both White and Black householders.

  12. n

    Effectively and accurately mapping global biodiversity patterns for...

    • data.niaid.nih.gov
    • dataone.org
    • +1more
    zip
    Updated Mar 31, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alice Hughes; Michael C. Orr; Qinmin Yang; Huijie Qiao (2021). Effectively and accurately mapping global biodiversity patterns for different regions and taxa [Dataset]. http://doi.org/10.5061/dryad.hhmgqnkgd
    Explore at:
    zipAvailable download formats
    Dataset updated
    Mar 31, 2021
    Dataset provided by
    Zhejiang University
    Chinese Academy of Sciences
    Authors
    Alice Hughes; Michael C. Orr; Qinmin Yang; Huijie Qiao
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    Aim

    To understand the representativeness and accuracy of expert range maps, and explore alternate methods for accurately mapping species distributions.

    Location

    Global

    Time period

    Contemporary

    Major taxa studied

    Terrestrial vertebrates, and Odonata

    Methods

    We analyzed the biases in 50,768 animal IUCN, GARD and BirdLife species maps, assessed the links between these maps and existing political and various non-ecological boundaries to assess their accuracy for certain types of analysis. We cross-referenced each species map with data from GBIF to assess if maps captured the whole range of a species, and what percentage of occurrence points fall within the species’ assessed ranges. In addition, we use a number of alternate methods to map diversity patterns and compare these to high resolution models of distribution patterns.

    Results

    On average 20-30% of species’ non-coastal range boundaries overlapped with administrative national boundaries. In total, 60% of areas with the highest spatial turnover in species (high densities of species range boundaries marking high levels of shift in the community of species present) occurred at political boundaries, especially commonly in Southeast Asia. Different biases existed for different taxa, with gridded analysis in reptiles, river-basins in Odonata (except the Americas) and county-boundaries for Amphibians in the US. On average, up to half (25-46%) species recorded range points fall outside their mapped distributions. Filtered Minimum-convex polygons performed better than expert range maps in reproducing modeled diversity patterns.

    Main conclusions

    Expert range maps showed high bias at administrative borders in all taxa, but this was highest at the transition from tropical to subtropical regions. Methods used were inconsistent across space, time and taxa, and ranges mapped did not match species distribution data. Alternate approaches can better reconstruct patterns of distribution than expert maps, and data driven approaches are needed to provide reliable alternatives to better understand species distributions.

    Methods Materials and methods

    We use a combination of approaches to explore the relationship between species range maps and geopolitical boundaries and a subset of geographic features. In some cases we used the density of species range boundaries to explore the relationship between these and various features (i.e. administrative boundaries, river basin boundaries etc.). Additionally, species richness and spatial turnover are used to explore changes in richness over short geographic distances. Analyses were conducted in R statistical software unless noted otherwise. All code scripts are available at https://github.com/qiaohj/iucn_fix. Workflows are shown in Figure S1a-c with associated scripts listed.

    Species ranges and boundary density maps

    ERMs (Expert range maps) were downloaded from the IUCN RedList website for mammals (5,709 species), odonates (2,239 species) and amphibians (6,684 species; https://www.iucnredlist.org/resources/grid/spatial-data). Shapefile maps for birds were downloaded from BirdLife (10,423 species, http://datazone.birdlife.org/species/requestdis), and for reptiles from the Global Assessment of Reptile Distributions (GARD) (10,064 species; Roll et al., 2017). Each species’ polygon boundaries were converted to a polylines to show the boundary of each species range (Figure S1a-II; codes are lines 7 – 18 in line2raster_xxxx.r ; xxxx varies based on the taxa). The associated shapefile was then split to produce independent polyline files for each species within each taxon (see Figure S1a-I, codes are lines 29 to 83 in the same file above.).

    To generate species boundary density maps, species range boundaries were rasterized at 1km spatial resolution with an equal area projection (Eckert-IV), and stacked to form a single raster for each taxon (at the level of amphibians, odonates, etc.). This represented the number of species in each group and their overlapping range boundaries (Figure S1b-II, codes are in line2raster_all.r). Each cell value indicated the number of species whose distribution boundaries overlapped with each cell, enabling us to overlay this rasterized information with other features (i.e. administrative boundaries) so that the overlaps between them can be calculated in R. These species boundary density maps underlie most subsequent analyses. R code and caveats are given in the supplements, links are provided in text and Figure S1.

    Geographic boundaries

    Spatial exploration of species range boundaries in ArcGIS suggested that numerous geographic datasets (i.e. political and in few cases geographic features such as river basins) were used to delineate the species ranges for different regions and taxa (this is sometimes part of the methodology in developing ERMs as detailed by Ficetola et al., 2014). Thus in addition to analyzing the administrative bias and the percentage of occurrence records within each species’ ERM for all taxa, additional analyses were conducted when other biases were evident in any given taxa or region (detailed later in methods on a case-by-case basis).

    For all taxa, we assessed the percentage of overlap between species range boundaries and national and provincial boundaries by digitizing each to 1km (equivalent to buffering thie polyline by 500m), both with and without coastal boundaries. An international map was used because international (Western) assessors use them, and does not necessarily denote agreed country boundaries (https://gadm.org/). The different buffers (500m, 1000m, 2500m, 5000m) were added to these administrative boundaries in ArcMap to account for potential, insignificant deviations from political boundaries (Figure S1b). An R script for the same function is provided in “country_line_buffer.r”.

    To establish where multiple species shared range boundaries we reclassified the species range boundary density rasters for each taxa into richness classes using the ArcMap quartile function (Figure S1). From these ten classes the percentage of the top-two, and top-three quartiles of range densities within different buffers (500m, 1000m, 2500m, 5000m) was calculated per country to determine what percentage of highest range boundary density approximately followed administrative borders. This was done because people drawing ERMs may use detailed administrative maps or generalize near political borders, or may use political shapefiles that deviate slightly. It is consequently useful to include varying distances from administrative features to assess how range boundary densities vary in relation to administrative boundaries. Analyses of relationships between individual species range boundaries and administrative boundaries (coastal, non-coastal) were made in R and scripts provided (quantile_country_buffer_overlap.r).

    Spatial turnover and administrative boundaries

    Heatmaps of species richness were generated by summing entire sets of compiled species ranges for each taxon in polygonal form (Figure 1; Figure S1b-I). To assess abrupt diversity changes, standard deviations for 10km blocks were calculated using the block statistics function in ArcMap. Abrupt changes in diversity were signified by high standard deviations based on the cell statistics function in ArcGIS, which represented rapid changes in the number of species present. Maps were then classified into ten categories using the quartile function. Given the high variation in maximum diversity and taxonomic representation, only the top two –three richness categories were retained per taxon. This was then extracted using 1km buffers of national administrative boundaries to assess percentages of administrative boundaries overlapping turnover hotspots by assessing what proportion of political boundaries were covered by these turnover hotspots.

    Taxon-specific analyses

    Data exploration and mapping exposed taxon and regional-specific biases requiring additional analysis. Where other biases and irregularities were clear from visual inspection of the range boundary density maps for each taxa, the possible causes of biases were assessed by comparing range boundary density maps to high-resolution imagery and administrative maps via the ArcGIS server (AGOL). Standardized overlay of the taxon boundary sets with administrative or geophysical features from the image-server revealed three types of bias which were either spatially or taxonomically limited between: 1) amphibians with county borders in the United States, 2) dragonflies and river basins globally and 3) gridding of distributions of reptiles. In these cases, species boundary density maps were used as a basis to identify potential biases which were then explored empirically using appropriate methods.

    For amphibians, counties in the United States (US) were digitized using a county map from the US (https://gadm.org/), then buffered by with 2.5km either side. Amphibian species range boundary density maps were reclassified showing where species range boundaries existed (with other non-range boundary areas reclassified as “no data,”) and all species boundaries numerically indicated (i.e. values of 1 indicates one species range boundary, values of 10 indicates ten species range boundaries). Percentages of species boundary areas falling on county and in the buffers, in addition to species range boundaries which did not overlap with county boundaries were calculated to give measures of what percentage of the species boundaries fell within 2.5km of county boundaries.

    For Odonata, many species were mapped to river basin borders. We used river basins of levels 6-8 (sub-basin to basin) in the river hierarchy (https://hydrosheds.org) to assess the relationship between Odonata boundaries and river boundaries. Two IUCN datasets exist for Odonata; the IUCN Odonata specialist group spatial dataset

  13. Global population 1800-2100, by continent

    • statista.com
    • ai-chatbox.pro
    Updated Jul 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Global population 1800-2100, by continent [Dataset]. https://www.statista.com/statistics/997040/world-population-by-continent-1950-2020/
    Explore at:
    Dataset updated
    Jul 4, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    The world's population first reached one billion people in 1803, and reach eight billion in 2023, and will peak at almost 11 billion by the end of the century. Although it took thousands of years to reach one billion people, it did so at the beginning of a phenomenon known as the demographic transition; from this point onwards, population growth has skyrocketed, and since the 1960s the population has increased by one billion people every 12 to 15 years. The demographic transition sees a sharp drop in mortality due to factors such as vaccination, sanitation, and improved food supply; the population boom that follows is due to increased survival rates among children and higher life expectancy among the general population; and fertility then drops in response to this population growth. Regional differences The demographic transition is a global phenomenon, but it has taken place at different times across the world. The industrialized countries of Europe and North America were the first to go through this process, followed by some states in the Western Pacific. Latin America's population then began growing at the turn of the 20th century, but the most significant period of global population growth occurred as Asia progressed in the late-1900s. As of the early 21st century, almost two thirds of the world's population live in Asia, although this is set to change significantly in the coming decades. Future growth The growth of Africa's population, particularly in Sub-Saharan Africa, will have the largest impact on global demographics in this century. From 2000 to 2100, it is expected that Africa's population will have increased by a factor of almost five. It overtook Europe in size in the late 1990s, and overtook the Americas a decade later. In contrast to Africa, Europe's population is now in decline, as birth rates are consistently below death rates in many countries, especially in the south and east, resulting in natural population decline. Similarly, the population of the Americas and Asia are expected to go into decline in the second half of this century, and only Oceania's population will still be growing alongside Africa. By 2100, the world's population will have over three billion more than today, with the vast majority of this concentrated in Africa. Demographers predict that climate change is exacerbating many of the challenges that currently hinder progress in Africa, such as political and food instability; if Africa's transition is prolonged, then it may result in further population growth that would place a strain on the region's resources, however, curbing this growth earlier would alleviate some of the pressure created by climate change.

  14. Global export data of Race

    • volza.com
    csv
    Updated Jun 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Volza FZ LLC (2025). Global export data of Race [Dataset]. https://www.volza.com/p/race/export/export-from-india/cod-iran/
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jun 24, 2025
    Dataset provided by
    Volza
    Authors
    Volza FZ LLC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Count of exporters, Sum of export value, 2014-01-01/2021-09-30, Count of export shipments
    Description

    71 Global export shipment records of Race with prices, volume & current Buyer's suppliers relationships based on actual Global export trade database.

  15. Data on global crop diversity and crop suitability maps

    • zenodo.org
    tiff, zip
    Updated Jul 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alexandra S Gardner; Brittany T Trew; Ilya MD Maclean; Manmohan D Sharma; Kevin J Gaston; Alexandra S Gardner; Brittany T Trew; Ilya MD Maclean; Manmohan D Sharma; Kevin J Gaston (2024). Data on global crop diversity and crop suitability maps [Dataset]. http://doi.org/10.5281/zenodo.8407962
    Explore at:
    tiff, zipAvailable download formats
    Dataset updated
    Jul 11, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Alexandra S Gardner; Brittany T Trew; Ilya MD Maclean; Manmohan D Sharma; Kevin J Gaston; Alexandra S Gardner; Brittany T Trew; Ilya MD Maclean; Manmohan D Sharma; Kevin J Gaston
    Description

    Data on current and predicted future global crop diversity and individual suitability maps for the twelve most important crops.

    Crop diversity: The total number of crops with suitability score ≥0.6 (crop diversity) calculated as the mean over periods 2008-2019; and projections for 2050-2061 (under RCP4.5 and RCP8.5).

    Important crops: For the twelve most economically important crops, defined as those with the highest global production value in 2022, the mean suitability calculated over periods 2008-2019 and projections for 2050-2061 (under RCP4.5 and RCP8.5).

  16. d

    Digital Distribution Maps of the World's Amphibians

    • search.dataone.org
    • knb.ecoinformatics.org
    Updated Jan 6, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NCEAS 10941: Gotelli: Synthetic macroecological models of species diversity; National Center for Ecological Analysis and Synthesis; NatureServe NatureServe (2015). Digital Distribution Maps of the World's Amphibians [Dataset]. http://doi.org/10.5063/AA/nceas.948.1
    Explore at:
    Dataset updated
    Jan 6, 2015
    Dataset provided by
    Knowledge Network for Biocomplexity
    Authors
    NCEAS 10941: Gotelli: Synthetic macroecological models of species diversity; National Center for Ecological Analysis and Synthesis; NatureServe NatureServe
    Time period covered
    Jan 1, 1800
    Area covered
    World,
    Description

    Although amphibians perform key roles in their ecosystems and contribute significantly to biodiversity, especially in tropical habitats, they are frequently excluded from conservation analyses because of a lack of information about their conservation status and distribution. To enhance our knowledge about amphibians and their conservation needs, three organizations—the Center for Applied Biodiversity Science of Conservation International, the Species Survival Commission of IUCN–World Conservation Union, and NatureServe—launched the Global Amphibian Assessment (GAA) in 2001. The results, published in 2004, represent the first-ever comprehensive status assessment of the world's 5,743 known amphibian species. This project represents the first time that all amphibians have been assessed against the IUCN Red List Categories and Criteria, and as such is an important contribution to the Red List Programme. More than 500 scientists from 60 countries contributed to the three-year study.

    The GAA produced digital distribution maps for all but 101 of described amphibian species worldwide. The localities for unmapped species, generally including those described more than a century ago, are too vague to permit accurate mapping. NatureServe converted these maps to a format similar to that used for the digital range maps of the birds and mammals of the Western Hemisphere. Ranges are annotated to indicate where species are extant, extirpated, and introduced. In addition, NatureServe has updated dozens of maps of North American species subsequent to the original publication of the GAA.

    Here we make these maps available as a free resource for conservationists, researchers, and the general public. To view the map for each species, visit either our InfoNatura or Explorer websites, or the GAA website, search for the species you are interested in, and click on "Range Map." To download the map files in ArcView format, see below. The map files can be viewed using ESRI ArcExplorer software, which can be downloaded for free from ESRI's website. Please contact ESRI, not NatureServe, for any support needs related to the software.

  17. Ethnic groups in Australia in 2021

    • statista.com
    Updated Apr 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Ethnic groups in Australia in 2021 [Dataset]. https://www.statista.com/statistics/260502/ethnic-groups-in-australia/
    Explore at:
    Dataset updated
    Apr 15, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2021
    Area covered
    Australia
    Description

    This statistic shows the share of ethnic groups in Australia in the total population. 33 percent of the total population of Australia are english.

    Australia’s population

    Australia’s ethnic diversity can be attributed to their history and location. The country’s colonization from Europeans is a significant reason for the majority of its population being Caucasian. Additionally, being that Australia is one of the most developed countries closest to Eastern Asia; its Asian population comes as no surprise.

    Australia is one of the world’s most developed countries, often earning recognition as one of the world’s economical leaders. With a more recent economic boom, Australia has become an attractive country for students and workers alike, who seek an opportunity to improve their lifestyle. Over the past decade, Australia’s population has slowly increased and is expected to continue to do so over the next several years. A beautiful landscape, many work opportunities and a high quality of life helped play a role in the country’s development. In 2011, Australia was considered to have one of the highest life expectancies in the world, with the average Australian living to approximately 82 years of age.

    From an employment standpoint, Australia has maintained a rather low employment rate compared to many other developed countries. After experiencing a significant jump in unemployment in 2009, primarily due to the world economic crisis, Australia has been able to remain stable and slightly increase employment year-over-year.

  18. Global import data of Race

    • volza.com
    csv
    Updated Sep 7, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Volza FZ LLC (2025). Global import data of Race [Dataset]. https://www.volza.com/p/race/import/import-in-germany/
    Explore at:
    csvAvailable download formats
    Dataset updated
    Sep 7, 2025
    Dataset provided by
    Volza
    Authors
    Volza FZ LLC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Count of importers, Sum of import value, 2014-01-01/2021-09-30, Count of import shipments
    Description

    238 Global import shipment records of Race with prices, volume & current Buyer's suppliers relationships based on actual Global export trade database.

  19. Global import data of Race

    • volza.com
    csv
    Updated Jun 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Volza FZ LLC (2025). Global import data of Race [Dataset]. https://www.volza.com/p/race/import/import-in-tanzania/
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jun 27, 2025
    Dataset provided by
    Volza
    Authors
    Volza FZ LLC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Count of importers, Sum of import value, 2014-01-01/2021-09-30, Count of import shipments
    Description

    3166 Global import shipment records of Race with prices, volume & current Buyer's suppliers relationships based on actual Global export trade database.

  20. Global import data of Race Stars

    • volza.com
    csv
    Updated Jun 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Volza FZ LLC (2025). Global import data of Race Stars [Dataset]. https://www.volza.com/imports-global/global-import-data-of-race+stars
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jun 30, 2025
    Dataset provided by
    Volza
    Authors
    Volza FZ LLC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Count of importers, Sum of import value, 2014-01-01/2021-09-30, Count of import shipments
    Description

    1371 Global import shipment records of Race Stars with prices, volume & current Buyer's suppliers relationships based on actual Global export trade database.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
ArcGIS Living Atlas Team (2020). Race in the US by Dot Density [Dataset]. https://coronavirus-resources.esri.com/maps/71df79b33d4e4db28c915a9f16c3074e

Race in the US by Dot Density

Explore at:
Dataset updated
Jan 10, 2020
Dataset authored and provided by
ArcGIS Living Atlas Team
Area covered
Description

This map is designed to work in the new ArcGIS Online Map Viewer. Open in Map Viewer to view map. What does this map show?This map shows the population in the US by race. The map shows this pattern nationwide for states, counties, and tracts. Open the map in the new ArcGIS Online Map Viewer Beta to see the dot density pattern. What is dot density?The density is visualized by randomly placing one dot per a given value for the desired attribute. Unlike choropleth visualizations, dot density can be mapped using total counts since the size of the polygon plays a significant role in the perceived density of the attribute.Where is the data from?The data in this map comes from the most current American Community Survey (ACS) from the U.S. Census Bureau. Table B03002. The layer being used if updated with the most current data each year when the Census releases new estimates. The layer can be found in ArcGIS Living Atlas of the World: ACS Race and Hispanic Origin Variables - Boundaries.What questions does this map answer?Where do people of different races live?Do people of a similar race live close to people of their own race?Which cities have a diverse range of different races? Less diverse?

Search
Clear search
Close search
Google apps
Main menu