Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
A growing body of research documents the importance of wealth and the racial wealth gap in perpetuating inequality across generations. We add to this literature by examining the impact of wealth on child income by race, while also extending our analysis to three generations. Our two stage least squares regressions reveal that grandparental and parental wealth and the younger generation’s household income is strongly positively correlated. We further explore the relationship between income and wealth by decomposing the child’s income by race. We find that the disparity in income between black and white respondents is mainly attributable to differences in family background. In context, differences in family background are stronger than differences in educational attainment. When we examine different income percentiles, however, we find that the effect of grandparental and parental wealth endowment is much stronger at the top of the income distribution. These findings indicate that wealth is an important source of income inequality.
In 2023, the Gini index for Black households in the United States stood at 0.5, which was higher than the national index that year. The Census Bureau defines the Gini index as “a statistical measure of income inequality ranging from zero to one. A measure of one indicates perfect inequality, i.e., one household having all the income and the rest having none. A measure of zero indicates perfect equality, i.e., all households having an equal share of income.”
PSID data extract for computing active saving rates of Black and white Americans during 1984-2019.
Does the measurement of the racial wealth gap shift depending on the model, method, and data set used? We contrast the traditional mean Oaxaca-Blinder decomposition with the distributional Recentered Influence Function (RIF) methods. The untransformed, logarithm-transformed, and inverse hyperbolic sine-transformed versions in both Survey of Consumer Finances and Panel Study of Income Dynamics data sets exhibit similarities. The Oaxaca-Blinder (mean) decomposition highlights that receiving an inheritance explains a larger portion of the racial wealth gap than educational attainment. Conversely, the RIF method at the median suggests that educational attainment accounts for more of the wealth gap than inheritance receipt.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the median household incomes over the past decade across various racial categories identified by the U.S. Census Bureau in Oshkosh town. It portrays the median household income of the head of household across racial categories (excluding ethnicity) as identified by the Census Bureau. It also showcases the annual income trends, between 2013 and 2023, providing insights into the economic shifts within diverse racial communities.The dataset can be utilized to gain insights into income disparities and variations across racial categories, aiding in data analysis and decision-making..
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Oshkosh town median household income by race. You can refer the same here
In the U.S., median household income rose from 51,570 U.S. dollars in 1967 to 80,610 dollars in 2023. In terms of broad ethnic groups, Black Americans have consistently had the lowest median income in the given years, while Asian Americans have the highest; median income in Asian American households has typically been around double that of Black Americans.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the median household income across different racial categories in Oshkosh town. It portrays the median household income of the head of household across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to gain insights into economic disparities and trends and explore the variations in median houshold income for diverse racial categories.
Key observations
Based on our analysis of the distribution of Oshkosh town population by race & ethnicity, the population is predominantly White. This particular racial category constitutes the majority, accounting for 89.13% of the total residents in Oshkosh town. Notably, the median household income for White households is $100,019. Interestingly, White is both the largest group and the one with the highest median household income, which stands at $100,019.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Oshkosh town median household income by race. You can refer the same here
New York was the state with the greatest gap between rich and poor, with a Gini coefficient score of 0.52 in 2023. Although not a state, District of Columbia was among the highest Gini coefficients in the United States that year.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This article bridges empirical research on wealth inequality and theoretical perspectives on the influence of racial structures to highlight the empirical implications of historic policy on Black-White inequalities in homeownership. Taking the case of the 1944 GI Bill, I deploy the 1960 IPUMS and restricted administrative data from the U.S. Department of Veterans Affairs to demonstrate that the GI Bill is linked with increased homeownership and home value for Black and White veterans. Notably, however, because of the differential effects of the HLG across race and significant existing racial inequalities in housing outcomes, the policy exacerbated extant racial inequalities. These inequalities have only persisted and intensified into the contemporary period. Finally, I analyze counterfactual scenarios to interrogate how different factors contributed to these inequalities. I conclude with a discussion of the implications of findings for sociological considerations of stratification processes over time, housing and wealth inequality specifically, and how historic policies have reproduced existing racial inequalities.
The data and programs replicating tables and figures from "Wealth of Two Nations: The U.S. Racial Wealth Gap, 1860-2020", by Derenoncourt, Kim, Kuhn, and Schularick are too large to host on the Harvard Dataverse. They are available for download here instead: https://hu.sharepoint.com/:f:/s/HarvardEconomicsDatasets/Eq4g3n5WstlBvdknSsAI_FYBVNFV2trgP1It-Wv0rb9G3w?e=axHfn0 They are also hosted by the authors on openICPSR: https://www.openicpsr.org/openicpsr/project/194203/version/V1/view Please see the ReadMe_DKKS_QJE_2023 file for additional details.
In 2023, the Gini index for households of Asian origin in the United States stood at 0.48. The Census Bureau defines the Gini index as “a statistical measure of income inequality ranging from zero to one. A measure of one indicates perfect inequality, i.e., one household having all the income and rest having none. A measure of zero indicates perfect equality, i.e., all households having an equal share of income.”
In the third quarter of 2024, the top ten percent of earners in the United States held over 67 percent of total wealth. This is fairly consistent with the second quarter of 2024. Comparatively, the wealth of the bottom 50 percent of earners has been slowly increasing since the start of the 2010s, though remains low. Wealth distribution in the United States by generation can be found here.
In 2022, the percentage of income held by the richest 20 percent of the population in Colombia remained nearly unchanged at around 59.6 percent. In comparison to 2021, the percentage of income held decreased not significantly by 0.2 percentage points (-0.33 percent). These figures refer to the share of total income held by the top fifth of earners in a given population.Find more statistics on other topics about Colombia with key insights such as poverty headcount ratio at national poverty lines.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the median household income across different racial categories in Shade Gap. It portrays the median household income of the head of household across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to gain insights into economic disparities and trends and explore the variations in median houshold income for diverse racial categories.
Key observations
Based on our analysis of the distribution of Shade Gap population by race & ethnicity, the population is predominantly White. This particular racial category constitutes the majority, accounting for 97.73% of the total residents in Shade Gap. Notably, the median household income for White households is $102,969. Interestingly, White is both the largest group and the one with the highest median household income, which stands at $102,969.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Shade Gap median household income by race. You can refer the same here
"Neighborhood Financial Health (NFH) Digital Mapping and Data Tool provides neighborhood financial health indicator data for every neighborhood in New York City. DCWP's Office of Financial Empowerment (OFE) also developed NFH Indexes to present patterns in the data within and across neighborhoods. NFH Index scores describe relative differences between neighborhoods across the same indicators; they do not evaluate neighborhoods against fixed standards. OFE intends for the NFH Indexes to provide an easy reference tool for comparing neighborhoods, and to establish patterns in the relationship of NFH indicators to economic and demographic factors, such as race and income. Understanding these connections is potentially useful for uncovering systems that perpetuate the racial wealth gap, an issue with direct implications for OFE’s mission to expand asset building opportunities for New Yorkers with low and moderate incomes. This data tool was borne out of the Collaborative for Neighborhood Financial Health, a community-led initiative designed to better understand how neighborhoods influence the financial health of their residents.
Reparations for African Americans reflect both material concerns aimed at eliminating the Black-White racial wealth gap and symbolic political aspirations, including the end of structural racism. But do material or symbolic considerations drive policy evaluations across racial and partisan divides? What knowledge and experiences undergird processes through which individuals weigh the symbolic importance of a policy against its actual benefits? Leveraging a set of 41 in-depth interviews with Black and White residents of Evanston, Illinois—the first municipality in the U.S. to approve a publicly-funded reparations-related ordinance—we highlight a mechanism through which individuals develop their opinions about reparations: political socialization. Black interviewees linked their understanding of reparations to robust financial compensation while White Democrats viewed their support for Evanston’s policy as symbolic of their longstanding, affective commitments to racial equality. Drawing from these observations, we present a framework highlighting policy attributes that frame how different constituencies respond to reparations-related policies. We test this framework using a conjoint experiment about reparations policies fielded in the 2022 Cooperative Election Study. We find Americans—especially White Republicans—possess less familiarity about reparations and remain strongly opposed to these policies, regardless of the form they take. While White Democrats are more familiar with reparations and more supportive of policies mirroring Evanston’s, Black Americans—those who are most familiar with reparations—support direct cash payments regardless of their political identification.
In 2022, from the total national wealth in Mexico, 79.1 percent belonged to the top ten percent group. Meanwhile, the bottom 50 percent had a total of -0.3 percent, which means that, on average, the bottom half has more debts than assets. Further, the average personal wealth of the top one percent was valued at 2.91 million euros.
Goal 10Reduce inequality within and among countriesTarget 10.1: By 2030, progressively achieve and sustain income growth of the bottom 40 per cent of the population at a rate higher than the national averageIndicator 10.1.1: Growth rates of household expenditure or income per capita among the bottom 40 per cent of the population and the total populationSI_HEI_TOTL: Growth rates of household expenditure or income per capita (%)Target 10.2: By 2030, empower and promote the social, economic and political inclusion of all, irrespective of age, sex, disability, race, ethnicity, origin, religion or economic or other statusIndicator 10.2.1: Proportion of people living below 50 per cent of median income, by sex, age and persons with disabilitiesSI_POV_50MI: Proportion of people living below 50 percent of median income (%)Target 10.3: Ensure equal opportunity and reduce inequalities of outcome, including by eliminating discriminatory laws, policies and practices and promoting appropriate legislation, policies and action in this regardIndicator 10.3.1: Proportion of population reporting having personally felt discriminated against or harassed in the previous 12 months on the basis of a ground of discrimination prohibited under international human rights lawVC_VOV_GDSD: Proportion of population reporting having felt discriminated against, by grounds of discrimination, sex and disability (%)Target 10.4: Adopt policies, especially fiscal, wage and social protection policies, and progressively achieve greater equalityIndicator 10.4.1: Labour share of GDPSL_EMP_GTOTL: Labour share of GDP (%)Indicator 10.4.2: Redistributive impact of fiscal policySI_DST_FISP: Redistributive impact of fiscal policy, Gini index (%)Target 10.5: Improve the regulation and monitoring of global financial markets and institutions and strengthen the implementation of such regulationsIndicator 10.5.1: Financial Soundness IndicatorsFI_FSI_FSANL: Non-performing loans to total gross loans (%)FI_FSI_FSERA: Return on assets (%)FI_FSI_FSKA: Regulatory capital to assets (%)FI_FSI_FSKNL: Non-performing loans net of provisions to capital (%)FI_FSI_FSKRTC: Regulatory Tier 1 capital to risk-weighted assets (%)FI_FSI_FSLS: Liquid assets to short term liabilities (%)FI_FSI_FSSNO: Net open position in foreign exchange to capital (%)Target 10.6: Ensure enhanced representation and voice for developing countries in decision-making in global international economic and financial institutions in order to deliver more effective, credible, accountable and legitimate institutionsIndicator 10.6.1: Proportion of members and voting rights of developing countries in international organizationsSG_INT_MBRDEV: Proportion of members of developing countries in international organizations, by organization (%)SG_INT_VRTDEV: Proportion of voting rights of developing countries in international organizations, by organization (%)Target 10.7: Facilitate orderly, safe, regular and responsible migration and mobility of people, including through the implementation of planned and well-managed migration policiesIndicator 10.7.1: Recruitment cost borne by employee as a proportion of monthly income earned in country of destinationIndicator 10.7.2: Number of countries with migration policies that facilitate orderly, safe, regular and responsible migration and mobility of peopleSG_CPA_MIGRP: Proportion of countries with migration policies to facilitate orderly, safe, regular and responsible migration and mobility of people, by policy domain (%)SG_CPA_MIGRS: Countries with migration policies to facilitate orderly, safe, regular and responsible migration and mobility of people, by policy domain (1 = Requires further progress; 2 = Partially meets; 3 = Meets; 4 = Fully meets)Indicator 10.7.3: Number of people who died or disappeared in the process of migration towards an international destinationiSM_DTH_MIGR: Total deaths and disappearances recorded during migration (number)Indicator 10.7.4: Proportion of the population who are refugees, by country of originSM_POP_REFG_OR: Number of refugees per 100,000 population, by country of origin (per 100,000 population)Target 10.a: Implement the principle of special and differential treatment for developing countries, in particular least developed countries, in accordance with World Trade Organization agreementsIndicator 10.a.1: Proportion of tariff lines applied to imports from least developed countries and developing countries with zero-tariffTM_TRF_ZERO: Proportion of tariff lines applied to imports with zero-tariff (%)Target 10.b: Encourage official development assistance and financial flows, including foreign direct investment, to States where the need is greatest, in particular least developed countries, African countries, small island developing States and landlocked developing countries, in accordance with their national plans and programmesIndicator 10.b.1: Total resource flows for development, by recipient and donor countries and type of flow (e.g. official development assistance, foreign direct investment and other flows)DC_TRF_TOTDL: Total assistance for development, by donor countries (millions of current United States dollars)DC_TRF_TOTL: Total assistance for development, by recipient countries (millions of current United States dollars)DC_TRF_TFDV: Total resource flows for development, by recipient and donor countries (millions of current United States dollars)Target 10.c: By 2030, reduce to less than 3 per cent the transaction costs of migrant remittances and eliminate remittance corridors with costs higher than 5 per centIndicator 10.c.1: Remittance costs as a proportion of the amount remittedSI_RMT_COST: Remittance costs as a proportion of the amount remitted (%)SI_RMT_COST_BC: Corridor remittance costs as a proportion of the amount remitted (%)SI_RMT_COST_SC: SmaRT corridor remittance costs as a proportion of the amount remitted (%)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the median household income across different racial categories in Union Gap. It portrays the median household income of the head of household across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to gain insights into economic disparities and trends and explore the variations in median houshold income for diverse racial categories.
Key observations
Based on our analysis of the distribution of Union Gap population by race & ethnicity, the population is predominantly White. This particular racial category constitutes the majority, accounting for 43.46% of the total residents in Union Gap. Notably, the median household income for White households is $50,054. Interestingly, despite the White population being the most populous, it is worth noting that Some Other Race households actually reports the highest median household income, with a median income of $79,510. This reveals that, while Whites may be the most numerous in Union Gap, Some Other Race households experience greater economic prosperity in terms of median household income.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Union Gap median household income by race. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the median household incomes over the past decade across various racial categories identified by the U.S. Census Bureau in Pecan Gap. It portrays the median household income of the head of household across racial categories (excluding ethnicity) as identified by the Census Bureau. It also showcases the annual income trends, between 2013 and 2023, providing insights into the economic shifts within diverse racial communities.The dataset can be utilized to gain insights into income disparities and variations across racial categories, aiding in data analysis and decision-making..
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Pecan Gap median household income by race. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
A growing body of research documents the importance of wealth and the racial wealth gap in perpetuating inequality across generations. We add to this literature by examining the impact of wealth on child income by race, while also extending our analysis to three generations. Our two stage least squares regressions reveal that grandparental and parental wealth and the younger generation’s household income is strongly positively correlated. We further explore the relationship between income and wealth by decomposing the child’s income by race. We find that the disparity in income between black and white respondents is mainly attributable to differences in family background. In context, differences in family background are stronger than differences in educational attainment. When we examine different income percentiles, however, we find that the effect of grandparental and parental wealth endowment is much stronger at the top of the income distribution. These findings indicate that wealth is an important source of income inequality.