The RAD-IT database, based on version 8.1 of RAD-IT and ARC-IT, is available for download, and includes the interconnect details of the ITS elements and data flows. Interconnect diagrams developed from this database are used throughout the laconnect-it.com website.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Inter class correlations across five rating parameters.
stanzht/raf dataset hosted on Hugging Face and contributed by the HF Datasets community
https://choosealicense.com/licenses/cc0-1.0/https://choosealicense.com/licenses/cc0-1.0/
Dataset Card for VQA-RAD
Dataset Description
VQA-RAD is a dataset of question-answer pairs on radiology images. The dataset is intended to be used for training and testing Medical Visual Question Answering (VQA) systems. The dataset includes both open-ended questions and binary "yes/no" questions. The dataset is built from MedPix, which is a free open-access online database of medical images. The question-answer pairs were manually generated by a team of clinicians.… See the full description on the dataset page: https://huggingface.co/datasets/flaviagiammarino/vqa-rad.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset was created by Steve Marcello Liem
Released under MIT
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This event has been computationally inferred from an event that has been demonstrated in another species.
The inference is based on the homology mapping from PANTHER. Briefly, reactions for which all involved PhysicalEntities (in input, output and catalyst) have a mapped orthologue/paralogue (for complexes at least 75% of components must have a mapping) are inferred to the other species. High level events are also inferred for these events to allow for easier navigation.
More details and caveats of the event inference in Reactome. For details on PANTHER see also: http://www.pantherdb.org/about.jsp
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Credit report of Rafd Ahmed Salman North Port Umm contains unique and detailed export import market intelligence with it's phone, email, Linkedin and details of each import and export shipment like product, quantity, price, buyer, supplier names, country and date of shipment.
deanngkl/raf-db-7emotions dataset hosted on Hugging Face and contributed by the HF Datasets community
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Ras proteins are membrane-anchored GTPases that regulate key cellular signaling networks. It has been recently shown that different anionic lipid types can affect the properties of Ras in terms of dimerization/clustering on the cell membrane. To understand the effects of anionic lipids on key spatiotemporal properties of dimeric K-Ras4B, we perform all-atom molecular dynamics simulations of the dimer K-Ras4B in the presence and absence of Raf[RBD/CRD] effectors on two model anionic lipid membranes: one containing 78% mol DOPC, 20% mol DOPS, and 2% mol PIP2 and another one with enhanced concentration of anionic lipids containing 50% mol DOPC, 40% mol DOPS, and 10% mol PIP2. Analysis of our results unveils the orientational space of dimeric K-Ras4B and shows that the stability of the dimer is enhanced on the membrane containing a high concentration of anionic lipids in the absence of Raf effectors. This enhanced stability is also observed in the presence of Raf[RBD/CRD] effectors although it is not influenced by the concentration of anionic lipids in the membrane, but rather on the ability of Raf[CRD] to anchor to the membrane. We generate dominant K-Ras4B conformations by Markov state modeling and yield the population of states according to the K-Ras4B orientation on the membrane. For the membrane containing anionic lipids, we observe correlations between the diffusion of K-Ras4B and PIP2 and anchoring of anionic lipids to the Raf[CRD] domain. We conclude that the presence of effectors with the Raf[CRD] domain anchoring on the membrane as well as the membrane composition both influence the conformational stability of the K-Ras4B dimer, enabling the preservation of crucial interface interactions.
https://webtechsurvey.com/termshttps://webtechsurvey.com/terms
A complete list of live websites using the raf-schd technology, compiled through global website indexing conducted by WebTechSurvey.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Credit report of Al Rafd Al Mobarak Est contains unique and detailed export import market intelligence with it's phone, email, Linkedin and details of each import and export shipment like product, quantity, price, buyer, supplier names, country and date of shipment.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Protein-Protein, Genetic, and Chemical Interactions for Karbowniczek M (2006):Rheb inhibits C-raf activity and B-raf/C-raf heterodimerization. curated by BioGRID (https://thebiogrid.org); ABSTRACT: The Ras-Raf-MEK signaling cascade is critical for normal development and is activated in many forms of cancer. We have recently shown that B-Raf kinase interacts with and is inhibited by Rheb, the target of the GTPase-activating domain of the tuberous sclerosis complex 2 gene product tuberin. Here, we demonstrate for the first time that activation of Rheb is associated with decreased B-Raf and C-Raf phosphorylation at residues Ser-446 and Ser-338, respectively, concomitant with a decrease in the activities of both kinases and decreased heterodimerization of B-Raf and C-Raf. Importantly, the impact of Rheb on B-Raf/C-Raf heterodimerization and kinase activity are rapamycin-insensitive, indicating that they are independent of Rheb activation of the mammalian target of rapamycin-Raptor complex. In addition, we found that Rheb inhibits the association of B-Raf with H-Ras. Taken together, these results support a central role of Rheb in the regulation of the Ras/B-Raf/C-Raf/MEK signaling network.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Downstream of RAF dimerization and allosteric activation, RAF monomers and KSR1 undergo a series of activating phosphorylations in both the activation loop (AL) and, in the case of ARAF, RAF1 and KSR1, in the NtA . Phosphorylation of the activation loop residues (T491, S494 in RAF1, T452, T455 in ARAF and T599, S602 in BRAF) contributes to full kinase activity, although this may be less critical for ARAF, and RAFs in general, than for other kinases due to their regulation by 14-3-3 binding (Zhu et al, 2005; Zhang et al, 2000; Baljuls et al, 2008, reviewed in Matallanas et al, 2011; Udell et al, 2011). AL phosphorylation may occur through cis-autophosphorylation within the RAF dimer, although phosphorylation by other kinases is also possible (Hu et al, 2013; reviewed in Matallanas et al, 2011).
Phosphorylation in the RAF NtA region is required for full kinase activity, for interaction with MAP2K substrates and for the ability of activated RAF to act as an allosteric activator of other RAF monomers (Marais et al, 1995; Diaz et al, 1997; Xiang et al, 2002; Edin et al, 2005; Hu et al, 2013; Mason et al, 1999). Phosphorylation of these residues (S338 and Y441 in RAF1, S299 and Y302 in ARAF and Y602 in KSR1) may be mediated by a kinase of the SRC, JAK or PAK family kinases, by MAP2K kinases, calmodulin kinase CaMKII or through autophosphorylation by RAF itself (Marais et al, 1995; Xia et al, 1996; King et al, 1998; Sun et al, 2000; Tran et al, 2003; Tran et al, 2005; Salzano et al. 2012, Hu et al, 2013; reviewed in Matallanas et al, 2011). The phosphorylated NtA of RAF1 is also the binding site for the negative regulator PEPB1, also known as RKIP. PEBP1 binding to RAF1 prevents phosphorylation of the MAP2K substrates (Park et al, 2006; Rath et al, 2008; reviewed in Shin et al, 2009).
THIS RESOURCE IS NO LONGER IN SERVICE, Documented on March 24, 2014. A resource for gene expression studies, storing highly curated MIAME-compliant studies (i.e. experiments) employing a variety of technologies such as filter arrays, 2-channel microarrays, Affymetrix chips, SAGE, MPSS and RT-PCR. Data were available for querying and downloading based on the MGED ontology, publications or genes. Both public and private studies (the latter viewable only by users having appropriate logins and permissions) were available from this website. Specific details on protocols, biomaterials, study designs, etc., are collected through a user-friendly suite of web annotation forms. Software has been developed to generate MAGE-ML documents to enable easy export of studies stored in RAD to any other database accepting data in this format. RAD is part of a more general Genomics Unified Schema (http://gusdb.org), which includes a richly annotated gene index (http://allgenes.org), thus providing a platform that integrates genomic and transcriptomic data from multiple organisms. NOTE: Due to changes in technology and funding, the RAD website is no longer available. RAD as a schema is still very much active and incorporated in the GUS (Genomics Unified Schema) database system used by CBIL (EuPathDB, Beta Cell Genomics) and others. The schema for RAD can be viewed along with the other GUS namespaces through our Schema Browser.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Activated RAF phosphorylates the MEK kinases MAP2K1 and MAP2K2 on 2 serine residues in the MAP2K activation loop (S218 and S222 in MAP2K1 and S222 and S226 in MAP2K2 (Zheng and Guan, 1994; Alessi et al, 1994; Catling et al, 1995; Papin et al, 1995; Seger et al, 1994; reviewed in Roskoski, 2012a). Although all three RAF kinases can phosphorylate MAP2K1 and MAP2K2, BRAF appears to be the primary activator in vivo (Marais et al, 1997; Jaiswal et al, 1994; Pritchard et al, 1995; reviewed in Welbrock et al, 2004)
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
Preliminary template for RAF
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about books. It has 1 row and is filtered where the book is Four years in the RAF : a memoir of 1944-48. It features 7 columns including author, publication date, language, and book publisher.
During DC3, the NSF/NCAR GV HIAPER (GV_N677F) flew three digital cameras for in-flight video capture: forward, left, and right-looking. Individual photo jpeg images were captured once per second during flights. Images taken after dark have been stripped from this archive. Remaining images were converted to Quicktime movie files. The movies are h.264 codec playable with Quicktime (Mac and Windows), xine, (linux) and mplayer (many platforms). The image was first cropped to 512x384 pixels. The forward, left, and right-looing images were combined into a single frame and flight-level navigation and state parameter data was added along the right. These 1-second annotated images were compiled into a video stream running at 15 frames/s, 1500 kbps data rate.
https://data.gov.tw/licensehttps://data.gov.tw/license
Mitochondria are the powerhouses of cells. Mitochondrial C-Raf is a potential cancer therapeutic target, as it regulates mitochondrial function and is localized to the mitochondria by its N-terminal domain. However, Raf inhibitor monotherapy can induce S338 phosphorylation of C-Raf (pC-Raf(S338)) and impede therapy. This study identified the interaction of C-Raf with S308 phosphorylated DAPK (pDAPK(S308)), which together became colocalized in the mitochondria to facilitate mitochondrial remodeling. Combined use of the Raf inhibitors sorafenib and GW5074 had synergistic anticancer effects in vitro and in vivo, but targeted mitochondrial function, rather than the canonical Raf signaling pathway. C-Raf depletion in knockout MEF(C-Raf-/-) or siRNA knockdown ACHN renal cancer cells abrogated the cytotoxicity of combination therapy. Crystal structure simulation showed that GW5074 bound to C-Raf and induced a C-Raf conformational change that enhanced sorafenib-binding affinity. In the presence of pDAPK(S308), this drug-target interaction compromised the mitochondrial targeting effect of the N-terminal domain of C-Raf, which induced two-hit damages to cancer cells. First, combination therapy facilitated pC-Raf(S338) and pDAPK(S308) translocation from mitochondria to cytoplasm, leading to mitochondrial dysfunction and reactive oxygen species (ROS) generation. Second, ROS facilitated PP2A-mediated dephosphorylation of pDAPK(S308) to DAPK. PP2A then dissociated from the C-Raf-DAPK complex and induced profound cancer cell death. Increased pDAPK(S308) modification was also observed in renal cancer tissues, which correlated with poor disease-free survival and poor overall survival in renal cancer patients. Besides mediating the anticancer effect, pDAPK(S308) may serve as a predictive biomarker for Raf inhibitors combination therapy, suggesting an ideal preclinical model that is worthy of clinical translation.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about books. It has 1 row and is filtered where the book is RAF colour album. It features 7 columns including author, publication date, language, and book publisher.
The RAD-IT database, based on version 8.1 of RAD-IT and ARC-IT, is available for download, and includes the interconnect details of the ITS elements and data flows. Interconnect diagrams developed from this database are used throughout the laconnect-it.com website.