Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
To determine the proteins in the membrane raft, we used the TMT-labeling and nano-liquid chromatography mass spectrometry (nano-LC-MS/MS) analysis by Creative Proteomics (NY, USA; https://www.creative-proteomics.com/). Rat primary microglia were treated with IL-6 (25 ng/ml) for 15 min. Membrane rafts were obtained by flotation assay. Samples were prepared from three independent experiments. Proteins in equal volumes of raft fractions were digested with trypsin, desalted, and labeled with a TMT reagent (Thermo Fisher Science). The TMT-labeled peptides were fractionated and analyzed by nano-LC-MS/MS. The resulting MS/MS data were analyzed and searched against the rat protein database using Proteome Discoverer 2.1.
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
The exploitation of computational techniques to predict the outcome of chemical reactions is becoming commonplace, enabling a reduction in the number of physical experiments required to optimize a reaction. Here, we adapt and combine models for polymerization kinetics and molar mass dispersity as a function of conversion for reversible addition fragmentation chain transfer (RAFT) solution polymerization, including the introduction of a novel expression accounting for termination. A flow reactor operating under isothermal conditions was used to experimentally validate the models for the RAFT polymerization of dimethyl acrylamide with an additional term to accommodate the effect of residence time distribution. Further validation is conducted in a batch reactor, where a previously recorded in situ temperature monitoring provides the ability to model the system under more representative batch conditions, accounting for slow heat transfer and the observed exotherm. The model also shows agreement with several literature examples of the RAFT polymerization of acrylamide and acrylate monomers in batch reactors. In principle, the model not only provides a tool for polymer chemists to estimate ideal conditions for a polymerization, but it can also automatically define the initial parameter space for exploration by computationally controlled reactor platforms provided a reliable estimation of rate constants is available. The model is compiled into an easily accessible application to enable simulation of RAFT polymerization of several monomers.
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Lipid rafts are microdomains in the plasma membrane of eukaryotic cells. Among their many functions, lipid rafts are involved in cell toxicity caused by pore forming bacterial toxins including Bacillus thuringiensis (Bt) Cry toxins. We isolated lipid rafts from brush border membrane vesicles (BBMV) of Aedes aegypti larvae as a detergent resistant membrane (DRM) fraction on density gradients. Cholesterol, aminopeptidase (APN), alkaline phosphatase (ALP) and the raft marker flotillin were preferentially partitioned into the lipid raft fraction. When mosquitocidal Cry4Ba toxin was preincubated with BBMV, Cry4Ba localized to lipid rafts. A proteomic approach based on one-dimensional gel electrophoresis, in-gel trypsin digestion, followed by liquid chromatography–mass spectrometry (geLC–MS/MS) identified a total of 386 proteins. Of which many are typical lipid raft marker proteins including flotillins and glycosylphosphatidylinositol (GPI)-anchored proteins. Identified raft proteins were annotated in silico for functional and physicochemical characteristics. Parameters such as distribution of isoelectric point, molecular mass, and predicted post-translational modifications relevant to lipid raft proteins (GPI anchorage and myristoylation or palmitoylation) were analyzed for identified proteins in the DRM fraction. From a functional point of view, this study identified proteins implicated in Cry toxin interactions as well as membrane-associated proteins expressed in the mosquito midgut that have potential relevance to mosquito biology and vector management.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Selected Hits from Mass Spectrometry Assays from Lipid Rafts Proteins.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
To determine the proteins in the membrane raft, we used the TMT-labeling and nano-liquid chromatography mass spectrometry (nano-LC-MS/MS) analysis by Creative Proteomics (NY, USA; https://www.creative-proteomics.com/). Rat primary microglia were treated with IL-6 (25 ng/ml) for 15 min. Membrane rafts were obtained by flotation assay. Samples were prepared from three independent experiments. Proteins in equal volumes of raft fractions were digested with trypsin, desalted, and labeled with a TMT reagent (Thermo Fisher Science). The TMT-labeled peptides were fractionated and analyzed by nano-LC-MS/MS. The resulting MS/MS data were analyzed and searched against the rat protein database using Proteome Discoverer 2.1.