100+ datasets found
  1. a

    North America Annual Precipitation

    • hub.arcgis.com
    • climat.esri.ca
    • +1more
    Updated Apr 19, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CECAtlas (2023). North America Annual Precipitation [Dataset]. https://hub.arcgis.com/maps/d4b81cb2dc4f4b938964aa1eb9b4b9a9
    Explore at:
    Dataset updated
    Apr 19, 2023
    Dataset authored and provided by
    CECAtlas
    License
    Area covered
    Description

    The North America climate data were derived from WorldClim, a set of global climate layers developed by the Museum of Vertebrate Zoology at the University of California, Berkeley, USA, in collaboration with The International Center for Tropical Agriculture and Rainforest CRC with support from NatureServe.The global climate data layers were generated through interpolation of average monthly climate data from weather stations across North America. The result is a 30-arc-second-resolution (1-Km) grid of mean temperature values. The North American data were clipped from the global data and reprojected to a Lambert Azimuthal Equal Area projection. Background information on the WorldClim database is available in: Very High-Resolution Interpolated Climate Surfaces for Global Land Areas; Hijmans, R.J., S.E. Cameron, J.L. Parra, P.G. Jones and A. Jarvis; International Journal of Climatology 25: 1965-1978; 2005.Files Download

  2. 4 Model Ensemble, 30 Year Rolling Average Precipitation

    • catalog.data.gov
    • data.cnra.ca.gov
    • +5more
    Updated Mar 30, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Natural Resources Agency (2024). 4 Model Ensemble, 30 Year Rolling Average Precipitation [Dataset]. https://catalog.data.gov/dataset/4-model-ensemble-30-year-rolling-average-precipitation-6b5f6
    Explore at:
    Dataset updated
    Mar 30, 2024
    Dataset provided by
    California Natural Resources Agencyhttps://resources.ca.gov/
    Description

    This dataset contains 30-year rolling average of annual average precipitation across all four models and two greenhouse gas (RCP) scenarios in the four model ensemble. The year identified for a 30 year rolling average is the mid-point of the 30-year average. eg. The year 2050 includes the values from 2036 to 2065. The downscaling and selection of models for inclusion in ten and four model ensembles is described in Pierce et al. 2018, but summarized here. Thirty two global climate models (GCMs) were identified to meet the modeling requirements. From those, ten that closely simulate California’s climate were selected for additional analysis (Table 1, Pierce et al. 2018) and to form a ten model ensemble. From the ten model ensemble, four models, forming a four model ensemble, were identified to provide coverage of the range of potential climate outcomes in California. The models in the four model ensemble and their general climate projection for California are: HadGEM2-ES (warm/dry),CanESM2 (average), CNRM-CM5 (cooler/wetter),and MIROC5 the model least like the others to improve coverage of the range of outcomes. These data were downloaded from Cal-Adapt and prepared for use within CA Nature by California Natural Resource Agency and ESRI staff. Cal-Adapt. (2018). LOCA Derived Data [GeoTIFF]. Data derived from LOCA Downscaled CMIP5 Climate Projections. Cal-Adapt website developed by University of California at Berkeley’s Geospatial Innovation Facility under contract with the California Energy Commission. Retrieved from https://cal-adapt.org/ Pierce, D. W., J. F. Kalansky, and D. R. Cayan, (Scripps Institution of Oceanography). 2018. Climate, Drought, and Sea Level Rise Scenarios for the Fourth California Climate Assessment. California’s Fourth Climate Change Assessment, California Energy Commission. Publication Number: CNRA-CEC-2018-006.

  3. Historical annual precipitation (CONUS) (Image Service)

    • catalog.data.gov
    • agdatacommons.nal.usda.gov
    • +6more
    Updated Jun 21, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2023). Historical annual precipitation (CONUS) (Image Service) [Dataset]. https://catalog.data.gov/dataset/historical-annual-precipitation-conus-image-service-f2c16
    Explore at:
    Dataset updated
    Jun 21, 2023
    Dataset provided by
    U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
    Description

    The National Forest Climate Change Maps project was developed by the Rocky Mountain Research Station (RMRS) and the Office of Sustainability and Climate to meet the needs of national forest managers for information on projected climate changes at a scale relevant to decision making processes, including forest plans. The maps use state-of-the-art science and are available for every national forest in the contiguous United States with relevant data coverage. Currently, the map sets include variables related to precipitation, air temperature, snow (including snow residence time and April 1 snow water equivalent), and stream flow.Historical (1975-2005) and future (2071-2090) precipitation and temperature data for the contiguous United States are ensemble mean values across 20 global climate models from the CMIP5 experiment (https://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-11-00094.1), downscaled to a 4 km grid. For more information on the downscaling method and to access the data, please see Abatzoglou and Brown, 2012 (https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/joc.2312) and the Northwest Knowledge Network (https://climate.northwestknowledge.net/MACA/). We used the MACAv2- Metdata monthly dataset; monthly precipitation values (mm) were summed over the season of interest (annual, winter, or summer). Absolute and percent change were then calculated between the historical and future time periods.Raster data are also available for download from RMRS site (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/categories/us-raster-layers.html), along with pdf maps and detailed metadata (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/downloads/NationalForestClimateChangeMapsMetadata.pdf).

  4. f

    Annual Average Rainfall Total (mm)

    • data.apps.fao.org
    Updated Sep 11, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). Annual Average Rainfall Total (mm) [Dataset]. https://data.apps.fao.org/map/catalog/static/search?keyword=rainfall
    Explore at:
    Dataset updated
    Sep 11, 2020
    Description

    This map is part of a series of global climate images produced by the Agrometeorology Group and based on data for mean monthly values of temperature, precipitation and cloudiness prepared in 1991 by R. Leemans and W. Cramer and published by the International Institute for Applied Systems Analysis (IIASA). For each of the weather stations used data have been assembled over a long time period - usually between 1961 and 1990 - and then averaged. Annual totals for rainfall were derived from the monthly values.

  5. d

    Projected Change in Average Number of Days of Precipitation (Map Service)

    • datasets.ai
    • agdatacommons.nal.usda.gov
    • +5more
    21, 3, 55
    Updated Aug 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Agriculture (2024). Projected Change in Average Number of Days of Precipitation (Map Service) [Dataset]. https://datasets.ai/datasets/projected-change-in-average-number-of-days-of-precipitation-map-service-1922c
    Explore at:
    21, 3, 55Available download formats
    Dataset updated
    Aug 6, 2024
    Dataset authored and provided by
    Department of Agriculture
    Description

    Date of freeze for historical (1985-2005) and future (2071-2090, RCP 8.5) time periods, and absolute change between them, based on analysis of MACAv2METDATA. Download this data or get more information

  6. Average Monthly Precipitation

    • open.canada.ca
    • ouvert.canada.ca
    • +1more
    jpg, pdf
    Updated Mar 14, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Natural Resources Canada (2022). Average Monthly Precipitation [Dataset]. https://open.canada.ca/data/en/dataset/84dc5329-c33a-50c8-8341-738f25541997
    Explore at:
    pdf, jpgAvailable download formats
    Dataset updated
    Mar 14, 2022
    Dataset provided by
    Ministry of Natural Resources of Canadahttps://www.nrcan.gc.ca/
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    Contained within the 4th Edition (1974) of the Atlas of Canada is a collection of six maps. Each map shows the average monthly precipitation for April, May, June, July, August and September.

  7. Annual precipitation in the United States 2024, by state

    • statista.com
    Updated Feb 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Annual precipitation in the United States 2024, by state [Dataset]. https://www.statista.com/statistics/1101518/annual-precipitation-by-us-state/
    Explore at:
    Dataset updated
    Feb 2, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    United States
    Description

    In 2024, Louisiana recorded 71.25 inches of precipitation. This was the highest precipitation within the 48 contiguous U.S. states that year. On the other hand, Nevada was the driest state, with only 9.53 inches of precipitation recorded. Precipitation across the United States Not only did Louisiana record the largest precipitation volume in 2024, but it also registered the highest precipitation anomaly that year, around 14.36 inches above the 1901-2000 annual average. In fact, over the last decade, rainfall across the United States was generally higher than the average recorded for the 20th century. Meanwhile, the driest states were located in the country's southwestern region, an area which – according to experts – will become even drier and warmer in the future. How does global warming affect precipitation patterns? Rising temperatures on Earth lead to increased evaporation which – ultimately – results in more precipitation. Since 1900, the volume of precipitation in the United States has increased at an average rate of 0.20 inches per decade. Nevertheless, the effects of climate change on precipitation can vary depending on the location. For instance, climate change can alter wind patterns and ocean currents, causing certain areas to experience reduced precipitation. Furthermore, even if precipitation increases, it does not necessarily increase the water availability for human consumption, which might eventually lead to drought conditions.

  8. G

    Average Precipitation

    • ouvert.canada.ca
    • open.canada.ca
    • +1more
    jpg, pdf
    Updated Mar 14, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Natural Resources Canada (2022). Average Precipitation [Dataset]. https://ouvert.canada.ca/data/dataset/f036ecde-0726-58a6-8544-dab9ab36826c
    Explore at:
    pdf, jpgAvailable download formats
    Dataset updated
    Mar 14, 2022
    Dataset provided by
    Natural Resources Canada
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    Contained within the 4th Edition (1974) of the Atlas of Canada is a set of two maps. One map shows the average precipitation for April to September. The second shows the average precipitation for October to March.

  9. Monthly Global Precipitation 1981-2010

    • climatedataportal.metoffice.gov.uk
    Updated Aug 17, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Met Office (2022). Monthly Global Precipitation 1981-2010 [Dataset]. https://climatedataportal.metoffice.gov.uk/datasets/0df7bfc4754f4305b19f676b756d01da
    Explore at:
    Dataset updated
    Aug 17, 2022
    Dataset authored and provided by
    Met Officehttp://www.metoffice.gov.uk/
    Area covered
    Description

    What does the data show?

    This data shows the monthly averages of rainfall amount (mm) for 1981-2010 from CRU TS (v. 4.06) dataset. It is provided on the WGS84 grid which measures approximately 60km x 60km (latitude x longitude) at the equator. This is the same as the 60km grid used by UKCP18 global datasets.

    What are the naming conventions and how do I explore the data?

    This data contains a field for each month’s average over the period. They are named 'pr' (precipitation) and the month. E.g. ‘pr March’ is the average of the monthly total rainfall in March throughout 1981-2010.

    To understand how to explore the data, see this page: https://storymaps.arcgis.com/stories/457e7a2bc73e40b089fac0e47c63a578

    Please note, if viewing in ArcGIS Map Viewer, the map will default to ‘pr January’ values.

    Data source

    CRU TS v. 4.06 - (downloaded 12/07/22)

    Useful links

    Further information on CRU TS Further information on understanding climate data within the Met Office Climate Data Portal

  10. g

    Change in Extreme Precipitation

    • atlas.globalchange.gov
    • resilience-fema.hub.arcgis.com
    Updated Oct 9, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Climate Resilience (2023). Change in Extreme Precipitation [Dataset]. https://atlas.globalchange.gov/maps/31c60fbe135842e79a2066342231b685
    Explore at:
    Dataset updated
    Oct 9, 2023
    Dataset authored and provided by
    National Climate Resilience
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This map plots the Change in Extreme Precipitation if Earth’s long-term average temperature reaches specific levels of warming. These Global Warming Levels (GWLs) correspond to global average temperature increases of 1.5, 2, 3, and 4 °C above pre-industrial levels measured from 1851 to 1900. On the Fahrenheit scale, these warming levels are 2.7, 3.6, 5.4, and 7.2 °F. As of the 2020s, global average temperature has already increased around 2 °F above pre-industrial levels.Each layer of the map is style with the same range of data so that the spatial patterns of change can be compared across all scenarios. The projections are derived from downscaled climate models from LOCA2 and STAR-ESDM, and were used in the 5th National Climate Assessment. Click on the layers below to view more detailed descriptions of how the data was generated.

  11. Monthly Precipitation

    • crb-open-data-usgs.hub.arcgis.com
    • climat.esri.ca
    • +10more
    Updated Jun 24, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2015). Monthly Precipitation [Dataset]. https://crb-open-data-usgs.hub.arcgis.com/maps/esri::monthly-precipitation
    Explore at:
    Dataset updated
    Jun 24, 2015
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Precipitation is water released from clouds in the form of rain, sleet, snow, or hail. It is the primary source of recharge to the planet's fresh water supplies. This map contains a historical record showing the volume of precipitation that fell during each month from March 2000 to the present. Snow and hail are reported in terms of snow water equivalent - the amount of water that will be produced when they melt. Dataset SummaryThe GLDAS Precipitation layer is a time-enabled image service that shows average monthly precipitation from 2000 to the present, measured in millimeters. It is calculated by NASA using the Noah land surface model, run at 0.25 degree spatial resolution using satellite and ground-based observational data from the Global Land Data Assimilation System (GLDAS-1). The model is run with 3-hourly time steps and aggregated into monthly averages. Review the complete list of model inputs, explore the output data (in GRIB format), and see the full Hydrology Catalog for all related data and information!What can you do with this layer?This layer is suitable for both visualization and analysis. It can be used in ArcGIS Online in web maps and applications and can be used in ArcGIS for Desktop. It is useful for scientific modeling, but only at global scales.Time: This is a time-enabled layer. It shows the total evaporative loss during the map's time extent, or if time animation is disabled, a time range can be set using the layer's multidimensional settings. The map shows the sum of all months in the time extent. Minimum temporal resolution is one month; maximum is one year.Variables: This layer has two variables: rainfall and snowfall. By default the two are summed, but you can view either by itself using the multidimensional filter. You must disable time animation on the layer before using its multidimensional filter.Important: You must switch from the cartographic renderer to the analytic renderer in the processing template tab in the layer properties window before using this layer as an input to geoprocessing tools.This layer has query, identify, and export image services available.This layer is part of a larger collection of earth observation maps that you can use to perform a wide variety of mapping and analysis tasks.The Living Atlas of the World provides an easy way to explore the earth observation layers and many other beautiful and authoritative maps on hundreds of topics.Geonet is a good resource for learning more about earth observations layers and the Living Atlas of the World. Follow the Living Atlas on GeoNet.

  12. d

    Climate Warming - Global Annual Precipitation Scenario: 2100

    • datasets.ai
    • open.canada.ca
    • +1more
    0, 57
    Updated Sep 7, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Natural Resources Canada | Ressources naturelles Canada (2024). Climate Warming - Global Annual Precipitation Scenario: 2100 [Dataset]. https://datasets.ai/datasets/cf3238de-8893-11e0-adb7-6cf049291510
    Explore at:
    0, 57Available download formats
    Dataset updated
    Sep 7, 2024
    Dataset authored and provided by
    Natural Resources Canada | Ressources naturelles Canada
    Description

    A simulation of projected changes in mean annual precipitation from the period 1975 to 1995 to the period 2080 to 2100 is shown on this map. On average, precipitation increases, but it is not evenly distributed geographically. There are marked regions of decreasing, as well as increasing precipitation, over both land and ocean. Annual average precipitation generally increases over northern continents, and particularly during the winter. Warmer surface temperature would speed up the hydrological cycle at least partially, resulting in faster evaporation and more precipitation. The results are based on climate change simulations made with the Coupled Global Climate Model developed by Environment Canada.

  13. G

    Mean Annual Total Precipitation

    • open.canada.ca
    • ouvert.canada.ca
    • +1more
    jpg, pdf
    Updated Mar 14, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Natural Resources Canada (2022). Mean Annual Total Precipitation [Dataset]. https://open.canada.ca/data/en/dataset/53377276-6db5-5ad6-82e6-dc9b7c70a321
    Explore at:
    jpg, pdfAvailable download formats
    Dataset updated
    Mar 14, 2022
    Dataset provided by
    Natural Resources Canada
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    Contained within the 3rd Edition (1957) of the Atlas of Canada is a plate that shows two maps for the annual total precipitation. Annual precipitation is defined as the sum of rainfall and the assumed water equivalent of snowfall for a given year. A specific gravity of 0.1 for freshly fallen snow is used, which means that ten inches (25.4 cm) of freshly fallen snow is assumed to be equal to one inch (2.54 cm) of rain. The mean annual total precipitation and snowfall maps on this plate are primarily based on thirty-year data during the period 1921 to 1950 inclusive.

  14. a

    Annual Average Precipitation 1981-2010 USDA/NRCS

    • indianamapold-inmap.hub.arcgis.com
    • indianamap.org
    • +3more
    Updated Feb 10, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    IndianaMap (2023). Annual Average Precipitation 1981-2010 USDA/NRCS [Dataset]. https://indianamapold-inmap.hub.arcgis.com/datasets/annual-average-precipitation-1981-2010-usda-nrcs
    Explore at:
    Dataset updated
    Feb 10, 2023
    Dataset authored and provided by
    IndianaMap
    Area covered
    Description

    Vector dataset provides derived average annual precipitation according to a model using point precipitation and elevation data for the 30-year period of 1981-2010.

  15. Historical and future temperature trends (Map Service)

    • catalog.data.gov
    • figshare.com
    • +4more
    Updated Jun 21, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2023). Historical and future temperature trends (Map Service) [Dataset]. https://catalog.data.gov/dataset/historical-and-future-temperature-trends-map-service-e00ae
    Explore at:
    Dataset updated
    Jun 21, 2023
    Dataset provided by
    U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
    Description

    The National Forest Climate Change Maps project was developed by the Rocky Mountain Research Station (RMRS) and the Office of Sustainability and Climate to meet the needs of national forest managers for information on projected climate changes at a scale relevant to decision making processes, including forest plans. The maps use state-of-the-art science and are available for every national forest in the contiguous United States with relevant data coverage. Currently, the map sets include variables related to precipitation, air temperature, snow (including snow residence time and April 1 snow water equivalent), and stream flow.

    Historical (1975-2005) and future (2071-2090) precipitation and temperature data for the contiguous United States are ensemble mean values across 20 global climate models from the CMIP5 experiment (https://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-11-00094.1), downscaled to a 4 km grid. For more information on the downscaling method and to access the data, please see Abatzoglou and Brown, 2012 (https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/joc.2312) and the Northwest Knowledge Network (https://climate.northwestknowledge.net/MACA/). We used the MACAv2- Metdata monthly dataset; average temperature values were calculated as the mean of monthly minimum and maximum air temperature values (degrees C), averaged over the season of interest (annual, winter, or summer). Absolute and percent change were then calculated between the historical and future time periods.

    Historical (1975-2005) and future (2071-2090) precipitation and temperature data for the state of Alaska were developed by the Scenarios Network for Alaska and Arctic Planning (SNAP) (https://snap.uaf.edu). These datasets have several important differences from the MACAv2-Metdata (https://climate.northwestknowledge.net/MACA/) products, used in the contiguous U.S. They were developed using different global circulation models and different downscaling methods, and were downscaled to a different scale (771 m instead of 4 km). While these cover the same time periods and use broadly similar approaches, caution should be used when directly comparing values between Alaska and the contiguous United States.

    Raster data are also available for download from RMRS site (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/categories/us-raster-layers.html), along with pdf maps and detailed metadata (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/downloads/NationalForestClimateChangeMapsMetadata.pdf).

  16. a

    Historical annual precipitation (Alaska) (Image Service)

    • hub.arcgis.com
    • agdatacommons.nal.usda.gov
    • +3more
    Updated Mar 5, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2019). Historical annual precipitation (Alaska) (Image Service) [Dataset]. https://hub.arcgis.com/datasets/80907fbc5b6c4512951da227ddf4758b
    Explore at:
    Dataset updated
    Mar 5, 2019
    Dataset authored and provided by
    U.S. Forest Service
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Pacific Ocean, Bering Sea, Proliv Longa, North Pacific Ocean, Proliv Longa
    Description

    The National Forest Climate Change Maps project was developed by the Rocky Mountain Research Station (RMRS) and the Office of Sustainability and Climate to meet the needs of national forest managers for information on projected climate changes at a scale relevant to decision making processes, including forest plans. The maps use state-of-the-art science and are available for every national forest in the contiguous United States with relevant data coverage. Currently, the map sets include variables related to precipitation, air temperature, snow (including snow residence time and April 1 snow water equivalent), and stream flow.Historical (1975-2005) and future (2071-2090) precipitation and temperature data for the state of Alaska were developed by the Scenarios Network for Alaska and Arctic Planning (SNAP) (https://snap.uaf.edu). Monthly precipitation values (mm) were summed over the season of interest (annual, winter, or summer). These datasets have several important differences from the MACAv2-Metdata (https://climate.northwestknowledge.net/MACA/) products, used in the contiguous U.S. They were developed using different global circulation models and different downscaling methods, and were downscaled to a different scale (771 m instead of 4 km). While these cover the same time periods and use broadly similar approaches, caution should be used when directly comparing values between Alaska and the contiguous United States.Raster data are also available for download from RMRS site (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/categories/us-raster-layers.html), along with pdf maps and detailed metadata (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/downloads/NationalForestClimateChangeMapsMetadata.pdf).

  17. a

    Africa Precipitation (2016-2018)

    • africageoportal.com
    • rwanda.africageoportal.com
    • +4more
    Updated Dec 2, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Africa GeoPortal (2017). Africa Precipitation (2016-2018) [Dataset]. https://www.africageoportal.com/maps/d6eded435b3444f1941b32d65f07400f
    Explore at:
    Dataset updated
    Dec 2, 2017
    Dataset authored and provided by
    Africa GeoPortal
    Area covered
    Description

    This map features the GLDAS total monthly precipitation modeled globally by NASA. The map shows the monthly precipitation for the period of May 2016 to May 2018, focused on Africa. You can click the Play button on the time slider to see precipitation over time.Great parts of Northern Africa and Southern Africa, as well as the whole Horn of Africa, mainly have a hot desert climate, or a hot semi-arid climate for the wetter locations. The equatorial region near the Intertropical Convergence Zone is the wettest portion of the continent. Annually, the rain belt across the country marches northward into Sub-Saharan Africa by August, then moves back southward into south-central Africa by March.Precipitation is water released from clouds in the form of rain, sleet, snow, or hail. It is the primary source of recharge to the planet's fresh water supplies. This map contains a historical record showing the volume of precipitation that fell during each month from March 2000 to the present. Snow and hail are reported in terms of snow water equivalent - the amount of water that will be produced when they melt. Dataset SummaryThe GLDAS Precipitation layer is a time-enabled image service that shows average monthly precipitation from 2000 to the present, measured in millimeters. It is calculated by NASA using the Noah land surface model, run at 0.25 degree spatial resolution using satellite and ground-based observational data from the Global Land Data Assimilation System (GLDAS-2.1). The model is run with 3-hourly time steps and aggregated into monthly averages. A complete list of the model inputs can be seen here, and the output data (in GRIB format) is available here.Phenomenon Mapped: PrecipitationUnits: MillimetersTime Interval: MonthlyTime Extent: 2000/01/01 to presentCell Size: 28 kmSource Type: ScientificPixel Type: Signed IntegerData Projection: GCS WGS84Mosaic Projection: Web Mercator Auxiliary SphereExtent: Global Land SurfaceSource: NASAUpdate Cycle: SporadicWhat can you do with this layer?This layer is suitable for both visualization and analysis. It can be used in ArcGIS Online in web maps and applications and can be used in ArcGIS for Desktop. It is useful for scientific modeling, but only at global scales.By applying the "Calculate Anomaly" processing template, it is also possible to view these data in terms of deviation from the mean, instead of total evapotranspiration. Mean evapotranspiration for a given month is calculated over the entire period of record - 2000 to present.Time: This is a time-enabled layer. It shows the total evaporative loss during the map's time extent, or if time animation is disabled, a time range can be set using the layer's multidimensional settings. The map shows the sum of all months in the time extent. Minimum temporal resolution is one month; maximum is eight years.Variables: This layer has two variables: rainfall and snowfall. By default the two are summed, but you can view either by itself using the multidimensional filter, or by applying the relevant raster function. You must disable time animation on the layer before using its multidimensional filter.Important: You must switch from the cartographic renderer to the analytic renderer in the processing template tab in the layer properties window before using this layer as an input to geoprocessing tools.

  18. M

    Average annual rainfall, 1972–2016

    • data.mfe.govt.nz
    ascii grid, geotiff +2
    Updated Oct 12, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ministry for the Environment (2017). Average annual rainfall, 1972–2016 [Dataset]. https://data.mfe.govt.nz/layer/89421-average-annual-rainfall-19722016/
    Explore at:
    geotiff, pdf, kea, ascii gridAvailable download formats
    Dataset updated
    Oct 12, 2017
    Dataset authored and provided by
    Ministry for the Environment
    License

    https://data.mfe.govt.nz/license/attribution-4-0-international/https://data.mfe.govt.nz/license/attribution-4-0-international/

    Area covered
    Oceania, Golden Bay / Mohua
    Description

    Rain is vital for life – it supplies the water we need to drink and to grow our food, keeps our ecosystems healthy, and supplies our electricity. New Zealand’s mountainous terrain and location in the roaring forties mean rainfall varies across the country. Changes in rainfall amount or timing can significantly affect agriculture, energy, recreation, and the environment. For example, an increase or decrease of rainfall in spring can have marked effects on crops or fish populations.
    More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

  19. Average Annual Precipitation

    • fesec-cesj.opendata.arcgis.com
    • hub.arcgis.com
    Updated Sep 26, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2017). Average Annual Precipitation [Dataset]. https://fesec-cesj.opendata.arcgis.com/maps/d87460083a794241ad5bd85775f098ab
    Explore at:
    Dataset updated
    Sep 26, 2017
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Total annual precipitation is shown along with elevation hillshade using the NAGI method. Hillshade is from Esri Elevation Service, and precipitation data is taken from WMO and FAO rain gages in addition to a number of national datasets. The annual and monthly averages for the period 1950-2000 was calculated and interpolated by WorldClim.org, a collaboration between the University of California, Berkeley, the International Cetner for Tropical Agrilculture, and the Cooperative Research Centre for Tropical Rainforest Ecology and Management.

  20. a

    Change in Annual Precipitation

    • keep-cool-global-community.hub.arcgis.com
    • atlas.globalchange.gov
    • +1more
    Updated Oct 24, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Climate Resilience (2023). Change in Annual Precipitation [Dataset]. https://keep-cool-global-community.hub.arcgis.com/maps/9600886883904f11a6be8620c9a45a6a
    Explore at:
    Dataset updated
    Oct 24, 2023
    Dataset authored and provided by
    National Climate Resilience
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This map plots the Change in Annual Precipitation if Earth’s long-term average temperature reaches specific levels of warming. These Global Warming Levels (GWLs) correspond to global average temperature increases of 1.5, 2, 3, and 4 °C above pre-industrial levels measured from 1851 to 1900. On the Fahrenheit scale, these warming levels are 2.7, 3.6, 5.4, and 7.2 °F. As of the 2020s, global average temperature has already increased around 2 °F above pre-industrial levels.Each layer of the map is style with the same range of data so that the spatial patterns of change can be compared across all scenarios. The projections are derived from downscaled climate models from LOCA2 and STAR-ESDM, and were used in the 5th National Climate Assessment. Click on the layers below to view more detailed descriptions of how the data was generated. The data used in this map is considered in beta release and will be replaced.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
CECAtlas (2023). North America Annual Precipitation [Dataset]. https://hub.arcgis.com/maps/d4b81cb2dc4f4b938964aa1eb9b4b9a9

North America Annual Precipitation

Explore at:
17 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Apr 19, 2023
Dataset authored and provided by
CECAtlas
License
Area covered
Description

The North America climate data were derived from WorldClim, a set of global climate layers developed by the Museum of Vertebrate Zoology at the University of California, Berkeley, USA, in collaboration with The International Center for Tropical Agriculture and Rainforest CRC with support from NatureServe.The global climate data layers were generated through interpolation of average monthly climate data from weather stations across North America. The result is a 30-arc-second-resolution (1-Km) grid of mean temperature values. The North American data were clipped from the global data and reprojected to a Lambert Azimuthal Equal Area projection. Background information on the WorldClim database is available in: Very High-Resolution Interpolated Climate Surfaces for Global Land Areas; Hijmans, R.J., S.E. Cameron, J.L. Parra, P.G. Jones and A. Jarvis; International Journal of Climatology 25: 1965-1978; 2005.Files Download

Search
Clear search
Close search
Google apps
Main menu