The North America climate data were derived from WorldClim, a set of global climate layers developed by the Museum of Vertebrate Zoology at the University of California, Berkeley, USA, in collaboration with The International Center for Tropical Agriculture and Rainforest CRC with support from NatureServe.The global climate data layers were generated through interpolation of average monthly climate data from weather stations across North America. The result is a 30-arc-second-resolution (1-Km) grid of mean temperature values. The North American data were clipped from the global data and reprojected to a Lambert Azimuthal Equal Area projection. Background information on the WorldClim database is available in: Very High-Resolution Interpolated Climate Surfaces for Global Land Areas; Hijmans, R.J., S.E. Cameron, J.L. Parra, P.G. Jones and A. Jarvis; International Journal of Climatology 25: 1965-1978; 2005.Files Download
This dataset contains 30-year rolling average of annual average precipitation across all four models and two greenhouse gas (RCP) scenarios in the four model ensemble. The year identified for a 30 year rolling average is the mid-point of the 30-year average. eg. The year 2050 includes the values from 2036 to 2065. The downscaling and selection of models for inclusion in ten and four model ensembles is described in Pierce et al. 2018, but summarized here. Thirty two global climate models (GCMs) were identified to meet the modeling requirements. From those, ten that closely simulate California’s climate were selected for additional analysis (Table 1, Pierce et al. 2018) and to form a ten model ensemble. From the ten model ensemble, four models, forming a four model ensemble, were identified to provide coverage of the range of potential climate outcomes in California. The models in the four model ensemble and their general climate projection for California are: HadGEM2-ES (warm/dry),CanESM2 (average), CNRM-CM5 (cooler/wetter),and MIROC5 the model least like the others to improve coverage of the range of outcomes. These data were downloaded from Cal-Adapt and prepared for use within CA Nature by California Natural Resource Agency and ESRI staff. Cal-Adapt. (2018). LOCA Derived Data [GeoTIFF]. Data derived from LOCA Downscaled CMIP5 Climate Projections. Cal-Adapt website developed by University of California at Berkeley’s Geospatial Innovation Facility under contract with the California Energy Commission. Retrieved from https://cal-adapt.org/ Pierce, D. W., J. F. Kalansky, and D. R. Cayan, (Scripps Institution of Oceanography). 2018. Climate, Drought, and Sea Level Rise Scenarios for the Fourth California Climate Assessment. California’s Fourth Climate Change Assessment, California Energy Commission. Publication Number: CNRA-CEC-2018-006.
The National Forest Climate Change Maps project was developed by the Rocky Mountain Research Station (RMRS) and the Office of Sustainability and Climate to meet the needs of national forest managers for information on projected climate changes at a scale relevant to decision making processes, including forest plans. The maps use state-of-the-art science and are available for every national forest in the contiguous United States with relevant data coverage. Currently, the map sets include variables related to precipitation, air temperature, snow (including snow residence time and April 1 snow water equivalent), and stream flow.Historical (1975-2005) and future (2071-2090) precipitation and temperature data for the contiguous United States are ensemble mean values across 20 global climate models from the CMIP5 experiment (https://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-11-00094.1), downscaled to a 4 km grid. For more information on the downscaling method and to access the data, please see Abatzoglou and Brown, 2012 (https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/joc.2312) and the Northwest Knowledge Network (https://climate.northwestknowledge.net/MACA/). We used the MACAv2- Metdata monthly dataset; monthly precipitation values (mm) were summed over the season of interest (annual, winter, or summer). Absolute and percent change were then calculated between the historical and future time periods.Raster data are also available for download from RMRS site (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/categories/us-raster-layers.html), along with pdf maps and detailed metadata (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/downloads/NationalForestClimateChangeMapsMetadata.pdf).
This map is part of a series of global climate images produced by the Agrometeorology Group and based on data for mean monthly values of temperature, precipitation and cloudiness prepared in 1991 by R. Leemans and W. Cramer and published by the International Institute for Applied Systems Analysis (IIASA). For each of the weather stations used data have been assembled over a long time period - usually between 1961 and 1990 - and then averaged. Annual totals for rainfall were derived from the monthly values.
Date of freeze for historical (1985-2005) and future (2071-2090, RCP 8.5) time periods, and absolute change between them, based on analysis of MACAv2METDATA. Download this data or get more information
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Contained within the 4th Edition (1974) of the Atlas of Canada is a collection of six maps. Each map shows the average monthly precipitation for April, May, June, July, August and September.
In 2024, Louisiana recorded 71.25 inches of precipitation. This was the highest precipitation within the 48 contiguous U.S. states that year. On the other hand, Nevada was the driest state, with only 9.53 inches of precipitation recorded. Precipitation across the United States Not only did Louisiana record the largest precipitation volume in 2024, but it also registered the highest precipitation anomaly that year, around 14.36 inches above the 1901-2000 annual average. In fact, over the last decade, rainfall across the United States was generally higher than the average recorded for the 20th century. Meanwhile, the driest states were located in the country's southwestern region, an area which – according to experts – will become even drier and warmer in the future. How does global warming affect precipitation patterns? Rising temperatures on Earth lead to increased evaporation which – ultimately – results in more precipitation. Since 1900, the volume of precipitation in the United States has increased at an average rate of 0.20 inches per decade. Nevertheless, the effects of climate change on precipitation can vary depending on the location. For instance, climate change can alter wind patterns and ocean currents, causing certain areas to experience reduced precipitation. Furthermore, even if precipitation increases, it does not necessarily increase the water availability for human consumption, which might eventually lead to drought conditions.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Contained within the 4th Edition (1974) of the Atlas of Canada is a set of two maps. One map shows the average precipitation for April to September. The second shows the average precipitation for October to March.
What does the data show?
This data shows the monthly averages of rainfall amount (mm) for 1981-2010 from CRU TS (v. 4.06) dataset. It is provided on the WGS84 grid which measures approximately 60km x 60km (latitude x longitude) at the equator. This is the same as the 60km grid used by UKCP18 global datasets.
What are the naming conventions and how do I explore the data?
This data contains a field for each month’s average over the period. They are named 'pr' (precipitation) and the month. E.g. ‘pr March’ is the average of the monthly total rainfall in March throughout 1981-2010.
To understand how to explore the data, see this page: https://storymaps.arcgis.com/stories/457e7a2bc73e40b089fac0e47c63a578
Please note, if viewing in ArcGIS Map Viewer, the map will default to ‘pr January’ values.
Data source
CRU TS v. 4.06 - (downloaded 12/07/22)
Useful links
Further information on CRU TS Further information on understanding climate data within the Met Office Climate Data Portal
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This map plots the Change in Extreme Precipitation if Earth’s long-term average temperature reaches specific levels of warming. These Global Warming Levels (GWLs) correspond to global average temperature increases of 1.5, 2, 3, and 4 °C above pre-industrial levels measured from 1851 to 1900. On the Fahrenheit scale, these warming levels are 2.7, 3.6, 5.4, and 7.2 °F. As of the 2020s, global average temperature has already increased around 2 °F above pre-industrial levels.Each layer of the map is style with the same range of data so that the spatial patterns of change can be compared across all scenarios. The projections are derived from downscaled climate models from LOCA2 and STAR-ESDM, and were used in the 5th National Climate Assessment. Click on the layers below to view more detailed descriptions of how the data was generated.
Precipitation is water released from clouds in the form of rain, sleet, snow, or hail. It is the primary source of recharge to the planet's fresh water supplies. This map contains a historical record showing the volume of precipitation that fell during each month from March 2000 to the present. Snow and hail are reported in terms of snow water equivalent - the amount of water that will be produced when they melt. Dataset SummaryThe GLDAS Precipitation layer is a time-enabled image service that shows average monthly precipitation from 2000 to the present, measured in millimeters. It is calculated by NASA using the Noah land surface model, run at 0.25 degree spatial resolution using satellite and ground-based observational data from the Global Land Data Assimilation System (GLDAS-1). The model is run with 3-hourly time steps and aggregated into monthly averages. Review the complete list of model inputs, explore the output data (in GRIB format), and see the full Hydrology Catalog for all related data and information!What can you do with this layer?This layer is suitable for both visualization and analysis. It can be used in ArcGIS Online in web maps and applications and can be used in ArcGIS for Desktop. It is useful for scientific modeling, but only at global scales.Time: This is a time-enabled layer. It shows the total evaporative loss during the map's time extent, or if time animation is disabled, a time range can be set using the layer's multidimensional settings. The map shows the sum of all months in the time extent. Minimum temporal resolution is one month; maximum is one year.Variables: This layer has two variables: rainfall and snowfall. By default the two are summed, but you can view either by itself using the multidimensional filter. You must disable time animation on the layer before using its multidimensional filter.Important: You must switch from the cartographic renderer to the analytic renderer in the processing template tab in the layer properties window before using this layer as an input to geoprocessing tools.This layer has query, identify, and export image services available.This layer is part of a larger collection of earth observation maps that you can use to perform a wide variety of mapping and analysis tasks.The Living Atlas of the World provides an easy way to explore the earth observation layers and many other beautiful and authoritative maps on hundreds of topics.Geonet is a good resource for learning more about earth observations layers and the Living Atlas of the World. Follow the Living Atlas on GeoNet.
A simulation of projected changes in mean annual precipitation from the period 1975 to 1995 to the period 2080 to 2100 is shown on this map. On average, precipitation increases, but it is not evenly distributed geographically. There are marked regions of decreasing, as well as increasing precipitation, over both land and ocean. Annual average precipitation generally increases over northern continents, and particularly during the winter. Warmer surface temperature would speed up the hydrological cycle at least partially, resulting in faster evaporation and more precipitation. The results are based on climate change simulations made with the Coupled Global Climate Model developed by Environment Canada.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Contained within the 3rd Edition (1957) of the Atlas of Canada is a plate that shows two maps for the annual total precipitation. Annual precipitation is defined as the sum of rainfall and the assumed water equivalent of snowfall for a given year. A specific gravity of 0.1 for freshly fallen snow is used, which means that ten inches (25.4 cm) of freshly fallen snow is assumed to be equal to one inch (2.54 cm) of rain. The mean annual total precipitation and snowfall maps on this plate are primarily based on thirty-year data during the period 1921 to 1950 inclusive.
Vector dataset provides derived average annual precipitation according to a model using point precipitation and elevation data for the 30-year period of 1981-2010.
The National Forest Climate Change Maps project was developed by the Rocky Mountain Research Station (RMRS) and the Office of Sustainability and Climate to meet the needs of national forest managers for information on projected climate changes at a scale relevant to decision making processes, including forest plans. The maps use state-of-the-art science and are available for every national forest in the contiguous United States with relevant data coverage. Currently, the map sets include variables related to precipitation, air temperature, snow (including snow residence time and April 1 snow water equivalent), and stream flow.
Historical (1975-2005) and future (2071-2090) precipitation and temperature data for the contiguous United States are ensemble mean values across 20 global climate models from the CMIP5 experiment (https://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-11-00094.1), downscaled to a 4 km grid. For more information on the downscaling method and to access the data, please see Abatzoglou and Brown, 2012 (https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/joc.2312) and the Northwest Knowledge Network (https://climate.northwestknowledge.net/MACA/). We used the MACAv2- Metdata monthly dataset; average temperature values were calculated as the mean of monthly minimum and maximum air temperature values (degrees C), averaged over the season of interest (annual, winter, or summer). Absolute and percent change were then calculated between the historical and future time periods.
Historical (1975-2005) and future (2071-2090) precipitation and temperature data for the state of Alaska were developed by the Scenarios Network for Alaska and Arctic Planning (SNAP) (https://snap.uaf.edu). These datasets have several important differences from the MACAv2-Metdata (https://climate.northwestknowledge.net/MACA/) products, used in the contiguous U.S. They were developed using different global circulation models and different downscaling methods, and were downscaled to a different scale (771 m instead of 4 km). While these cover the same time periods and use broadly similar approaches, caution should be used when directly comparing values between Alaska and the contiguous United States.
Raster data are also available for download from RMRS site (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/categories/us-raster-layers.html), along with pdf maps and detailed metadata (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/downloads/NationalForestClimateChangeMapsMetadata.pdf).
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The National Forest Climate Change Maps project was developed by the Rocky Mountain Research Station (RMRS) and the Office of Sustainability and Climate to meet the needs of national forest managers for information on projected climate changes at a scale relevant to decision making processes, including forest plans. The maps use state-of-the-art science and are available for every national forest in the contiguous United States with relevant data coverage. Currently, the map sets include variables related to precipitation, air temperature, snow (including snow residence time and April 1 snow water equivalent), and stream flow.Historical (1975-2005) and future (2071-2090) precipitation and temperature data for the state of Alaska were developed by the Scenarios Network for Alaska and Arctic Planning (SNAP) (https://snap.uaf.edu). Monthly precipitation values (mm) were summed over the season of interest (annual, winter, or summer). These datasets have several important differences from the MACAv2-Metdata (https://climate.northwestknowledge.net/MACA/) products, used in the contiguous U.S. They were developed using different global circulation models and different downscaling methods, and were downscaled to a different scale (771 m instead of 4 km). While these cover the same time periods and use broadly similar approaches, caution should be used when directly comparing values between Alaska and the contiguous United States.Raster data are also available for download from RMRS site (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/categories/us-raster-layers.html), along with pdf maps and detailed metadata (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/downloads/NationalForestClimateChangeMapsMetadata.pdf).
This map features the GLDAS total monthly precipitation modeled globally by NASA. The map shows the monthly precipitation for the period of May 2016 to May 2018, focused on Africa. You can click the Play button on the time slider to see precipitation over time.Great parts of Northern Africa and Southern Africa, as well as the whole Horn of Africa, mainly have a hot desert climate, or a hot semi-arid climate for the wetter locations. The equatorial region near the Intertropical Convergence Zone is the wettest portion of the continent. Annually, the rain belt across the country marches northward into Sub-Saharan Africa by August, then moves back southward into south-central Africa by March.Precipitation is water released from clouds in the form of rain, sleet, snow, or hail. It is the primary source of recharge to the planet's fresh water supplies. This map contains a historical record showing the volume of precipitation that fell during each month from March 2000 to the present. Snow and hail are reported in terms of snow water equivalent - the amount of water that will be produced when they melt. Dataset SummaryThe GLDAS Precipitation layer is a time-enabled image service that shows average monthly precipitation from 2000 to the present, measured in millimeters. It is calculated by NASA using the Noah land surface model, run at 0.25 degree spatial resolution using satellite and ground-based observational data from the Global Land Data Assimilation System (GLDAS-2.1). The model is run with 3-hourly time steps and aggregated into monthly averages. A complete list of the model inputs can be seen here, and the output data (in GRIB format) is available here.Phenomenon Mapped: PrecipitationUnits: MillimetersTime Interval: MonthlyTime Extent: 2000/01/01 to presentCell Size: 28 kmSource Type: ScientificPixel Type: Signed IntegerData Projection: GCS WGS84Mosaic Projection: Web Mercator Auxiliary SphereExtent: Global Land SurfaceSource: NASAUpdate Cycle: SporadicWhat can you do with this layer?This layer is suitable for both visualization and analysis. It can be used in ArcGIS Online in web maps and applications and can be used in ArcGIS for Desktop. It is useful for scientific modeling, but only at global scales.By applying the "Calculate Anomaly" processing template, it is also possible to view these data in terms of deviation from the mean, instead of total evapotranspiration. Mean evapotranspiration for a given month is calculated over the entire period of record - 2000 to present.Time: This is a time-enabled layer. It shows the total evaporative loss during the map's time extent, or if time animation is disabled, a time range can be set using the layer's multidimensional settings. The map shows the sum of all months in the time extent. Minimum temporal resolution is one month; maximum is eight years.Variables: This layer has two variables: rainfall and snowfall. By default the two are summed, but you can view either by itself using the multidimensional filter, or by applying the relevant raster function. You must disable time animation on the layer before using its multidimensional filter.Important: You must switch from the cartographic renderer to the analytic renderer in the processing template tab in the layer properties window before using this layer as an input to geoprocessing tools.
https://data.mfe.govt.nz/license/attribution-4-0-international/https://data.mfe.govt.nz/license/attribution-4-0-international/
Rain is vital for life – it supplies the water we need to drink and to grow our food, keeps our ecosystems healthy, and supplies our electricity. New Zealand’s mountainous terrain and location in the roaring forties mean rainfall varies across the country. Changes in rainfall amount or timing can significantly affect agriculture, energy, recreation, and the environment. For example, an increase or decrease of rainfall in spring can have marked effects on crops or fish populations.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.
Total annual precipitation is shown along with elevation hillshade using the NAGI method. Hillshade is from Esri Elevation Service, and precipitation data is taken from WMO and FAO rain gages in addition to a number of national datasets. The annual and monthly averages for the period 1950-2000 was calculated and interpolated by WorldClim.org, a collaboration between the University of California, Berkeley, the International Cetner for Tropical Agrilculture, and the Cooperative Research Centre for Tropical Rainforest Ecology and Management.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This map plots the Change in Annual Precipitation if Earth’s long-term average temperature reaches specific levels of warming. These Global Warming Levels (GWLs) correspond to global average temperature increases of 1.5, 2, 3, and 4 °C above pre-industrial levels measured from 1851 to 1900. On the Fahrenheit scale, these warming levels are 2.7, 3.6, 5.4, and 7.2 °F. As of the 2020s, global average temperature has already increased around 2 °F above pre-industrial levels.Each layer of the map is style with the same range of data so that the spatial patterns of change can be compared across all scenarios. The projections are derived from downscaled climate models from LOCA2 and STAR-ESDM, and were used in the 5th National Climate Assessment. Click on the layers below to view more detailed descriptions of how the data was generated. The data used in this map is considered in beta release and will be replaced.
The North America climate data were derived from WorldClim, a set of global climate layers developed by the Museum of Vertebrate Zoology at the University of California, Berkeley, USA, in collaboration with The International Center for Tropical Agriculture and Rainforest CRC with support from NatureServe.The global climate data layers were generated through interpolation of average monthly climate data from weather stations across North America. The result is a 30-arc-second-resolution (1-Km) grid of mean temperature values. The North American data were clipped from the global data and reprojected to a Lambert Azimuthal Equal Area projection. Background information on the WorldClim database is available in: Very High-Resolution Interpolated Climate Surfaces for Global Land Areas; Hijmans, R.J., S.E. Cameron, J.L. Parra, P.G. Jones and A. Jarvis; International Journal of Climatology 25: 1965-1978; 2005.Files Download