Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The UK hourly rainfall data contain the rainfall amount (and duration from tilting syphon gauges) during the hour (or hours) ending at the specified time. The data also contains precipitation amounts, however precipitation measured over 24 hours are not stored. Over time a range of rain gauges have been used - see the linked MIDAS User Guide for further details.
This version supersedes the previous version of this dataset and a change log is available in the archive, and in the linked documentation for this record, detailing the differences between this version and the previous version. The change logs detail new, replaced and removed data.
The data were collected by observation stations operated by the Met Office across the UK and transmitted within the following message types: NCM, AWSHRLY, DLY3208, SREW and SSER. The data spans from 1915 to 2023.
This dataset is part of the Midas-open dataset collection made available by the Met Office under the UK Open Government Licence, containing only UK mainland land surface observations owned or operated by the Met Office. It is a subset of the fuller, restricted Met Office Integrated Data Archive System (MIDAS) Land and Marine Surface Stations dataset, also available through the Centre for Environmental Data Analysis - see the related dataset section on this record. A large proportion of the UK raingauge observing network (associated with WAHRAIN, WADRAIN and WAMRAIN for hourly, daily and monthly rainfall measurements respectively) is operated by other agencies beyond the Met Office, and are consequently currently excluded from the Midas-open dataset.
The UK hourly rainfall data contain the rainfall amount (and duration from tilting syphon gauges) during the hour (or hours) ending at the specified time. The data also contains precipitation amounts, however precipitation measured over 24 hours are not stored. Over time a range of rain gauges have been used - see the linked MIDAS User Guide for further details. The data were collected by observation stations operated by the Met Office across the UK and transmitted within the following message types: NCM, AWSHRLY, DLY3208, SREW and SSER. The data spans from 1915 to 2017. This dataset is part of the Midas-open dataset collection made available by the Met Office under the UK Open Government Licence, containing only UK mainland land surface observations owned or operated by Met Office. It is a subset of the fuller, restricted Met Office Integrated Data Archive System (MIDAS) Land and Marine Surface Stations dataset, also available through the Centre for Environmental Data Analysis - see the related dataset section on this record. A large proportion of the UK raingauge observing network (associated with WAHRAIN, WADRAIN and WAMRAIN for hourly, daily and monthly rainfall measurements respectively) is operated by other agencies beyond the Met Office, and are consequently currently excluded from the Midas-open dataset.
http://www.nationalarchives.gov.uk/doc/non-commercial-government-licence/version/2/http://www.nationalarchives.gov.uk/doc/non-commercial-government-licence/version/2/
This is version v3.3.0.2022f of Met Office Hadley Centre's Integrated Surface Database, HadISD. These data are global sub-daily surface meteorological data.
The quality controlled variables in this dataset are: temperature, dewpoint temperature, sea-level pressure, wind speed and direction, cloud data (total, low, mid and high level). Past significant weather and precipitation data are also included, but have not been quality controlled, so their quality and completeness cannot be guaranteed. Quality control flags and data values which have been removed during the quality control process are provided in the qc_flags and flagged_values fields, and ancillary data files show the station listing with a station listing with IDs, names and location information.
The data are provided as one NetCDF file per station. Files in the station_data folder station data files have the format "station_code"_HadISD_HadOBS_19310101-20230101_v3.3.1.2022f.nc. The station codes can be found under the docs tab. The station codes file has five columns as follows: 1) station code, 2) station name 3) station latitude 4) station longitude 5) station height.
To keep informed about updates, news and announcements follow the HadOBS team on twitter @metofficeHadOBS.
For more detailed information e.g bug fixes, routine updates and other exploratory analysis, see the HadISD blog: http://hadisd.blogspot.co.uk/
References: When using the dataset in a paper you must cite the following papers (see Docs for link to the publications) and this dataset (using the "citable as" reference) :
Dunn, R. J. H., (2019), HadISD version 3: monthly updates, Hadley Centre Technical Note.
Dunn, R. J. H., Willett, K. M., Parker, D. E., and Mitchell, L.: Expanding HadISD: quality-controlled, sub-daily station data from 1931, Geosci. Instrum. Method. Data Syst., 5, 473-491, doi:10.5194/gi-5-473-2016, 2016.
Dunn, R. J. H., et al. (2012), HadISD: A Quality Controlled global synoptic report database for selected variables at long-term stations from 1973-2011, Clim. Past, 8, 1649-1679, 2012, doi:10.5194/cp-8-1649-2012
Smith, A., N. Lott, and R. Vose, 2011: The Integrated Surface Database: Recent Developments and Partnerships. Bulletin of the American Meteorological Society, 92, 704–708, doi:10.1175/2011BAMS3015.1
For a homogeneity assessment of HadISD please see this following reference
Dunn, R. J. H., K. M. Willett, C. P. Morice, and D. E. Parker. "Pairwise homogeneity assessment of HadISD." Climate of the Past 10, no. 4 (2014): 1501-1522. doi:10.5194/cp-10-1501-2014, 2014.
The wettest months in the United Kingdom tend to be at the start and end of the year. In the period of consideration, the greatest measurement of rainfall was nearly 217 millimeters, recorded in December 2015. The lowest level of rainfall was recorded in April 2021, at 20.6 millimeters. Rainy days The British Isles are known for their wet weather, and in 2024 there were approximately 164 rain days in the United Kingdom. A rainday is when more than one millimeter of rain falls within a day. Over the past 30 years, the greatest number of rain days was recorded in the year 2000. In that year, the average annual rainfall in the UK amounted to 1,242.1 millimeters. Climate change According to the Met Office, climate change in the United Kingdom has resulted in the weather getting warmer and wetter. In 2022, the annual average temperature in the country reached a new record high, surpassing 10 degrees Celsius for the first time. This represented an increase of nearly two degrees Celsius when compared to the annual average temperature recorded in 1910. In a recent survey conducted amongst UK residents, almost 80 percent of respondents had concerns about climate change.
What does the data show?
This data shows the monthly averages of rainfall amount (mm) for 1981-2010 from CRU TS (v. 4.06) dataset. It is provided on the WGS84 grid which measures approximately 60km x 60km (latitude x longitude) at the equator. This is the same as the 60km grid used by UKCP18 global datasets.
What are the naming conventions and how do I explore the data?
This data contains a field for each month’s average over the period. They are named 'pr' (precipitation) and the month. E.g. ‘pr March’ is the average of the monthly total rainfall in March throughout 1981-2010.
To understand how to explore the data, see this page: https://storymaps.arcgis.com/stories/457e7a2bc73e40b089fac0e47c63a578
Please note, if viewing in ArcGIS Map Viewer, the map will default to ‘pr January’ values.
Data source
CRU TS v. 4.06 - (downloaded 12/07/22)
Useful links
Further information on CRU TS Further information on understanding climate data within the Met Office Climate Data Portal
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Monthly Historical information for 37 UK Meteorological Stations. Most go back to the early 1900s, but some go back as far as 1853.
Data includes:
Station data files are updated on a rolling monthly basis, around 10 days after the end of the month. Data are indicated as provisional until the full network quality control has been carried out. After this, data are final.
No allowances have been made for small site changes and developments in instrumentation.
Data and statistics for other stations, and associated charges, can be obtained by contacting our Customer Centre.
http://www.nationalarchives.gov.uk/doc/non-commercial-government-licence/version/2/http://www.nationalarchives.gov.uk/doc/non-commercial-government-licence/version/2/
This is version v3.4.0.2023f of Met Office Hadley Centre's Integrated Surface Database, HadISD. These data are global sub-daily surface meteorological data.
This update (v3.4.0.2023f) to HadISD corrects a long-standing bug which was discovered in autumn 2023 whereby the neighbour checks (and associated [un]flagging for some other tests) were not being implemented. For more details see the posts on the HadISD blog: https://hadisd.blogspot.com/2023/10/bug-in-buddy-checks.html & https://hadisd.blogspot.com/2024/01/hadisd-v3402023f-future-look.html
The quality controlled variables in this dataset are: temperature, dewpoint temperature, sea-level pressure, wind speed and direction, cloud data (total, low, mid and high level). Past significant weather and precipitation data are also included, but have not been quality controlled, so their quality and completeness cannot be guaranteed. Quality control flags and data values which have been removed during the quality control process are provided in the qc_flags and flagged_values fields, and ancillary data files show the station listing with a station listing with IDs, names and location information.
The data are provided as one NetCDF file per station. Files in the station_data folder station data files have the format "station_code"_HadISD_HadOBS_19310101-20240101_v3.4.1.2023f.nc. The station codes can be found under the docs tab. The station codes file has five columns as follows: 1) station code, 2) station name 3) station latitude 4) station longitude 5) station height.
To keep informed about updates, news and announcements follow the HadOBS team on twitter @metofficeHadOBS.
For more detailed information e.g bug fixes, routine updates and other exploratory analysis, see the HadISD blog: http://hadisd.blogspot.co.uk/
References: When using the dataset in a paper you must cite the following papers (see Docs for link to the publications) and this dataset (using the "citable as" reference) :
Dunn, R. J. H., (2019), HadISD version 3: monthly updates, Hadley Centre Technical Note.
Dunn, R. J. H., Willett, K. M., Parker, D. E., and Mitchell, L.: Expanding HadISD: quality-controlled, sub-daily station data from 1931, Geosci. Instrum. Method. Data Syst., 5, 473-491, doi:10.5194/gi-5-473-2016, 2016.
Dunn, R. J. H., et al. (2012), HadISD: A Quality Controlled global synoptic report database for selected variables at long-term stations from 1973-2011, Clim. Past, 8, 1649-1679, 2012, doi:10.5194/cp-8-1649-2012
Smith, A., N. Lott, and R. Vose, 2011: The Integrated Surface Database: Recent Developments and Partnerships. Bulletin of the American Meteorological Society, 92, 704–708, doi:10.1175/2011BAMS3015.1
For a homogeneity assessment of HadISD please see this following reference
Dunn, R. J. H., K. M. Willett, C. P. Morice, and D. E. Parker. "Pairwise homogeneity assessment of HadISD." Climate of the Past 10, no. 4 (2014): 1501-1522. doi:10.5194/cp-10-1501-2014, 2014.
What does the data show?
This data shows annual averages of precipitation (mm/day) for 2050-2079 from the UKCP18 regional climate projections. The data is for the high emissions scenario (RCP8.5).
Limitations of the data
We recommend the use of multiple grid cells or an average of grid cells around a point of interest to help users get a sense of the variability in the area. This will provide a more robust set of values for informing decisions based on the data.
What are the naming conventions and how do I explore the data?
This data contains a field for the average over the period. They are named 'pr' (precipitation), the month, and 'upper' 'median' or 'lower'. E.g. 'pr Median' is the median value.
To understand how to explore the data, see this page: https://storymaps.arcgis.com/stories/457e7a2bc73e40b089fac0e47c63a578
Please note, if viewing in ArcGIS Map Viewer, the map will default to ‘pr January Median’ values.
What do the ‘median’, ‘upper’, and ‘lower’ values mean?
Climate models are numerical representations of the climate system. To capture uncertainty in projections for the future, an ensemble, or group, of climate models are run. Each ensemble member has slightly different starting conditions or model set-ups. Considering all of the model outcomes gives users a range of plausible conditions which could occur in the future.
For this dataset, the model projections consist of 12 separate ensemble members. To select which ensemble members to use, the annual averages of precipitation for 2050-2079 were calculated for each ensemble member and they were then ranked in order from lowest to highest for each location.
The ‘lower’ fields are the second lowest ranked ensemble member. The ‘upper’ fields are the second highest ranked ensemble member. The ‘median’ field is the central value of the ensemble.
This gives a median value, and a spread of the ensemble members indicating the range of possible outcomes in the projections. This spread of outputs can be used to infer the uncertainty in the projections. The larger the difference between the lower and upper fields, the greater the uncertainty.
Data source
pr_rcp85_land-rcm_uk_12km_12_ann-30y_200912-207911.nc (median)
pr_rcp85_land-rcm_uk_12km_05_ann-30y_200912-207911.nc (lower)
pr_rcp85_land-rcm_uk_12km_04_ann-30y_200912-207911.nc (upper)
UKCP18 v20190731 (downloaded 04/11/2021)
Useful links
Further information on the UK Climate Projections (UKCP). Further information on understanding climate data within the Met Office Climate Data Portal
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
5 km resolution composite data and plots from the Met Office's UK rainfall radars via the Met Office NIMROD system. The NIMROD system is a very short range forecasting system used by the Met Office. Data are available from 2004 until present at UK stations and detail rain-rate observations taken every 5 minutes. Each file has been compressed and then stored within daily tar archive files.
The UK daily weather observation data contain meteorological values measured on a 24 hour time scale. The measurements of sunshine duration, concrete state, snow depth, fresh snow depth, and days of snow, hail, thunder and gail were attained by observation stations operated by the Met Office across the UK operated and transmitted within DLY3208, NCM, AWSDLY and SYNOP messages. The data span from 1887 to 2020. For details of observations see the relevant sections of the MIDAS User Guide linked from this record for the various message types. This version supersedes the previous version of this dataset and a change log is available in the archive, and in the linked documentation for this record, detailing the differences between this version and the previous version. The change logs detail new, replaced and removed data. Of particular note, however, is that as well as including data for 2020, historical data recovery has added further data for Eastbourne (1887-1910). This dataset is part of the Midas-open dataset collection made available by the Met Office under the UK Open Government Licence, containing only UK mainland land surface observations owned or operated by the Met Office. It is a subset of the fuller, restricted Met Office Integrated Data Archive System (MIDAS) Land and Marine Surface Stations dataset, also available through the Centre for Environmental Data Analysis - see the related dataset section on this record. Currently this represents approximately 95% of available daily weather observations within the full MIDAS collection.
The UK daily rainfall data contain rainfall accumulation and precipitation amounts over a 24 hour period. The data were collected by observation stations operated by the Met Office across the UK and transmitted within the following message types: NCM, AWSDLY, DLY3208 and SSER. The data spans from 1853 to 2023. Over time a range of rain gauges have been used - see section 5.6 and the relevant message type information in the linked MIDAS User Guide for further details. This version supersedes the previous version (202308) of this dataset and a change log is available in the archive, and in the linked documentation for this record, detailing the differences between this version and the previous version. The change logs detail new, replaced and removed data. These include the addition of data for calendar year 2023. This dataset is part of the Midas-open dataset collection made available by the Met Office under the UK Open Government Licence, containing only UK mainland land surface observations owned or operated by Met Office. It is a subset of the fuller, restricted Met Office Integrated Data Archive System (MIDAS) Land and Marine Surface Stations dataset, also available through the Centre for Environmental Data Analysis - see the related dataset section on this record. A large proportion of the UK raingauge observing network (associated with WAHRAIN, WADRAIN and WAMRAIN for hourly, daily and monthly rainfall measurements respectively) is operated by other agencies beyond the Met Office, and are consequently currently excluded from the Midas-open dataset. Currently this represents approximately 13% of available daily rainfall observations within the full MIDAS collection.
This map displays the Quantitative Precipitation Forecast (QPF) for the next 72 hours across the contiguous United States. Data are updated hourly from the National Digital Forecast Database produced by the National Weather Service.The dataset includes incremental and cumulative precipitation data in 6-hour intervals. In the ArcGIS Online map viewer you can enable the time animation feature and select either the "Amount by Time" (incremental) layer or the "Accumulation by Time" (cumulative) layer to view a 72-hour animation of forecast precipitation. All times are reported according to your local time zone.Where is the data coming from?The National Digital Forecast Database (NDFD) was designed to provide access to weather forecasts in digital form from a central location. The NDFD produces forecast data of sensible weather elements. NDFD contains a seamless mosaic of digital forecasts from National Weather Service (NWS) field offices working in collaboration with the National Centers for Environmental Prediction (NCEP). All of these organizations are under the administration of the National Oceanic and Atmospheric Administration (NOAA).Source: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.conus/VP.001-003/ds.qpf.binWhere can I find other NDFD data?The Source data is downloaded and parsed using the Aggregated Live Feeds methodology to return information that can be served through ArcGIS Server as a map service or used to update Hosted Feature Services in Online or Enterprise.What can you do with this layer?This map service is suitable for data discovery and visualization. Identify features by clicking on the map to reveal the pre-configured pop-ups. View the time-enabled data using the time slider by Enabling Time Animation.This map is provided for informational purposes and is not monitored 24/7 for accuracy and currency.If you would like to be alerted to potential issues or simply see when this Service will update next, please visit our Live Feed Status Page!
This dataset contains a set of daily observations of temperature (daily maximum, daily minimum and daily mean temperature) and rainfall (24 hour accumulation) interpolated to a uniform 5km grid resolution covering the period 1960 to 2014. The input station data originate from the Met Office Integrated Data Archive System - MIDAS - a database at the Met Office of observation station data stretching back to the 18th century. (A version of MIDAS is also available through CEDA, although incremental developments to the database such as quality control and data recovery activities may result in some differences compared to the database at the time of production of the UKCP09 data - see linked datasets for access to these equivalent datasets held by CEDA). The input station data used provide observations relating to periods 0900 to 0900 UTC, so the gridded output stored against day "dd" are as follows: • Maximum temperature between 0900 on day dd and 0900 on day dd+1 (normally expect to occur during the afternoon of day dd) • Minimum temperature between 0900 on day dd-1 and 0900 on day dd (normally expect to occur just before dawn on day dd) • Mean temperature that is the average of the maximum and minimum temperature • Rainfall (or rainfall equivalent in cases of frozen precipitation) amount between 0900 day dd and 0900 day dd+1 The gridding process accounts for effects such as latitude, longitude, altitude, coastal influence, and the effect of urban land through the use of normalisation with respect to monthly 1961 – 1990 climate normals, and in the case of temperature, a regression model. The data are provide in CF-1.5 compliant NetCDF format. The data are additionally provided in ESRI-ascii format, suitable for ingestion in GIS applications, and a simple timeseries format for users requiring a limited number of points.
What does the data show?
The data shows the annual average of precipitation amount (mm) for the 1991-2020 period from HadUK gridded data. It is provided on a 12km British National Grid (BNG).
Limitations of the data
We recommend the use of multiple grid cells or an average of grid cells around a point of interest to help users get a sense of the variability in the area. This will provide a more robust set of values for informing decisions based on the data.
What are the naming conventions and how do I explore the data?
This data contains a field for the average over the 1991-2020 period. It is named 'pr' (precipitation).
To understand how to explore the data, see this page: https://storymaps.arcgis.com/stories/457e7a2bc73e40b089fac0e47c63a578
Data source:
·
Version: HadUK-Grid v1.1.0.0 (downloaded 21/06/2022)
·
Source:
https://catalogue.ceda.ac.uk/uuid/652cea3b8b4446f7bff73be0ce99ba0f
·
Filename: rainfall_hadukgrid_uk_12km_ann-30y_199101-202012.nc
Useful links
·
Further information on HadUK-Grid
·
Further information on understanding
climate data within
the Met Office Climate Data Portal
https://artefacts.ceda.ac.uk/licences/specific_licences/ukmo_agreement.pdfhttps://artefacts.ceda.ac.uk/licences/specific_licences/ukmo_agreement.pdf
https://artefacts.ceda.ac.uk/licences/specific_licences/ukmo_agreement_gov.pdfhttps://artefacts.ceda.ac.uk/licences/specific_licences/ukmo_agreement_gov.pdf
The UK daily rainfall data describe the rainfall accumulation and precipitation amount over a 24 hour period. The data are collected by observation stations across the UK and transmitted within the following message types: WADRAIN, NCM, AWSDLY, DLY3208, SSER and WAMRAIN. The data spans from 1853 to present.
https://www.neonscience.org/data-samples/data-policies-citationhttps://www.neonscience.org/data-samples/data-policies-citation
Present summary statistics for biometeorological variables for NEON weather stations at core TIS sites. Statistics will include means, standard deviations, maxima, and minima for periods of days, months, and years. Engineering-grade product only.
World Weather Records (WWR) is an archived publication and digital data set. WWR is meteorological data from locations around the world. Through most of its history, WWR has been a publication, first published in 1927. Data includes monthly mean values of pressure, temperature, precipitation, and where available, station metadata notes documenting observation practices and station configurations. In recent years, data were supplied by National Meteorological Services of various countries, many of which became members of the World Meteorological Organization (WMO). The First Issue included data from earliest records available at that time up to 1920. Data have been collected for periods 1921-30 (2nd Series), 1931-40 (3rd Series), 1941-50 (4th Series), 1951-60 (5th Series), 1961-70 (6th Series), 1971-80 (7th Series), 1981-90 (8th Series), 1991-2000 (9th Series), and 2001-2011 (10th Series). The most recent Series 11 continues, insofar as possible, the record of monthly mean values of station pressure, sea-level pressure, temperature, and monthly total precipitation for stations listed in previous volumes. In addition to these parameters, mean monthly maximum and minimum temperatures have been collected for many stations and are archived in digital files by NCEI. New stations have also been included. In contrast to previous series, the 11th Series is available for the partial decade, so as to limit waiting period for new records. It begins in 2010 and is updated yearly, extending into the entire decade.
https://artefacts.ceda.ac.uk/licences/specific_licences/ukmo_agreement_gov.pdfhttps://artefacts.ceda.ac.uk/licences/specific_licences/ukmo_agreement_gov.pdf
https://artefacts.ceda.ac.uk/licences/specific_licences/ukmo_agreement.pdfhttps://artefacts.ceda.ac.uk/licences/specific_licences/ukmo_agreement.pdf
The land based SYNOP messages measurements describe hourly observations from land stations distributed globally. The observations cumulate in around 60,000 reports a day, giving measurements of parameters such as wind speed and direction, maximum and minimum air temperature, sunshine duration, rainfall accumulation, and cloud type. The data are collected by observation stations worldwide and transmitted within the land SYNOP message.
Data are extracted from the Met Office's MetDB system before being sent to CEDA for archiving. These extractions occur at the 4 principal synoptic periods (00-06, 06-12, 12-18 and 18-00 UT).
The dataset contains a range of measurements including:
The wind speed and vertical gust speed are given to the nearest metre per second, and the vertical gust acceleration to the nearest metre per second squared. The wind direction from which the wind blows is measured in Degrees (true). The entry for an east wind is 090, for a south wind it is 180 and so on clockwise. Note that zero values in both wind speed and wind direction fields indicate that there was no wind blowing at the time of observation.
The air temperature, grass temperature and dew-point temperature are measured in Kelvin.
The cloud height, visibility, snow depth, and wind-wave height are given in metres.
Sunshine duration is recorded over 24 hours and over one hour. For the former, the measurement is in hours, but for the latter the measurement is in minutes.
The past weather is recorded as a number between 0-9 which details what the weather has been like in the last 6 hours for observations at 00, 06, 12, 1800 UTC, the last 3 hours for observations at 03, 09, 15, 2100 UTC and the previous hour at any other times. The past weather is only recorded when a manual observation is done at the station.
The relative humidity is measured as a percentage.
Documentation and Links to further information and references (see linked documentation on this record): Some general information about surface station readings can be obtained from the abridged version of "MIDAS Data Users Guide", provided by the Met Office. This document describes the meteorological surface data in the Met Office Database - MIDAS. This guide is rich in information and is aimed at those with little familiarity with observing methods or instrumentation.
Details of the WMO Meteorological codes used at weather observing stations (daily and hourly weather) explain the codes used in this dataset further.
These daily weather records were compiled from a subset of stations in the Global Historical Climatological Network (GHCN)-Daily dataset. A weather record is considered broken if the value exceeds the maximum (or minimum) value recorded for an eligible station. A weather record is considered tied if the value is the same as the maximum (or minimum) value recorded for an eligible station. Daily weather parameters include Highest Min/Max Temperature, Lowest Min/Max Temperature, Highest Precipitation, Highest Snowfall and Highest Snow Depth. All stations meet defined eligibility criteria. For this application, a station is defined as the complete daily weather records at a particular location, having a unique identifier in the GHCN-Daily dataset. For a station to be considered for any weather parameter, it must have a minimum of 30 years of data with more than 182 days complete in each year. This is effectively a 30-year record of service requirement, but allows for inclusion of some stations which routinely shut down during certain seasons. Small station moves, such as a move from one property to an adjacent property, may occur within a station history. However, larger moves, such as a station moving from downtown to the city airport, generally result in the commissioning of a new station identifier. This tool treats each of these histories as a different station. In this way, it does not thread the separate histories into one record for a city. Records Timescales are characterized in three ways. In order of increasing noteworthiness, they are Daily Records, Monthly Records and All Time Records. For a given station, Daily Records refers to the specific calendar day: (e.g., the value recorded on March 7th compared to every other March 7th). Monthly Records exceed all values observed within the specified month (e.g., the value recorded on March 7th compared to all values recorded in every March). All-Time Records exceed the record of all observations, for any date, in a station's period of record. The Date Range and Location features are used to define the time and location ranges which are of interest to the user. For example, selecting a date range of March 1, 2012 through March 15, 2012 will return a list of records broken or tied on those 15 days. The Location Category and Country menus allow the user to define the geographic extent of the records of interest. For example, selecting Oklahoma will narrow the returned list of records to those that occurred in the state of Oklahoma, USA. The number of records broken for several recent periods is summarized in the table and updated daily. Due to late-arriving data, the number of recent records is likely underrepresented in all categories, but the ratio of records (warm to cold, for example) should be a fairly strong estimate of a final outcome. There are many more precipitation stations than temperature stations, so the raw number of precipitation records will likely exceed the number of temperature records in most climatic situations.
These statistics show quarterly and monthly weather trends for:
They provide contextual information for consumption patterns in energy, referenced in the Energy Trends chapters for each energy type.
Trends in wind speeds, sun hours and rainfall provide contextual information for trends in renewable electricity generation.
All these tables are published monthly, on the last Thursday of each month. The data is 1 month in arrears.
If you have questions about this content, please email: energy.stats@energysecurity.gov.uk.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The UK hourly rainfall data contain the rainfall amount (and duration from tilting syphon gauges) during the hour (or hours) ending at the specified time. The data also contains precipitation amounts, however precipitation measured over 24 hours are not stored. Over time a range of rain gauges have been used - see the linked MIDAS User Guide for further details.
This version supersedes the previous version of this dataset and a change log is available in the archive, and in the linked documentation for this record, detailing the differences between this version and the previous version. The change logs detail new, replaced and removed data.
The data were collected by observation stations operated by the Met Office across the UK and transmitted within the following message types: NCM, AWSHRLY, DLY3208, SREW and SSER. The data spans from 1915 to 2023.
This dataset is part of the Midas-open dataset collection made available by the Met Office under the UK Open Government Licence, containing only UK mainland land surface observations owned or operated by the Met Office. It is a subset of the fuller, restricted Met Office Integrated Data Archive System (MIDAS) Land and Marine Surface Stations dataset, also available through the Centre for Environmental Data Analysis - see the related dataset section on this record. A large proportion of the UK raingauge observing network (associated with WAHRAIN, WADRAIN and WAMRAIN for hourly, daily and monthly rainfall measurements respectively) is operated by other agencies beyond the Met Office, and are consequently currently excluded from the Midas-open dataset.