In 2024, the United States saw some **** inches of precipitation. The main forms of precipitation include hail, drizzle, rain, sleet, and snow. Since the turn of the century, 2012 was the driest year on record with an annual precipitation of **** inches. Regional disparities in rainfall Louisiana emerged as the wettest state in the U.S. in 2024, recording a staggering ***** inches (*** meters) of precipitation—nearly **** inches (ca. ** centimeters) above its historical average. In stark contrast, Nevada received only **** inches (ca. ** centimeters), underscoring the vast differences in rainfall across the nation. These extremes illustrate the uneven distribution of precipitation, with the southwestern states experiencing increasingly dry conditions that experts predict will worsen in the coming years. Drought concerns persist Drought remains a significant concern in many parts of the country. The Palmer Drought Severity Index (PDSI) for the contiguous United States stood at ***** in December 2024, indicating moderate to severe drought conditions. This reading follows three years of generally negative PDSI values, with the most extreme drought recorded in December 2023 at *****.
Typical annual rainfall data were summarized from monthly precipitation data and provided in millimeters (mm). The monthly climate data for global land areas were generated from a large network of weather stations by the WorldClim project. Precipitation and temperature data were collected from the weather stations and aggregated across a target temporal range of 1970-2000.
Weather station data (between 9,000 and 60,000 stations) were interpolated using thin-plate splines with covariates including elevation, distance to the coast, and MODIS-derived minimum and maximum land surface temperature. Spatial interpolation was first done in 23 regions of varying size depending on station density, instead of the common approach to use a single model for the entire world. The satellite imagery data were most useful in areas with low station density. The interpolation technique allowed WorldClim to produce high spatial resolution (approximately 1 km2) raster data sets.
These daily weather records were compiled from a subset of stations in the Global Historical Climatological Network (GHCN)-Daily dataset. A weather record is considered broken if the value exceeds the maximum (or minimum) value recorded for an eligible station. A weather record is considered tied if the value is the same as the maximum (or minimum) value recorded for an eligible station. Daily weather parameters include Highest Min/Max Temperature, Lowest Min/Max Temperature, Highest Precipitation, Highest Snowfall and Highest Snow Depth. All stations meet defined eligibility criteria. For this application, a station is defined as the complete daily weather records at a particular location, having a unique identifier in the GHCN-Daily dataset. For a station to be considered for any weather parameter, it must have a minimum of 30 years of data with more than 182 days complete in each year. This is effectively a 30-year record of service requirement, but allows for inclusion of some stations which routinely shut down during certain seasons. Small station moves, such as a move from one property to an adjacent property, may occur within a station history. However, larger moves, such as a station moving from downtown to the city airport, generally result in the commissioning of a new station identifier. This tool treats each of these histories as a different station. In this way, it does not thread the separate histories into one record for a city. Records Timescales are characterized in three ways. In order of increasing noteworthiness, they are Daily Records, Monthly Records and All Time Records. For a given station, Daily Records refers to the specific calendar day: (e.g., the value recorded on March 7th compared to every other March 7th). Monthly Records exceed all values observed within the specified month (e.g., the value recorded on March 7th compared to all values recorded in every March). All-Time Records exceed the record of all observations, for any date, in a station's period of record. The Date Range and Location features are used to define the time and location ranges which are of interest to the user. For example, selecting a date range of March 1, 2012 through March 15, 2012 will return a list of records broken or tied on those 15 days. The Location Category and Country menus allow the user to define the geographic extent of the records of interest. For example, selecting Oklahoma will narrow the returned list of records to those that occurred in the state of Oklahoma, USA. The number of records broken for several recent periods is summarized in the table and updated daily. Due to late-arriving data, the number of recent records is likely underrepresented in all categories, but the ratio of records (warm to cold, for example) should be a fairly strong estimate of a final outcome. There are many more precipitation stations than temperature stations, so the raw number of precipitation records will likely exceed the number of temperature records in most climatic situations.
The wettest months in the United Kingdom tend to be at the start and end of the year. In the period of consideration, the greatest measurement of rainfall was nearly 217 millimeters, recorded in December 2015. The lowest level of rainfall was recorded in April 2021, at 20.6 millimeters. Rainy days The British Isles are known for their wet weather, and in 2024 there were approximately 164 rain days in the United Kingdom. A rainday is when more than one millimeter of rain falls within a day. Over the past 30 years, the greatest number of rain days was recorded in the year 2000. In that year, the average annual rainfall in the UK amounted to 1,242.1 millimeters. Climate change According to the Met Office, climate change in the United Kingdom has resulted in the weather getting warmer and wetter. In 2022, the annual average temperature in the country reached a new record high, surpassing 10 degrees Celsius for the first time. This represented an increase of nearly two degrees Celsius when compared to the annual average temperature recorded in 1910. In a recent survey conducted amongst UK residents, almost 80 percent of respondents had concerns about climate change.
https://data.gov.tw/licensehttps://data.gov.tw/license
Using observation data from various agencies in Taiwan, including the Central Weather Bureau, Water Resources Agency, Irrigation Agency and Taiwan Power Company, supplementary, homogenization, and gridization operations were carried out to establish grid data with a resolution of 5 kilometers throughout Taiwan. This data was produced by the "Taiwan Climate Change Projection Information and Adaptation Knowledge Platform Project" of the National Science Council.
Australian Bureau of Meteorology assembled this dataset of 191 Australian rainfall stations for the purpose of climate change monitoring and assessment. These stations were selected because they are believed to be the highest quality and most reliable long-term rainfall stations in Australia. The longest period of record is August 1840 to December 1990, but the actual periods vary by individual station. Each data record in the dataset contains at least a monthly precipitation total, and most records also have daily data as well.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset was supplied to the Bioregional Assessment Programme by a third party and is presented here as originally supplied. The metadata was not provided by the data supplier and has been compiled by the programme based on known details.
This dataset contains long-term monthly rainfall records for the Bureau of Meteorology Harrisville rainfall station in southeast Queensland. See file 'IDCJAC0001_040094_Note.txt' stored with the dataset for details of data.
This dataset contains long-term monthly rainfall records for the Bureau of Meteorology Harrisville rainfall station in southeast Queensland. The dataset was downloaded from the Bureau of Meteorology climate data online webpage. http://www.bom.gov.au/climate/data/
Bureau of Meteorology (2016) Monthly rainfall climate data - Harrisville Mary Street. Bioregional Assessment Source Dataset. Viewed 28 September 2017, http://data.bioregionalassessments.gov.au/dataset/d77e55e6-57b7-48e0-84fb-e7b6d3ae2674.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The UK daily rainfall data contain rainfall accumulation and precipitation amounts over a 24 hour period. The data were collected by observation stations operated by the Met Office across the UK and transmitted within the following message types: NCM, AWSDLY, DLY3208 and SSER. The data spans from 1853 to 2023. Over time a range of rain gauges have been used - see section 5.6 and the relevant message type information in the linked MIDAS User Guide for further details.
This version supersedes the previous version (202308) of this dataset and a change log is available in the archive, and in the linked documentation for this record, detailing the differences between this version and the previous version. The change logs detail new, replaced and removed data. These include the addition of data for calendar year 2023.
This dataset is part of the Midas-open dataset collection made available by the Met Office under the UK Open Government Licence, containing only UK mainland land surface observations owned or operated by Met Office. It is a subset of the fuller, restricted Met Office Integrated Data Archive System (MIDAS) Land and Marine Surface Stations dataset, also available through the Centre for Environmental Data Analysis - see the related dataset section on this record. A large proportion of the UK raingauge observing network (associated with WAHRAIN, WADRAIN and WAMRAIN for hourly, daily and monthly rainfall measurements respectively) is operated by other agencies beyond the Met Office, and are consequently currently excluded from the Midas-open dataset. Currently this represents approximately 13% of available daily rainfall observations within the full MIDAS collection.
The National Forest Climate Change Maps project was developed by the Rocky Mountain Research Station (RMRS) and the Office of Sustainability and Climate to meet the needs of national forest managers for information on projected climate changes at a scale relevant to decision making processes, including forest plans. The maps use state-of-the-art science and are available for every national forest in the contiguous United States with relevant data coverage. Currently, the map sets include variables related to precipitation, air temperature, snow (including snow residence time and April 1 snow water equivalent), and stream flow.Historical (1975-2005) and future (2071-2090) precipitation and temperature data for the contiguous United States are ensemble mean values across 20 global climate models from the CMIP5 experiment (https://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-11-00094.1), downscaled to a 4 km grid. For more information on the downscaling method and to access the data, please see Abatzoglou and Brown, 2012 (https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/joc.2312) and the Northwest Knowledge Network (https://climate.northwestknowledge.net/MACA/). We used the MACAv2- Metdata monthly dataset; monthly precipitation values (mm) were summed over the season of interest (annual, winter, or summer). Absolute and percent change were then calculated between the historical and future time periods.Raster data are also available for download from RMRS site (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/categories/us-raster-layers.html), along with pdf maps and detailed metadata (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/downloads/NationalForestClimateChangeMapsMetadata.pdf).
This dataset contains Bahrain Monthly Values of Relative Humidity, Temperature, Rainfall, Sunshine Hours, Thunder Storm, Dust Storm, Fog and Wind Speed for Data from Bahrain Open Data Portal. Follow datasource.kapsarc.org for timely data to advance energy economics research.Rainfall: 0.05 values is originally recorded as Trace which is = < 0.05 Millimeters > zero.Storms/Fog measure: Number of days.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Rainfall data for Delhi from IMD
Historical Past (1895-1980) - Time series datasets prior to 1981 are modeled using climatologically-aided interpolation (CAI), which uses the long-term average pattern (i.e., the 30-year normals) as first-guess of the spatial pattern of climatic conditions for a given month or day. CAI is robust to wide variations in station data density, which is necessary when modeling long time series. Data is based on Monthly and Annual dataset covering the conterminous U.S. from 1981 to now. Contains spatially gridded monthly and annual total precipitation at 4km grid cell resolution. Distribution of the point measurements to the spatial grid was accomplished using the PRISM model, developed and applied by Dr. Christopher Daly of the PRISM Climate Group at Oregon State University.
The average temperature in December 2024 was 38.25 degrees Fahrenheit in the United States, the fourth-largest country in the world. The country has extremely diverse climates across its expansive landmass. Temperatures in the United States On the continental U.S., the southern regions face warm to extremely hot temperatures all year round, the Pacific Northwest tends to deal with rainy weather, the Mid-Atlantic sees all four seasons, and New England experiences the coldest winters in the country. The North American country has experienced an increase in the daily minimum temperatures since 1970. Consequently, the average annual temperature in the United States has seen a spike in recent years. Climate Change The entire world has seen changes in its average temperature as a result of climate change. Climate change occurs due to increased levels of greenhouse gases which act to trap heat in the atmosphere, preventing it from leaving the Earth. Greenhouse gases are emitted from various sectors but most prominently from burning fossil fuels. Climate change has significantly affected the average temperature across countries worldwide. In the United States, an increasing number of people have stated that they have personally experienced the effects of climate change. Not only are there environmental consequences due to climate change, but also economic ones. In 2022, for instance, extreme temperatures in the United States caused over 5.5 million U.S. dollars in economic damage. These economic ramifications occur for several reasons, which include higher temperatures, changes in regional precipitation, and rising sea levels.
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
The observed, historical data is produced by the Climatic Research Unit (CRU) of University of East Anglia. Data is presented at a 0.5º x 0.5º (50km x 50km) resolution. Data includes the average rainfall, minimum temperature, average temperature and maximum temperature in Vietnam from January to December in period of time 1901 - 2020. The data is presented on a 30 year interval. The unit of rainfall is mm and the temperature is Celsius degree.
In April 2025, the average precipitation amounted to 31 liters per square meter, an increase compared to the previous month. The rainiest state in Germany was Saarland.
Regardless of whether the rain in Spain stays mainly in the plain, the truth is annual precipitations in the Mediterranean country experienced a downward trend in recent years, with around 536 millimeters of rainfall recorded in 2023. Nevertheless, this figure increased in 2024. For instance, March – one of Spain's wettest months – registered just over 148 millimeters of rain in 2024, up 24 percent from the same month the previous year. However, the record high of 163 millimeters was recorded in March 2018. Spain: Europe’s suntrapMany picture Spain as a dream summer holiday destination – Mediterranean cuisine in the form of tapas, great beaches, and what many visit the country for – its warm climate and sweet sunshine. This enthusiasm for the European country is then not too surprising, since most of its sunniest areas exceeded 3,000 hours of sunshine according to data provided by the Spanish Statistics Institute. Tourism constitutes an essential industry for the Spanish economic systemTravel and tourism have become one of the leading engines of growth for the Spanish economy, featuring an ongoing increase in the GDP contribution over the last years – despite a drop due to the COVID-19 pandemic – and is projected to reach nearly 225 billion euros in 2025.
Spain's average rainfall amounted to some ***** millimeters in March 2025, roughly a four-fold increase from the previous month when rainfall amounted to******millimeters. This represented a decrease of ***percent when compared to March 2024. During the period in consideration, Spain's wettest month was **********, when the average precipitation reached a record high of ****millimeters.
U.S.V.I. maximum monthly precipitation
World Weather Records (WWR) is an archived publication and digital data set. WWR is meteorological data from locations around the world. Through most of its history, WWR has been a publication, first published in 1927. Data includes monthly mean values of pressure, temperature, precipitation, and where available, station metadata notes documenting observation practices and station configurations. In recent years, data were supplied by National Meteorological Services of various countries, many of which became members of the World Meteorological Organization (WMO). The First Issue included data from earliest records available at that time up to 1920. Data have been collected for periods 1921-30 (2nd Series), 1931-40 (3rd Series), 1941-50 (4th Series), 1951-60 (5th Series), 1961-70 (6th Series), 1971-80 (7th Series), 1981-90 (8th Series), 1991-2000 (9th Series), and 2001-2011 (10th Series). The most recent Series 11 continues, insofar as possible, the record of monthly mean values of station pressure, sea-level pressure, temperature, and monthly total precipitation for stations listed in previous volumes. In addition to these parameters, mean monthly maximum and minimum temperatures have been collected for many stations and are archived in digital files by NCEI. New stations have also been included. In contrast to previous series, the 11th Series is available for the partial decade, so as to limit waiting period for new records. It begins in 2010 and is updated yearly, extending into the entire decade.
In 2024, the United States saw some **** inches of precipitation. The main forms of precipitation include hail, drizzle, rain, sleet, and snow. Since the turn of the century, 2012 was the driest year on record with an annual precipitation of **** inches. Regional disparities in rainfall Louisiana emerged as the wettest state in the U.S. in 2024, recording a staggering ***** inches (*** meters) of precipitation—nearly **** inches (ca. ** centimeters) above its historical average. In stark contrast, Nevada received only **** inches (ca. ** centimeters), underscoring the vast differences in rainfall across the nation. These extremes illustrate the uneven distribution of precipitation, with the southwestern states experiencing increasingly dry conditions that experts predict will worsen in the coming years. Drought concerns persist Drought remains a significant concern in many parts of the country. The Palmer Drought Severity Index (PDSI) for the contiguous United States stood at ***** in December 2024, indicating moderate to severe drought conditions. This reading follows three years of generally negative PDSI values, with the most extreme drought recorded in December 2023 at *****.