100+ datasets found
  1. Annual precipitation volume in the United States 1900-2024

    • statista.com
    • ai-chatbox.pro
    Updated Jul 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Annual precipitation volume in the United States 1900-2024 [Dataset]. https://www.statista.com/statistics/504400/volume-of-precipitation-in-the-us/
    Explore at:
    Dataset updated
    Jul 10, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In 2024, the United States saw some **** inches of precipitation. The main forms of precipitation include hail, drizzle, rain, sleet, and snow. Since the turn of the century, 2012 was the driest year on record with an annual precipitation of **** inches. Regional disparities in rainfall Louisiana emerged as the wettest state in the U.S. in 2024, recording a staggering ***** inches (*** meters) of precipitation—nearly **** inches (ca. ** centimeters) above its historical average. In stark contrast, Nevada received only **** inches (ca. ** centimeters), underscoring the vast differences in rainfall across the nation. These extremes illustrate the uneven distribution of precipitation, with the southwestern states experiencing increasingly dry conditions that experts predict will worsen in the coming years. Drought concerns persist Drought remains a significant concern in many parts of the country. The Palmer Drought Severity Index (PDSI) for the contiguous United States stood at ***** in December 2024, indicating moderate to severe drought conditions. This reading follows three years of generally negative PDSI values, with the most extreme drought recorded in December 2023 at *****.

  2. a

    North America Annual Precipitation

    • hub.arcgis.com
    • climat.esri.ca
    • +1more
    Updated Apr 19, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CECAtlas (2023). North America Annual Precipitation [Dataset]. https://hub.arcgis.com/maps/d4b81cb2dc4f4b938964aa1eb9b4b9a9
    Explore at:
    Dataset updated
    Apr 19, 2023
    Dataset authored and provided by
    CECAtlas
    License
    Area covered
    Description

    The North America climate data were derived from WorldClim, a set of global climate layers developed by the Museum of Vertebrate Zoology at the University of California, Berkeley, USA, in collaboration with The International Center for Tropical Agriculture and Rainforest CRC with support from NatureServe.The global climate data layers were generated through interpolation of average monthly climate data from weather stations across North America. The result is a 30-arc-second-resolution (1-Km) grid of mean temperature values. The North American data were clipped from the global data and reprojected to a Lambert Azimuthal Equal Area projection. Background information on the WorldClim database is available in: Very High-Resolution Interpolated Climate Surfaces for Global Land Areas; Hijmans, R.J., S.E. Cameron, J.L. Parra, P.G. Jones and A. Jarvis; International Journal of Climatology 25: 1965-1978; 2005.Files Download

  3. U.S. Hourly Precipitation Data

    • catalog.data.gov
    • data.globalchange.gov
    • +7more
    Updated Sep 19, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA National Centers for Environmental Information (Point of Contact) (2023). U.S. Hourly Precipitation Data [Dataset]. https://catalog.data.gov/dataset/u-s-hourly-precipitation-data2
    Explore at:
    Dataset updated
    Sep 19, 2023
    Dataset provided by
    National Centers for Environmental Informationhttps://www.ncei.noaa.gov/
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Description

    Hourly Precipitation Data (HPD) is digital data set DSI-3240, archived at the National Climatic Data Center (NCDC). The primary source of data for this file is approximately 5,500 US National Weather Service (NWS), Federal Aviation Administration (FAA), and cooperative observer stations in the United States of America, Puerto Rico, the US Virgin Islands, and various Pacific Islands. The earliest data dates vary considerably by state and region: Maine, Pennsylvania, and Texas have data since 1900. The western Pacific region that includes Guam, American Samoa, Marshall Islands, Micronesia, and Palau have data since 1978. Other states and regions have earliest dates between those extremes. The latest data in all states and regions is from the present day. The major parameter in DSI-3240 is precipitation amounts, which are measurements of hourly or daily precipitation accumulation. Accumulation was for longer periods of time if for any reason the rain gauge was out of service or no observer was present. DSI 3240_01 contains data grouped by state; DSI 3240_02 contains data grouped by year.

  4. T

    United States Average Precipitation

    • tradingeconomics.com
    • it.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Dec 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2023). United States Average Precipitation [Dataset]. https://tradingeconomics.com/united-states/precipitation
    Explore at:
    json, xml, excel, csvAvailable download formats
    Dataset updated
    Dec 15, 2023
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1901 - Dec 31, 2023
    Area covered
    United States
    Description

    Precipitation in the United States increased to 735.83 mm in 2023 from 707.98 mm in 2022. This dataset includes a chart with historical data for the United States Average Precipitation.

  5. U.S. cities with the highest annual precipitation 1981-2010

    • statista.com
    Updated Jan 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. cities with the highest annual precipitation 1981-2010 [Dataset]. https://www.statista.com/statistics/1039746/us-cities-with-the-most-precipitation/
    Explore at:
    Dataset updated
    Jan 16, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    1981 - 2010
    Area covered
    United States
    Description

    The majority of the wettest cities in the United States are located in the Southeast. The major city with the most precipitation is New Orleans, Louisiana, which receives an average of 1592 millimeters (62.7 inches) of precipitation every year, based on an average between 1981 and 2010.

  6. G

    Precipitation in Latin America | TheGlobalEconomy.com

    • theglobaleconomy.com
    csv, excel, xml
    Updated Jan 29, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Globalen LLC (2021). Precipitation in Latin America | TheGlobalEconomy.com [Dataset]. www.theglobaleconomy.com/rankings/precipitation/Latin-Am/
    Explore at:
    csv, xml, excelAvailable download formats
    Dataset updated
    Jan 29, 2021
    Dataset authored and provided by
    Globalen LLC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1961 - Dec 31, 2021
    Area covered
    Latin America, World
    Description

    The average for 2020 based on 20 countries was 1815 mm per year. The highest value was in Colombia: 3240 mm per year and the lowest value was in Argentina: 591 mm per year. The indicator is available from 1961 to 2021. Below is a chart for all countries where data are available.

  7. Annual precipitation in Mexico 2023, by state

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Annual precipitation in Mexico 2023, by state [Dataset]. https://www.statista.com/statistics/1383629/annual-rainfall-by-state-mexico/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    Mexico
    Description

    In 2023, the southern state of Tabasco recorded the highest amount of precipitation across Mexico, with a total of over ***** millimeters of rainfall. Ranking second was Chiapas – also in the south of Mexico – where rainfall reached approximately ***** millimeters that year. On the other side of the spectrum, the state of Baja California was the driest, with less than *** millimeters of precipitation registered throughout 2023.

  8. d

    30-Year (1990-2019) Annual Average of DAYMET Precipitation and Temperature...

    • catalog.data.gov
    • data.usgs.gov
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). 30-Year (1990-2019) Annual Average of DAYMET Precipitation and Temperature for North America [Dataset]. https://catalog.data.gov/dataset/30-year-1990-2019-annual-average-of-daymet-precipitation-and-temperature-for-north-america
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    North America
    Description

    This metadata record describes the 30-year annual average of precipitation in millimeters (mm) and temperature (Celsius) during the period 1990–2019 for North America. The source data were produced by and acquired from DAYMET daily climate data (2020) and presented here as a series of two 1-kilometer resolution GeoTIFF files. An open source python code file used to process the data is also included.

  9. U

    USA National Weather Service Precipitation Forecast

    • data.unep.org
    • hub.arcgis.com
    Updated Dec 9, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UN World Environment Situation Room (2022). USA National Weather Service Precipitation Forecast [Dataset]. https://data.unep.org/app/dataset/wesr-arcgis-wm-usa-national-weather-service-precipitation-forecast
    Explore at:
    Dataset updated
    Dec 9, 2022
    Dataset provided by
    UN World Environment Situation Room
    Area covered
    United States
    Description

    This map displays projected visible surface smoke across the contiguous United States for the next 48 hours in 1 hour increments. It is updated every 24 hours by NWS. Concentrations are reported in micrograms per cubic meter.Where is the data coming from?The National Digital Guidance Database (NDGD) is a sister to the National Digital Forecast Database (NDFD). Information in NDGD may be used by NWS forecasters as guidance in preparing official NWS forecasts in NDFD. The experimental/guidance NDGD data is not an official NWS forecast product.Source: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndgd/GT.aq/AR.conus/ds.smokes01.binSource data archive can be found here: https://www.ncei.noaa.gov/products/weather-climate-models/national-digital-guidance-database look for 'LXQ...' files by date. These are the Binary GRIB2 files that can be decoded via DeGRIB tool.Where can I find other NDGD data?The Source data is downloaded and parsed using the Aggregated Live Feeds methodology to return information that can be served through ArcGIS Server as a map service or used to update Hosted Feature Services in Online or Enterprise.What can you do with this layer?This map service is suitable for data discovery and visualization. Identify features by clicking on the map to reveal the pre-configured pop-ups. View the time-enabled data using the time slider by Enabling Time Animation.RevisionsJuly 11, 2022: Feed updated to leverage forecast model change by NOAA, whereby the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) forecast model system was replaced with the Rapid Refresh (RAP) forecast model system. Key differences: higher accuracy with RAP now concentrated at 0-8 meter detail vs HYSPLIT at 0-100 meter; earlier data delivery by 6 hrs; forecast output extended to 51 hrs.This map is provided for informational purposes and is not monitored 24/7 for accuracy and currency.If you would like to be alerted to potential issues or simply see when this Service will update next, please visit our Live Feed Status Page!

  10. U.S. 15 Minute Precipitation Data

    • catalog.data.gov
    • data.globalchange.gov
    • +3more
    Updated Oct 11, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA National Centers for Environmental Information (Point of Contact) (2023). U.S. 15 Minute Precipitation Data [Dataset]. https://catalog.data.gov/dataset/u-s-15-minute-precipitation-data3
    Explore at:
    Dataset updated
    Oct 11, 2023
    Dataset provided by
    National Centers for Environmental Informationhttps://www.ncei.noaa.gov/
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Description

    U.S. 15 Minute Precipitation Data is digital data set DSI-3260, archived at the National Climatic Data Center (NCDC). This is precipitation data. The primary source of data for this file is approximately 2,000 mostly U.S. weather stations operated or managed by the U.S. National Weather Service. Stations are primary, secondary, or cooperative observer sites that have the capability to measure precipitation at 15 minute intervals. This dataset contains 15-minute precipitation data (reported 4 times per hour, if precip occurs) for U.S. stations along with selected non-U.S. stations in U.S. territories and associated nations. It includes major city locations and many small town locations. Daily total precipitation is also included as part of the data record. NCDC has in archive data from most states as far back as 1970 or 1971, and continuing to the present day. The major parameter is precipitation amounts at 15 minute intervals, when precipitation actually occurs.

  11. Historical annual precipitation (CONUS) (Image Service)

    • catalog.data.gov
    • agdatacommons.nal.usda.gov
    • +5more
    Updated Apr 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2025). Historical annual precipitation (CONUS) (Image Service) [Dataset]. https://catalog.data.gov/dataset/historical-annual-precipitation-conus-image-service-f2c16
    Explore at:
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
    Description

    The National Forest Climate Change Maps project was developed by the Rocky Mountain Research Station (RMRS) and the Office of Sustainability and Climate to meet the needs of national forest managers for information on projected climate changes at a scale relevant to decision making processes, including forest plans. The maps use state-of-the-art science and are available for every national forest in the contiguous United States with relevant data coverage. Currently, the map sets include variables related to precipitation, air temperature, snow (including snow residence time and April 1 snow water equivalent), and stream flow.Historical (1975-2005) and future (2071-2090) precipitation and temperature data for the contiguous United States are ensemble mean values across 20 global climate models from the CMIP5 experiment (https://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-11-00094.1), downscaled to a 4 km grid. For more information on the downscaling method and to access the data, please see Abatzoglou and Brown, 2012 (https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/joc.2312) and the Northwest Knowledge Network (https://climate.northwestknowledge.net/MACA/). We used the MACAv2- Metdata monthly dataset; monthly precipitation values (mm) were summed over the season of interest (annual, winter, or summer). Absolute and percent change were then calculated between the historical and future time periods.Raster data are also available for download from RMRS site (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/categories/us-raster-layers.html), along with pdf maps and detailed metadata (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/downloads/NationalForestClimateChangeMapsMetadata.pdf).

  12. c

    Historical changes of annual temperature and precipitation indices at...

    • kilthub.cmu.edu
    txt
    Updated Aug 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yuchuan Lai; David Dzombak (2024). Historical changes of annual temperature and precipitation indices at selected 210 U.S. cities [Dataset]. http://doi.org/10.1184/R1/7961012.v6
    Explore at:
    txtAvailable download formats
    Dataset updated
    Aug 22, 2024
    Dataset provided by
    Carnegie Mellon University
    Authors
    Yuchuan Lai; David Dzombak
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Historical changes of annual temperature and precipitation indices at selected 210 U.S. cities

    This dataset provide:

    Annual average temperature, total precipitation, and temperature and precipitation extremes calculations for 210 U.S. cities.

    Historical rates of changes in annual temperature, precipitation, and the selected temperature and precipitation extreme indices in the 210 U.S. cities.

    Estimated thresholds (reference levels) for the calculations of annual extreme indices including warm and cold days, warm and cold nights, and precipitation amount from very wet days in the 210 cities.

    Annual average of daily mean temperature, Tmax, and Tmin are included for annual average temperature calculations. Calculations were based on the compiled daily temperature and precipitation records at individual cities.

    Temperature and precipitation extreme indices include: warmest daily Tmax and Tmin, coldest daily Tmax and Tmin , warm days and nights, cold days and nights, maximum 1-day precipitation, maximum consecutive 5-day precipitation, precipitation amounts from very wet days.

    Number of missing daily Tmax, Tmin, and precipitation values are included for each city.

    Rates of change were calculated using linear regression, with some climate indices applied with the Box-Cox transformation prior to the linear regression.

    The historical observations from ACIS belong to Global Historical Climatological Network - daily (GHCN-D) datasets. The included stations were based on NRCC’s “ThreadEx” project, which combined daily temperature and precipitation extremes at 255 NOAA Local Climatological Locations, representing all large and medium size cities in U.S. (See Owen et al. (2006) Accessing NOAA Daily Temperature and Precipitation Extremes Based on Combined/Threaded Station Records).

    Resources:

    See included README file for more information.

    Additional technical details and analyses can be found in: Lai, Y., & Dzombak, D. A. (2019). Use of historical data to assess regional climate change. Journal of climate, 32(14), 4299-4320. https://doi.org/10.1175/JCLI-D-18-0630.1

    Other datasets from the same project can be accessed at: https://kilthub.cmu.edu/projects/Use_of_historical_data_to_assess_regional_climate_change/61538

    ACIS database for historical observations: http://scacis.rcc-acis.org/

    GHCN-D datasets can also be accessed at: https://www.ncei.noaa.gov/data/global-historical-climatology-network-daily/

    Station information for each city can be accessed at: http://threadex.rcc-acis.org/

    • 2024 August updated -

      Annual calculations for 2022 and 2023 were added.

      Linear regression results and thresholds for extremes were updated because of the addition of 2022 and 2023 data.

      Note that future updates may be infrequent.

    • 2022 January updated -

      Annual calculations for 2021 were added.

      Linear regression results and thresholds for extremes were updated because of the addition of 2021 data.

    • 2021 January updated -

      Annual calculations for 2020 were added.

      Linear regression results and thresholds for extremes were updated because of the addition of 2020 data.

    • 2020 January updated -

      Annual calculations for 2019 were added.

      Linear regression results and thresholds for extremes were updated because of the addition of 2019 data.

      Thresholds for all 210 cities were combined into one single file – Thresholds.csv.

    • 2019 June updated -

      Baltimore was updated with the 2018 data (previously version shows NA for 2018) and new ID to reflect the GCHN ID of Baltimore-Washington International AP. city_info file was updated accordingly.

      README file was updated to reflect the use of "wet days" index in this study. The 95% thresholds for calculation of wet days utilized all daily precipitation data from the reference period and can be different from the same index from some other studies, where only days with at least 1 mm of precipitation were utilized to calculate the thresholds. Thus the thresholds in this study can be lower than the ones that would've be calculated from the 95% percentiles from wet days (i.e., with at least 1 mm of precipitation).

  13. Precipitation Frequency for California, USA - NOAA Atlas 14 Volume 6

    • catalog.data.gov
    • s.cnmilf.com
    • +1more
    Updated Oct 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA/National Weather Service, Office of Hydrologic Development, Hydrometeorological Design Studies Center (Point of Contact) (2024). Precipitation Frequency for California, USA - NOAA Atlas 14 Volume 6 [Dataset]. https://catalog.data.gov/dataset/precipitation-frequency-for-california-usa-noaa-atlas-14-volume-62
    Explore at:
    Dataset updated
    Oct 19, 2024
    Dataset provided by
    National Weather Servicehttp://www.weather.gov/
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Area covered
    California, United States
    Description

    This GIS grid atlas contains precipitation frequency estimates for California based on precipitation data collected between 1850-2010. This atlas is an updated version of volume XI (California) of NOAA Atlas 2, published in 1973 and volume 1 of NOAA Atlas 14 (Semiarid Southwest), published in 2006. The grids provide information for durations from 5 minutes through 60 days, and for return periods of 1 year through 1000 years. All grids are in geographic coordinate system (NAD83 horizontal datum) and units are in 1000th of inches. The grid data also contains estimates for Semiarid Southwest from NOAA Atlas 14 Volume 1 Version 5. Please see the metadata page for the Semiarid Southwest portion of the grid.

  14. c

    Change factors for the 2- to 100-year daily (24-hour) extreme rainfall...

    • kilthub.cmu.edu
    • search.datacite.org
    txt
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tania Lopez-Cantu (2023). Change factors for the 2- to 100-year daily (24-hour) extreme rainfall storms for the Continental United States from downscaled climate projections [Dataset]. http://doi.org/10.1184/R1/12148932.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    Carnegie Mellon University
    Authors
    Tania Lopez-Cantu
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    This dataset contains change factors for the 2- to 100-year daily (24-hour) extreme rainfall storms for the Continental United States from publicly available downscaled climate projections, namely BCCAv.2, LOCA, MACA and NA-CORDEX data sets. Change factors were estimated as the ratio between the historical (period between1950-2005) climate simulations of extreme rainfall and the future (period between 2044-2099) climate simulations of rainfall depths corresponding to the average recurrence interval (e.g. 2-, 5-year). These change factors were computed using the Generalized Extreme Value Distribution, which is widely used to describe rainfall extremes.This data archive was prepared as part of the outputs of the published article Lopez‐Cantu, T., Prein, A. F., & Samaras, C. (2020). Uncertainties in Future U.S. Extreme Precipitation from Downscaled Climate Projections. Geophysical Research Letters. https://doi.org/10.1029/2019GL086797. When using the data in this archive, citation must be given to the original article.

  15. Precipitation Frequency Atlas of the Western United States

    • data.cnra.ca.gov
    • datadiscoverystudio.org
    • +2more
    Updated Mar 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Oceanic and Atmospheric Administration (2023). Precipitation Frequency Atlas of the Western United States [Dataset]. https://data.cnra.ca.gov/dataset/precipitation-frequency-atlas-of-the-western-united-states
    Explore at:
    Dataset updated
    Mar 1, 2023
    Dataset authored and provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Area covered
    Western United States, United States
    Description

    The Precipitation Frequency of the Western United States publication is an eleven volume set held in the archives. It was the culmination of many years of investigation and was based all of the previous work on precipitation- frequency studies until that time. It also replaced U.S. Weather Bureau Technical Paper No. 40 for the eleven western states. The states/volumes are: 1 Montana 2 Wyoming 3 Colorado 4 New Mexico 5 Idaho 6 Utah 7 Nevada 8 Arizona 9 Washington 10 Oregon 11 California Each volume is organized into three parts. The first section discusses the historical background, procedures, and methods used in preparing the maps and how to interpret and use them. The second discusses ideas that are applicable only to the particular U.S. state considered in that volume. Included in this section are methods (monograms and equations) useful for estimating precipitation-frequency values for durations other than 6 and 24 hours. The last part of the atlas presents isopluvial maps for the 6 and 24 hour durations for return periods of 2, 5, 10, 25, 50, and 100 years.

  16. Future annual precipitation (Alaska) (Image Service)

    • catalog.data.gov
    • agdatacommons.nal.usda.gov
    • +4more
    Updated Apr 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2025). Future annual precipitation (Alaska) (Image Service) [Dataset]. https://catalog.data.gov/dataset/future-annual-precipitation-alaska-image-service-45bf3
    Explore at:
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
    Area covered
    Alaska
    Description

    The National Forest Climate Change Maps project was developed by the Rocky Mountain Research Station (RMRS) and the Office of Sustainability and Climate to meet the needs of national forest managers for information on projected climate changes at a scale relevant to decision making processes, including forest plans. The maps use state-of-the-art science and are available for every national forest in the contiguous United States with relevant data coverage. Currently, the map sets include variables related to precipitation, air temperature, snow (including snow residence time and April 1 snow water equivalent), and stream flow.Historical (1975-2005) and future (2071-2090) precipitation and temperature data for the state of Alaska were developed by the Scenarios Network for Alaska and Arctic Planning (SNAP) (https://snap.uaf.edu). Monthly precipitation values (mm) were summed over the season of interest (annual, winter, or summer). These datasets have several important differences from the MACAv2-Metdata (https://climate.northwestknowledge.net/MACA/) products, used in the contiguous U.S. They were developed using different global circulation models and different downscaling methods, and were downscaled to a different scale (771 m instead of 4 km). While these cover the same time periods and use broadly similar approaches, caution should be used when directly comparing values between Alaska and the contiguous United States.Raster data are also available for download from RMRS site (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/categories/us-raster-layers.html), along with pdf maps and detailed metadata (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/downloads/NationalForestClimateChangeMapsMetadata.pdf).

  17. E

    [Rainfall and temperature data] - Rainfall and seawater temperature in St....

    • erddap.bco-dmo.org
    Updated Nov 8, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    BCO-DMO (2018). [Rainfall and temperature data] - Rainfall and seawater temperature in St. John, USVI in 1987–2013 (St. John LTREB project, VI Octocorals project). (LTREB Long-term coral reef community dynamics in St. John, USVI: 1987-2019) [Dataset]. https://erddap.bco-dmo.org/erddap/info/bcodmo_dataset_664254/index.html
    Explore at:
    Dataset updated
    Nov 8, 2018
    Dataset provided by
    Biological and Chemical Oceanographic Data Management Office (BCO-DMO)
    Authors
    BCO-DMO
    License

    https://www.bco-dmo.org/dataset/664254/licensehttps://www.bco-dmo.org/dataset/664254/license

    Area covered
    Saint John, U.S. Virgin Islands
    Variables measured
    year, rainfall, temp_max, temp_min, hotDays_num, coldDays_num, temp_seawaterSurface
    Description

    Temperature and rainfall data for St. John USVI. access_formats=.htmlTable,.csv,.json,.mat,.nc,.tsv acquisition_description=Based on Tsounis and Edmunds (In press), Ecosphere:\u00a0

    Physical environmental conditions were characterized using three features that are well-known to affect coral reef community dynamics (described in Glynn 1993, Rogers 1993, Fabricius et al. 2005): seawater temperature, rainfall, and hurricane intensity. Together, these were used to generate seven dependent variables describing physical environmental features. Seawater temperature was recorded at each site every 15-30 min using a variety of logging sensors (see Edmunds 2006 for detailed information on the temperature measurement regime). Seawater temperature was characterized using five dependent variables calculated for each calendar year: mean temperature, maximum temperature, and minimum temperature (all averaged by day and month for each year), as well as the number of days hotter than 29.3 deg C (\u201chot days\u201d), and the number of days with temperatures greater than or equal to 26.0 deg C (\u201ccold days\u201d). The temperature defining "hot days" was determined by the coral bleaching threshold for St. John ("%5C%22http://www.coral.noaa.gov/research/climate-change/coral-%0Ableaching.html%5C%22">http://www.coral.noaa.gov/research/climate-change/coral- bleaching.html), and the temperature defining "cold days" was taken as 26.0 deg C which marks the lower 12th percentile of all daily temperatures between 1989 and 2005 (Edmunds, 2006). The upper temperature limit was defined by the local bleaching threshold, and the lower limit defined the 12th\u00a0percentile of local seawater temperature records (see Edmunds 2006 for details). Rainfall was measured at various locations around St. John (see\u00a0http://www.sercc.com) but often on the north shore (courtesy of R.\u00a0Boulon) (see Edmunds and Gray 2014). To assess the influence of hurricanes, a categorical index of local hurricane impact was employed, with the index based on qualitative estimates of wave impacts in Great Lameshur Bay as a function of wind speed, wind direction, and distance of the nearest approach of each hurricane to the study area (see Gross and Edmunds 2015). Index values of 0 were assigned to years with no hurricanes, 0.5 to hurricanes with low impacts, and 1 for hurricanes with high impacts, and years were characterized by the sum of their hurricane index values. awards_0_award_nid=55191 awards_0_award_number=DEB-0841441 awards_0_data_url=http://www.nsf.gov/awardsearch/showAward?AWD_ID=0841441&HistoricalAwards=false awards_0_funder_name=National Science Foundation awards_0_funding_acronym=NSF awards_0_funding_source_nid=350 awards_0_program_manager=Saran Twombly awards_0_program_manager_nid=51702 awards_1_award_nid=562085 awards_1_award_number=OCE-1332915 awards_1_data_url=http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=1332915 awards_1_funder_name=NSF Division of Ocean Sciences awards_1_funding_acronym=NSF OCE awards_1_funding_source_nid=355 awards_1_program_manager=David L. Garrison awards_1_program_manager_nid=50534 awards_2_award_nid=562593 awards_2_award_number=DEB-1350146 awards_2_data_url=http://www.nsf.gov/awardsearch/showAward?AWD_ID=1350146 awards_2_funder_name=NSF Division of Environmental Biology awards_2_funding_acronym=NSF DEB awards_2_funding_source_nid=550432 awards_2_program_manager=Betsy Von Holle awards_2_program_manager_nid=701685 cdm_data_type=Other comment=Physical Data G. Tsounis and P. Edmunds, PIs Version 10 November 2016 Conventions=COARDS, CF-1.6, ACDD-1.3 data_source=extract_data_as_tsv version 2.3 19 Dec 2019 defaultDataQuery=&time<now doi=10.1575/1912/bco-dmo.664755 infoUrl=https://www.bco-dmo.org/dataset/664254 institution=BCO-DMO instruments_0_acronym=PrecipGauge instruments_0_dataset_instrument_description=Measured rainfall instruments_0_dataset_instrument_nid=664662 instruments_0_description=measures rain or snow precipitation instruments_0_instrument_external_identifier=https://vocab.nerc.ac.uk/collection/L05/current/381/ instruments_0_instrument_name=Precipitation Gauge instruments_0_instrument_nid=671 instruments_0_supplied_name=Precipitation gauge instruments_1_dataset_instrument_description=Measured seawater temperature instruments_1_dataset_instrument_nid=664661 instruments_1_description=Records temperature data over a period of time. instruments_1_instrument_name=Temperature Logger instruments_1_instrument_nid=639396 instruments_1_supplied_name=Temperature logger metadata_source=https://www.bco-dmo.org/api/dataset/664254 param_mapping={'664254': {}} parameter_source=https://www.bco-dmo.org/mapserver/dataset/664254/parameters people_0_affiliation=California State University Northridge people_0_affiliation_acronym=CSU-Northridge people_0_person_name=Peter J. Edmunds people_0_person_nid=51536 people_0_role=Principal Investigator people_0_role_type=originator people_1_affiliation=California State University Northridge people_1_affiliation_acronym=CSU-Northridge people_1_person_name=Dr Georgios Tsounis people_1_person_nid=565353 people_1_role=Co-Principal Investigator people_1_role_type=originator people_2_affiliation=Woods Hole Oceanographic Institution people_2_affiliation_acronym=WHOI BCO-DMO people_2_person_name=Hannah Ake people_2_person_nid=650173 people_2_role=BCO-DMO Data Manager people_2_role_type=related project=St. John LTREB,VI Octocorals projects_0_acronym=St. John LTREB projects_0_description=Long Term Research in Environmental Biology (LTREB) in US Virgin Islands: From the NSF award abstract: In an era of growing human pressures on natural resources, there is a critical need to understand how major ecosystems will respond, the extent to which resource management can lessen the implications of these responses, and the likely state of these ecosystems in the future. Time-series analyses of community structure provide a vital tool in meeting these needs and promise a profound understanding of community change. This study focuses on coral reef ecosystems; an existing time-series analysis of the coral community structure on the reefs of St. John, US Virgin Islands, will be expanded to 27 years of continuous data in annual increments. Expansion of the core time-series data will be used to address five questions: (1) To what extent is the ecology at a small spatial scale (1-2 km) representative of regional scale events (10's of km)? (2) What are the effects of declining coral cover in modifying the genetic population structure of the coral host and its algal symbionts? (3) What are the roles of pre- versus post-settlement events in determining the population dynamics of small corals? (4) What role do physical forcing agents (other than temperature) play in driving the population dynamics of juvenile corals? and (5) How are populations of other, non-coral invertebrates responding to decadal-scale declines in coral cover? Ecological methods identical to those used over the last two decades will be supplemented by molecular genetic tools to understand the extent to which declining coral cover is affecting the genetic diversity of the corals remaining. An information management program will be implemented to create broad access by the scientific community to the entire data set. The importance of this study lies in the extreme longevity of the data describing coral reefs in a unique ecological context, and the immense potential that these data possess for understanding both the patterns of comprehensive community change (i.e., involving corals, other invertebrates, and genetic diversity), and the processes driving them. Importantly, as this project is closely integrated with resource management within the VI National Park, as well as larger efforts to study coral reefs in the US through the NSF Moorea Coral Reef LTER, it has a strong potential to have scientific and management implications that extend further than the location of the study. The following publications and data resulted from this project: 2015 Edmunds PJ, Tsounis G, Lasker HR (2015) Differential distribution of octocorals and scleractinians around St. John and St. Thomas, US Virgin Islands. Hydrobiologia. doi: 10.1007/s10750-015-2555-zoctocoral - sp. abundance and distributionDownload complete data for this publication (Excel file) 2015 Lenz EA, Bramanti L, Lasker HR, Edmunds PJ. Long-term variation of octocoral populations in St. John, US Virgin Islands. Coral Reefs DOI 10.1007/s00338-015-1315-xoctocoral survey - densitiesoctocoral counts - photoquadrats vs. insitu surveyoctocoral literature reviewDownload complete data for this publication (Excel file) 2015 Privitera-Johnson, K., et al., Density-associated recruitment in octocoral communities in St. John, US Virgin Islands, J.Exp. Mar. Biol. Ecol. DOI 10.1016/j.jembe.2015.08.006octocoral recruitmentDownload complete data for this publication (Excel file) 2014 Edmunds PJ. Landscape-scale variation in coral reef community structure in the United States Virgin Islands. Marine Ecology Progress Series 509: 137–152. DOI 10.3354/meps10891. Data at MCR-VINP. Download complete data for this publication (Excel file) 2014 Edmunds PJ, Nozawa Y, Villanueva RD. Refuges modulate coral recruitment in the Caribbean and Pacific. Journal of Experimental Marine Biology and Ecology 454: 78-84. DOI: 10.1016/j.jembe.2014.02.00 Data at MCR-VINP.Download complete data for this publication (Excel file) 2014 Edmunds PJ, Gray SC. The effects of storms, heavy rain, and sedimentation on the shallow coral reefs of St. John, US Virgin Islands. Hydrobiologia 734(1):143-148. Data at MCR-VINP.Download complete data for this publication (Excel file) 2014 Levitan, D, Edmunds PJ, Levitan K. What makes a species common? No evidence of density-dependent recruitment or mortality of the sea urchin Diadema antillarum after the 1983-1984 mass mortality. Oecologia. DOI

  18. G

    Precipitation in North America | TheGlobalEconomy.com

    • theglobaleconomy.com
    csv, excel, xml
    Updated Oct 11, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Globalen LLC (2019). Precipitation in North America | TheGlobalEconomy.com [Dataset]. www.theglobaleconomy.com/rankings/precipitation/North-America/
    Explore at:
    csv, excel, xmlAvailable download formats
    Dataset updated
    Oct 11, 2019
    Dataset authored and provided by
    Globalen LLC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1961 - Dec 31, 2021
    Area covered
    World, North America
    Description

    The average for 2020 based on 22 countries was 1765 mm per year. The highest value was in Panama: 2928 mm per year and the lowest value was in Canada: 537 mm per year. The indicator is available from 1961 to 2021. Below is a chart for all countries where data are available.

  19. Precipitation Frequency for Midwestern states, USA - NOAA Atlas 14 Volume 8

    • catalog.data.gov
    Updated Oct 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA/National Weather Service, Office of Hydrologic Development, Hydrometeorological Design Studies Center (Point of Contact) (2024). Precipitation Frequency for Midwestern states, USA - NOAA Atlas 14 Volume 8 [Dataset]. https://catalog.data.gov/dataset/precipitation-frequency-for-midwestern-states-usa-noaa-atlas-14-volume-82
    Explore at:
    Dataset updated
    Oct 19, 2024
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    National Weather Servicehttp://www.weather.gov/
    Area covered
    United States
    Description

    This GIS grid atlas contains precipitation frequency estimates for Midwestern states based on precipitation data collected between 1836-2013. This atlas supersedes information in Technical Memorandum NWS Hydro 35, published in 1977, NOAA Atlas 2, published in 1973 (Colorado), Technical Paper 40, published in 1961, and Technical Paper 49,published in 1964. The grids provide information for durations from 5 minutes through 60 days, and for return periods of 1 year through 1000 years. All grids are in geographic coordinate system (NAD83 horizontal datum) and units are in 1000th of inches.

  20. Precipitation Frequency for Semiarid Southwest, USA - NOAA Atlas 14 Volume 1...

    • catalog.data.gov
    • s.cnmilf.com
    Updated Oct 19, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA/National Weather Service, Office of Hydrologic Development, Hydrometeorological Design Studies Center (Point of Contact) (2024). Precipitation Frequency for Semiarid Southwest, USA - NOAA Atlas 14 Volume 1 [Dataset]. https://catalog.data.gov/dataset/precipitation-frequency-for-semiarid-southwest-usa-noaa-atlas-14-volume-12
    Explore at:
    Dataset updated
    Oct 19, 2024
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    National Weather Servicehttp://www.weather.gov/
    Area covered
    Southwestern United States, United States
    Description

    This GIS grid atlas contains precipitation frequency estimates for the Semiarid Southwest based on precipitation data collected between 1893-2000. This atlas is an updated version of volumes IV (New Mexico), VI (Utah), VII Nevada), VIII (Arizona), published in 1973. The grids provide information for durations from 5 minutes through 60 days, and for return periods of 1 year through 1000 years. All grids are in geographic coordinate system (NAD84 horizontal datum) and units are in 1000th of inches. The grid data also contains estimates for California from NOAA Atlas 14 Volume 6 Version 2. Please see the metadata page for the California portion of the grid.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Annual precipitation volume in the United States 1900-2024 [Dataset]. https://www.statista.com/statistics/504400/volume-of-precipitation-in-the-us/
Organization logo

Annual precipitation volume in the United States 1900-2024

Explore at:
3 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jul 10, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
United States
Description

In 2024, the United States saw some **** inches of precipitation. The main forms of precipitation include hail, drizzle, rain, sleet, and snow. Since the turn of the century, 2012 was the driest year on record with an annual precipitation of **** inches. Regional disparities in rainfall Louisiana emerged as the wettest state in the U.S. in 2024, recording a staggering ***** inches (*** meters) of precipitation—nearly **** inches (ca. ** centimeters) above its historical average. In stark contrast, Nevada received only **** inches (ca. ** centimeters), underscoring the vast differences in rainfall across the nation. These extremes illustrate the uneven distribution of precipitation, with the southwestern states experiencing increasingly dry conditions that experts predict will worsen in the coming years. Drought concerns persist Drought remains a significant concern in many parts of the country. The Palmer Drought Severity Index (PDSI) for the contiguous United States stood at ***** in December 2024, indicating moderate to severe drought conditions. This reading follows three years of generally negative PDSI values, with the most extreme drought recorded in December 2023 at *****.

Search
Clear search
Close search
Google apps
Main menu