Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The UK daily rainfall data contain rainfall accumulation and precipitation amounts over a 24 hour period. The data were collected by observation stations operated by the Met Office across the UK and transmitted within the following message types: NCM, AWSDLY, DLY3208 and SSER. The data spans from 1853 to 2023. Over time a range of rain gauges have been used - see section 5.6 and the relevant message type information in the linked MIDAS User Guide for further details.
This version supersedes the previous version (202308) of this dataset and a change log is available in the archive, and in the linked documentation for this record, detailing the differences between this version and the previous version. The change logs detail new, replaced and removed data. These include the addition of data for calendar year 2023.
This dataset is part of the Midas-open dataset collection made available by the Met Office under the UK Open Government Licence, containing only UK mainland land surface observations owned or operated by Met Office. It is a subset of the fuller, restricted Met Office Integrated Data Archive System (MIDAS) Land and Marine Surface Stations dataset, also available through the Centre for Environmental Data Analysis - see the related dataset section on this record. A large proportion of the UK raingauge observing network (associated with WAHRAIN, WADRAIN and WAMRAIN for hourly, daily and monthly rainfall measurements respectively) is operated by other agencies beyond the Met Office, and are consequently currently excluded from the Midas-open dataset. Currently this represents approximately 13% of available daily rainfall observations within the full MIDAS collection.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The UK hourly rainfall data contain the rainfall amount (and duration from tilting syphon gauges) during the hour (or hours) ending at the specified time. The data also contains precipitation amounts, however precipitation measured over 24 hours are not stored. Over time a range of rain gauges have been used - see the linked MIDAS User Guide for further details.
This version supersedes the previous version of this dataset and a change log is available in the archive, and in the linked documentation for this record, detailing the differences between this version and the previous version. The change logs detail new, replaced and removed data.
The data were collected by observation stations operated by the Met Office across the UK and transmitted within the following message types: NCM, AWSHRLY, DLY3208, SREW and SSER. The data spans from 1915 to 2023.
This dataset is part of the Midas-open dataset collection made available by the Met Office under the UK Open Government Licence, containing only UK mainland land surface observations owned or operated by the Met Office. It is a subset of the fuller, restricted Met Office Integrated Data Archive System (MIDAS) Land and Marine Surface Stations dataset, also available through the Centre for Environmental Data Analysis - see the related dataset section on this record. A large proportion of the UK raingauge observing network (associated with WAHRAIN, WADRAIN and WAMRAIN for hourly, daily and monthly rainfall measurements respectively) is operated by other agencies beyond the Met Office, and are consequently currently excluded from the Midas-open dataset.
The wettest months in the United Kingdom tend to be at the start and end of the year. In the period of consideration, the greatest measurement of rainfall was nearly 217 millimeters, recorded in December 2015. The lowest level of rainfall was recorded in April 2021, at 20.6 millimeters. Rainy days The British Isles are known for their wet weather, and in 2024 there were approximately 164 rain days in the United Kingdom. A rainday is when more than one millimeter of rain falls within a day. Over the past 30 years, the greatest number of rain days was recorded in the year 2000. In that year, the average annual rainfall in the UK amounted to 1,242.1 millimeters. Climate change According to the Met Office, climate change in the United Kingdom has resulted in the weather getting warmer and wetter. In 2022, the annual average temperature in the country reached a new record high, surpassing 10 degrees Celsius for the first time. This represented an increase of nearly two degrees Celsius when compared to the annual average temperature recorded in 1910. In a recent survey conducted amongst UK residents, almost 80 percent of respondents had concerns about climate change.
The UK daily rainfall data contain rainfall accumulation and precipitation amounts over a 24 hour period. The data were collected by observation stations operated by the Met Office across the UK and transmitted within the following message types: NCM, AWSDLY, DLY3208 and SSER. The data spans from 1853 to 2024. Over time a range of rain gauges have been used - see section 5.6 and the relevant message type information in the linked MIDAS User Guide for further details. This version supersedes the previous version (202407) of this dataset and a change log is available in the archive, and in the linked documentation for this record, detailing the differences between this version and the previous version. The change logs detail new, replaced and removed data. These include the addition of data for calendar year 2024. This dataset is part of the Midas-open dataset collection made available by the Met Office under the UK Open Government Licence, containing only UK mainland land surface observations owned or operated by Met Office. It is a subset of the fuller, restricted Met Office Integrated Data Archive System (MIDAS) Land and Marine Surface Stations dataset, also available through the Centre for Environmental Data Analysis - see the related dataset section on this record. A large proportion of the UK raingauge observing network (associated with WAHRAIN, WADRAIN and WAMRAIN for hourly, daily and monthly rainfall measurements respectively) is operated by other agencies beyond the Met Office, and are consequently currently excluded from the Midas-open dataset. Currently this represents approximately 13% of available daily rainfall observations within the full MIDAS collection.
Between 2001 and 2024, the average rainfall in the United Kingdom varied greatly. In 2010, rainfall dropped to a low of 1,020 millimeters, which was a noticeable decrease when compared to the previous year. However, the following year, rainfall increased significantly to a peak of 1,889 millimeters. During the period in consideration, rainfall rarely rose above 1,500 millimeters. In 2024, the annual average rainfall in the UK surpassed 1,386 millimeters. Monthly rainfall On average, rainfall is most common at the start and end of the year. Between 2014 and 2024, monthly rainfall peaked in December 2015 at approximately 217 millimeters. This was the first of only two times during this period that the average monthly rainfall rose above 200 millimeters. This was a deviation from December’s long-term mean of some 134 millimeters. Rainfall highest in Scotland In the United Kingdom, rain is often concentrated around mountainous regions such as the Scottish Highlands, so it is no surprise to see that – on average – it is Scotland that receives the most rainfall annually. However, in 2024, Wales received the highest rainfall amounting to approximately 1,600 millimeters. Geographically, it is the north and west of the United Kingdom that receives the lion's share of rain, as it is more susceptible to rainfall coming in from the Atlantic.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The UK hourly rainfall data contain the rainfall amount (and duration from tilting syphon gauges) during the hour (or hours) ending at the specified time. The data also contains precipitation amounts, however precipitation measured over 24 hours are not stored. Over time a range of rain gauges have been used - see the linked MIDAS User Guide for further details.
This version supersedes the previous version of this dataset and a change log is available in the archive, and in the linked documentation for this record, detailing the differences between this version and the previous version. The change logs detail new, replaced and removed data.
The data were collected by observation stations operated by the Met Office across the UK and transmitted within the following message types: NCM, AWSHRLY, DLY3208, SREW and SSER. The data spans from 1915 to 2024.
This dataset is part of the Midas-open dataset collection made available by the Met Office under the UK Open Government Licence, containing only UK mainland land surface observations owned or operated by the Met Office. It is a subset of the fuller, restricted Met Office Integrated Data Archive System (MIDAS) Land and Marine Surface Stations dataset, also available through the Centre for Environmental Data Analysis - see the related dataset section on this record. A large proportion of the UK raingauge observing network (associated with WAHRAIN, WADRAIN and WAMRAIN for hourly, daily and monthly rainfall measurements respectively) is operated by other agencies beyond the Met Office, and are consequently currently excluded from the Midas-open dataset.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This dataset shows rainfall data from 6 rain gauges located at various locations across the city. Please note The siting of the gauges is not to Met Office standards (e.g.. maybe too close to a wall), which may not give an entirely accurate reflection of rainfall. The exact location of these gauges is not released. Measurements are in millilitres. It is recognised that there are inconsistencies in the data in respect of site readings. This can be for a number of reasons e.g. damaged cable, faulty loggers or damaged GPRS aerial.
The United Kingdom experienced an average of ******* millimeters of rainfall in 2024, a decrease of *** percent in comparison to the previous year. While 2024 saw substantial rainfall, it did not surpass the thus-far peak of the century, with ***** millimeters of rain recorded in 2000. Regional variations and seasonal patterns Rainfall distribution across the UK is far from uniform, with Scotland and Wales consistently receiving the highest annual precipitation. In 2024, they recorded an average of ******* millimeters and ******* millimeters, respectively, significantly above the UK’s average. This disparity is largely due to both countries’ mountainous terrain, which is more susceptible to Atlantic weather systems. Seasonally, the wettest months in the UK typically occur in the winter, with the highest precipitation levels seen between November and February. Climate change impact on UK weather Climate change is influencing UK weather patterns, leading to warmer and wetter conditions overall. While annual rainfall fluctuates, there is a trend towards more extreme weather events. For example, 2020 and 2022 saw rain deviations from the long-term mean in the UK of more than 100 millimeters in February. As weather patterns continue to evolve, monitoring rainfall trends remains crucial for understanding and adapting to a changing climate.
https://eidc.ceh.ac.uk/licences/OGL/plainhttps://eidc.ceh.ac.uk/licences/OGL/plain
http://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/noLimitationshttp://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/noLimitations
1 km gridded estimates of daily and monthly rainfall for Great-Britain and Northern Ireland (together with approximately 3000 km2 of catchment in the Republic of Ireland) from 1890 to 2019. The rainfall estimates are derived from the Met Office national database of observed precipitation. To derive the estimates, monthly and daily (when complete month available) precipitation totals from the UK rain gauge network are used. The natural neighbour interpolation methodology, including a normalisation step based on average annual rainfall, was used to generate the daily and monthly estimates. The estimated rainfall on a given day refers to the rainfall amount precipitated in 24 hours between 9am on that day until 9am on the following day. The CEH-GEAR dataset has been developed according to the guidance provided in BS 7843-4:2012. Full details about this dataset can be found at https://doi.org/10.5285/dbf13dd5-90cd-457a-a986-f2f9dd97e93c
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This record is for Approval for Access product AfA501 for approximately 1000 automatic rainfall data from the Environment Agency rainfall API.
The data is available on an update cycle which varies across the country, typically updated daily but updated faster is rainfall is detected. This is update frequency is usually increased during times of flooding, etc.
Readings are transferred via telemetry to internal and external systems in or close to real-time.
Measurement of the rainfall is taken in millimetres (mm) accumulated over 15 minutes. Note that rainfall data is recorded in GMT, so during British Summer Time (BST) data may appear to be an hour old. Data comes from a network of over 1000 gauges across England. Data shown is raw data collected from the gauges and is subject to quality control procedures. As a result, values may change after publication on this website.
Continuous rainfall information is also stored on our hydrometric archive, Wiski, and can be provided in non real-time on request through our customer contact centre. This raw rainfall data is provided to the Met Office for quality control along with all the data from our registered daily storage gauges (c.1400). The quality controlled dataset is covered in AfA148 Quality Controlled Daily and Monthly Raingauge Data from Environment Agency Gauges.
Data from a small selection of Met Office raingauges are included in our open data feed. This data is also available from the Met Office as open data.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This dataset has been released as a one-off extra dataset to supplement the existing rain gauge rainfall data for the FloodHack16 hack event held at ODI Leeds on 11 & 12 March 2016. Information Every time 0.2mm of rain has fallen, the time stamp is recorded. This means that the closer the time stamp, the harder it is raining.
These data were measured using 'industry standard' tipping bucket rain gauges however they should not be considered as necessarily conforming to Met Office standards. Whilst suitable sites were sought, on occasion they were less than ideal locations e.g. at exposed areas, on sites elevated above ground level or too close to walls and trees.These datasets are not complete as most sites were not in continuous operation. Rain gauges were moved between locations and were at times offline This can be for a number of reasons e.g. flat batteries, faulty loggers or intermittent GPRS connectivity. Timestamps are recorded after every 0.2mm of rain and zero or null records not included.
These spatial datasets show the location of open and closed rain gauges from across Wales. This data is owned by the Met Office and Natural Resources Wales (NRW) have access to a licenced welsh cut of this data from the Met Office. The Met Office is the UK National Meteorological Service set up to research the possibilities of forecasting the weather, and now uses more than 10 million weather observation from across the UK to create advanced atmospheric models to predict upcoming forecasts and longer term climate change scenarios.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This dataset comprises of derived annual statistics for measures of rainfall, streamflow, temperature and stream acidity (pH) for a stream, draining a small, approximately 1.2 square kilometres, upland conifer catchment. The stream, Nant Trawsnant, drains into the Llyn Brianne reservoir, Powys, United Kingdom. The data are for a 31 year period covering 1st April 1982 to 1st April 2012. The streamflow and acidity data are derived from 15 minute resolution observations throughout the calendar year 2013 from associated stream gauging and water quality stations on the Nant Trawsnant. The monthly rainfall measures presented, were derived from local rain gauges. The monthly temperature measures presented were derived from observations at a weather station near Talgarth, Powys. Routines within the Lancaster University Computer-Aided Program for Time-series Analysis and Identification of Noisy Systems (CAPTAIN) Toolbox for Matlab were used to develop a dynamic model of these data. These models were then used to simulate the 31-year record for which monthly statistics were derived. The statistics were derived to develop greater understanding of the controls on the long-term dynamics of aquatic biodiversity observed by other researchers in this stream. The work was part of the Diversity in Upland River Ecosystem Service Sustainability (DURESS) project, NERC grant NE/J014826/1. Members of staff from the Lancaster Environment Centre, Lancaster University installed, maintained and downloaded the stream gauging and water quality stations and also carried out statistical analysis of the data.
These data were measured using 'industry standard' tipping bucket rain gauges however they should not be considered as necessarily conforming to Met Office standards. Whilst suitable sites were sought, on occasion they were less than ideal locations e.g. at exposed areas, on sites elevated above ground level or too close to walls and trees.These datasets are not complete as most sites were not in continuous operation. Rain gauges were moved between locations and were at times offline This can be for a number of reasons e.g. flat batteries, faulty loggers or intermittent GPRS connectivity. Timestamps are recorded after every 0.2mm of rain and zero or null records not included.
These data were measured using 'industry standard' tipping bucket rain gauges however they should not be considered as necessarily conforming to Met Office standards. Whilst suitable sites were sought, on occasion they were less than ideal locations e.g. at exposed areas, on sites elevated above ground level or too close to walls and trees.These datasets are not complete as most sites were not in continuous operation. Rain gauges were moved between locations and were at times offline This can be for a number of reasons e.g. flat batteries, faulty loggers or intermittent GPRS connectivity. Timestamps are recorded after every 0.2mm of rain and zero or null records not included.
These data were measured using 'industry standard' tipping bucket rain gauges however they should not be considered as necessarily conforming to Met Office standards. Whilst suitable sites were sought, on occasion they were less than ideal locations e.g. at exposed areas, on sites elevated above ground level or too close to walls and trees.These datasets are not complete as most sites were not in continuous operation. Rain gauges were moved between locations and were at times offline This can be for a number of reasons e.g. flat batteries, faulty loggers or intermittent GPRS connectivity. Timestamps are recorded after every 0.2mm of rain and zero or null records not included.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
These data are based on the UK rainfall chemistry data held on the UK-AIR database operated on behalf of Defra (http://uk-air.defra.gov.uk/). A subset of 20 sites was analysed, being those with the longest continuous data record from 1986 to 2011. Rainfall samples from bulk collectors were taken weekly or two-weekly at sites across the UK and analyzed by a central laboratory. The raw reported data contain some samples which were contaminated by bird droppings, or by wind-blown dust, and should not be used to estimate annual or long-term wet deposition at the measurement sites. Some samples were missing for other reasons, such as physical loss of the rain sample prior to analysis. Following identification and removal of contaminated sample data, the missing data were estimated, where possible, using statistical interpolation across both time and space with the GENSTAT procedure MULTMISSING. The final datasets contain the accepted and estimated data values, flagged as appropriate. The data filenames correspond to the sites as listed in the UK-AIR database (Allt a'Mharcaidh, Bannisdale, Barcombe Mills, Bottesford, Eskdalemuir, Flatford Mill, Goonhilly, High Muffles, Hillsborough, Loch Dee, Lough Navar, Preston Montford, Pumlumon, Stoke Ferry, Strathvaich, Thorganby, Tycanol Wood,Wardlow Hay Cop, Whiteadder, Yarner Wood). This cleaned dataset was prepared by Neil Cape, Ron Smith and David Leaver at CEH Edinburgh on behalf of Defra and the Devolved Administrations under the project Pollutant Deposition Processes.
This dataset contains over 72,000 event hyetographs associated with rainstorms that contain Annual Maximum rainfall (AMAX) values for durations between 5-min and 24-hr for a set of ~1,300 rain gauges in Great Britain. The record length and completeness varies on a gauge-by-gauge basis, the median record length is 19 years and the processed record ends in 06/2018. Note that a rainstorm may have a different duration to the associated AMAX value, e.g., a 24-hr AMAX total may be caused by an 18.25-hr event. Further note that multiple AMAX totals may be embedded within a single rainstorm, e.g., Storm Desmond can be associated with the 2-, 3-, 6-, 12- and 24-hr AMAX totals for 2009 recorded at Honister Pass. Each hyetograph is accompanied by summary statistics corresponding to the underlying rainstorm and associated AMAX totals. This dataset enables the study of the temporal characteristics of rainfall as well as more general studies regarding the climatology of AMAX-causing events in GB. Full details about this dataset can be found at https://doi.org/10.5285/3d20ce5a-9115-4ad3-a55c-d51d66863757
What does the data show?
This data shows the annual number of 10mm rainfall days (days where rainfall is equal to or greater than 10mm) averaged over the 1991-2020 period. The data is from the HadUK-Grid v.1.1.0.0 dataset and is provided on the 2km British National Grid (BNG).
What are the naming conventions and how do I explore the data?
This data contains a field for the average over the period, named ‘Rainfall 10mm Days’.
To understand how to explore the data, see this page: https://storymaps.arcgis.com/stories/457e7a2bc73e40b089fac0e47c63a578
Data source
HadUK-Grid v1.1.0.0 (downloaded 11/03/2022)
Useful links
Further information on HadUK-Grid Further information on understanding climate data within the Met Office Climate Data Portal
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The UK daily rainfall data contain rainfall accumulation and precipitation amounts over a 24 hour period. The data were collected by observation stations operated by the Met Office across the UK and transmitted within the following message types: NCM, AWSDLY, DLY3208 and SSER. The data spans from 1853 to 2023. Over time a range of rain gauges have been used - see section 5.6 and the relevant message type information in the linked MIDAS User Guide for further details.
This version supersedes the previous version (202308) of this dataset and a change log is available in the archive, and in the linked documentation for this record, detailing the differences between this version and the previous version. The change logs detail new, replaced and removed data. These include the addition of data for calendar year 2023.
This dataset is part of the Midas-open dataset collection made available by the Met Office under the UK Open Government Licence, containing only UK mainland land surface observations owned or operated by Met Office. It is a subset of the fuller, restricted Met Office Integrated Data Archive System (MIDAS) Land and Marine Surface Stations dataset, also available through the Centre for Environmental Data Analysis - see the related dataset section on this record. A large proportion of the UK raingauge observing network (associated with WAHRAIN, WADRAIN and WAMRAIN for hourly, daily and monthly rainfall measurements respectively) is operated by other agencies beyond the Met Office, and are consequently currently excluded from the Midas-open dataset. Currently this represents approximately 13% of available daily rainfall observations within the full MIDAS collection.