Data on daily total rainfall (Please visit the reference link for other climate information). The multiple file formats are available for datasets download in API.
The Boston Water and Sewer Commission (BWSC) maintains collection sites throughout the city. Those collection sites are equipped with solar powered rain gauges on top of public buildings which log measurements of precipitation and which report data every five minutes. Here you find the link to the Boston Water and Sewer Commission’s interface to the rainfall data, which is updated continually. You can search for rainfall data going as far back as 1999, depending on the year of installation for the various gauges.
[Metadata] Mean Annual Rainfall Isohyets in Millimeters for the Islands of Hawai‘i, Kaho‘olawe, Kaua‘i, Lāna‘i, Maui, Moloka‘i and O‘ahu. Source: 2011 Rainfall Atlas of Hawaii, https://www.hawaii.edu/climate-data-portal/rainfall-atlas. Note that Moloka‘I data/maps were updated in 2014. Please see Rainfall Atlas final report appendix for full method details: https://www.hawaii.edu/climate-data-portal/rainfall-atlas.
Statewide GIS program staff downloaded data from UH Geography
Department, Rainfall Atlas of Hawaii, February, 2019. Annual and
monthly isohyets of mean rainfall were available for download. The
statewide GIS program makes available only the annual layer. Both the
monthly layers and the original annual layer are available from the
Rainfall Atlas of Hawaii website, referenced above. Note: Contour attribute value represents the amount of annual rainfall, in millimeters, for that line/isohyet. For additional information, please see metadata at https://files.hawaii.gov/dbedt/op/gis/data/isohyets.pdf or contact Hawaii Statewide GIS Program, Office of Planning and Sustainable Development, State of Hawaii; PO Box 2359, Honolulu, Hi. 96804; (808) 587-2846; email: gis@hawaii.gov; Website: https://planning.hawaii.gov/gis.
In 2024, the United States saw some **** inches of precipitation. The main forms of precipitation include hail, drizzle, rain, sleet, and snow. Since the turn of the century, 2012 was the driest year on record with an annual precipitation of **** inches. Regional disparities in rainfall Louisiana emerged as the wettest state in the U.S. in 2024, recording a staggering ***** inches (*** meters) of precipitation—nearly **** inches (ca. ** centimeters) above its historical average. In stark contrast, Nevada received only **** inches (ca. ** centimeters), underscoring the vast differences in rainfall across the nation. These extremes illustrate the uneven distribution of precipitation, with the southwestern states experiencing increasingly dry conditions that experts predict will worsen in the coming years. Drought concerns persist Drought remains a significant concern in many parts of the country. The Palmer Drought Severity Index (PDSI) for the contiguous United States stood at ***** in December 2024, indicating moderate to severe drought conditions. This reading follows three years of generally negative PDSI values, with the most extreme drought recorded in December 2023 at *****.
In 2024, Louisiana recorded ***** inches of precipitation. This was the highest precipitation within the 48 contiguous U.S. states that year. On the other hand, Nevada was the driest state, with only **** inches of precipitation recorded. Precipitation across the United States Not only did Louisiana record the largest precipitation volume in 2024, but it also registered the highest precipitation anomaly that year, around 14.36 inches above the 1901-2000 annual average. In fact, over the last decade, rainfall across the United States was generally higher than the average recorded for the 20th century. Meanwhile, the driest states were located in the country's southwestern region, an area which – according to experts – will become even drier and warmer in the future. How does global warming affect precipitation patterns? Rising temperatures on Earth lead to increased evaporation which – ultimately – results in more precipitation. Since 1900, the volume of precipitation in the United States has increased at an average rate of **** inches per decade. Nevertheless, the effects of climate change on precipitation can vary depending on the location. For instance, climate change can alter wind patterns and ocean currents, causing certain areas to experience reduced precipitation. Furthermore, even if precipitation increases, it does not necessarily increase the water availability for human consumption, which might eventually lead to drought conditions.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The UK daily rainfall data contain rainfall accumulation and precipitation amounts over a 24 hour period. The data were collected by observation stations operated by the Met Office across the UK and transmitted within the following message types: NCM, AWSDLY, DLY3208 and SSER. The data spans from 1853 to 2023. Over time a range of rain gauges have been used - see section 5.6 and the relevant message type information in the linked MIDAS User Guide for further details.
This version supersedes the previous version (202308) of this dataset and a change log is available in the archive, and in the linked documentation for this record, detailing the differences between this version and the previous version. The change logs detail new, replaced and removed data. These include the addition of data for calendar year 2023.
This dataset is part of the Midas-open dataset collection made available by the Met Office under the UK Open Government Licence, containing only UK mainland land surface observations owned or operated by Met Office. It is a subset of the fuller, restricted Met Office Integrated Data Archive System (MIDAS) Land and Marine Surface Stations dataset, also available through the Centre for Environmental Data Analysis - see the related dataset section on this record. A large proportion of the UK raingauge observing network (associated with WAHRAIN, WADRAIN and WAMRAIN for hourly, daily and monthly rainfall measurements respectively) is operated by other agencies beyond the Met Office, and are consequently currently excluded from the Midas-open dataset. Currently this represents approximately 13% of available daily rainfall observations within the full MIDAS collection.
Hourly Precipitation Data (HPD) is digital data set DSI-3240, archived at the National Climatic Data Center (NCDC). The primary source of data for this file is approximately 5,500 US National Weather Service (NWS), Federal Aviation Administration (FAA), and cooperative observer stations in the United States of America, Puerto Rico, the US Virgin Islands, and various Pacific Islands. The earliest data dates vary considerably by state and region: Maine, Pennsylvania, and Texas have data since 1900. The western Pacific region that includes Guam, American Samoa, Marshall Islands, Micronesia, and Palau have data since 1978. Other states and regions have earliest dates between those extremes. The latest data in all states and regions is from the present day. The major parameter in DSI-3240 is precipitation amounts, which are measurements of hourly or daily precipitation accumulation. Accumulation was for longer periods of time if for any reason the rain gauge was out of service or no observer was present. DSI 3240_01 contains data grouped by state; DSI 3240_02 contains data grouped by year.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This record is for Approval for Access product AfA501 for approximately 1000 automatic rainfall data from the Environment Agency rainfall API.
The data is available on an update cycle which varies across the country, typically updated daily but updated faster is rainfall is detected. This is update frequency is usually increased during times of flooding, etc.
Readings are transferred via telemetry to internal and external systems in or close to real-time.
Measurement of the rainfall is taken in millimetres (mm) accumulated over 15 minutes. Note that rainfall data is recorded in GMT, so during British Summer Time (BST) data may appear to be an hour old. Data comes from a network of over 1000 gauges across England. Data shown is raw data collected from the gauges and is subject to quality control procedures. As a result, values may change after publication on this website.
Continuous rainfall information is also stored on our hydrometric archive, Wiski, and can be provided in non real-time on request through our customer contact centre. This raw rainfall data is provided to the Met Office for quality control along with all the data from our registered daily storage gauges (c.1400). The quality controlled dataset is covered in AfA148 Quality Controlled Daily and Monthly Raingauge Data from Environment Agency Gauges.
Data from a small selection of Met Office raingauges are included in our open data feed. This data is also available from the Met Office as open data.
https://data.gov.sg/open-data-licencehttps://data.gov.sg/open-data-licence
Dataset from National Environment Agency. For more information, visit https://data.gov.sg/datasets/d_134857f63c76d227b6fa045f31ce59c1/view
The wettest months in the United Kingdom tend to be at the start and end of the year. In the period of consideration, the greatest measurement of rainfall was nearly 217 millimeters, recorded in December 2015. The lowest level of rainfall was recorded in April 2021, at 20.6 millimeters. Rainy days The British Isles are known for their wet weather, and in 2024 there were approximately 164 rain days in the United Kingdom. A rainday is when more than one millimeter of rain falls within a day. Over the past 30 years, the greatest number of rain days was recorded in the year 2000. In that year, the average annual rainfall in the UK amounted to 1,242.1 millimeters. Climate change According to the Met Office, climate change in the United Kingdom has resulted in the weather getting warmer and wetter. In 2022, the annual average temperature in the country reached a new record high, surpassing 10 degrees Celsius for the first time. This represented an increase of nearly two degrees Celsius when compared to the annual average temperature recorded in 1910. In a recent survey conducted amongst UK residents, almost 80 percent of respondents had concerns about climate change.
Australian Bureau of Meteorology assembled this dataset of 191 Australian rainfall stations for the purpose of climate change monitoring and assessment. These stations were selected because they are believed to be the highest quality and most reliable long-term rainfall stations in Australia. The longest period of record is August 1840 to December 1990, but the actual periods vary by individual station. Each data record in the dataset contains at least a monthly precipitation total, and most records also have daily data as well.
Daily and monthly rainfall records for our station at Foxford G.S. in Co. Mayo. This station is now closed.
https://data.gov.sg/open-data-licencehttps://data.gov.sg/open-data-licence
Dataset from National Environment Agency. For more information, visit https://data.gov.sg/datasets/d_b16d06b83473fdfcc92ed9d37b66ba58/view
The United Kingdom experienced an average of 1,242.1 millimeters of rainfall in 2024, a decrease of 5.8 percent in comparison to the previous year. While 2024 saw substantial rainfall, it did not surpass the thus-far peak of the century, with 1,373 millimeters of rain recorded in 2000. Regional variations and seasonal patterns Rainfall distribution across the UK is far from uniform, with Scotland and Wales consistently receiving the highest annual precipitation. In 2024, they recorded an average of 1,571.7 millimeters and 1,600.8 millimeters, respectively, significantly above the UK’s average. This disparity is largely due to both countries’ mountainous terrain, which is more susceptible to Atlantic weather systems. Seasonally, the wettest months in the UK typically occur in the winter, with the highest precipitation levels seen between November and February. Climate change impact on UK weather Climate change is influencing UK weather patterns, leading to warmer and wetter conditions overall. While annual rainfall fluctuates, there is a trend towards more extreme weather events. For example, 2020 and 2022 saw rain deviations from the long-term mean in the UK of more than 100 millimeters in February. As weather patterns continue to evolve, monitoring rainfall trends remains crucial for understanding and adapting to a changing climate.
Daily and monthly rainfall records for our station at Delvin G.S. in Co. Westmeath. This station is now closed.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Rainfall data from IMD for Hyderabad
U.S.V.I. maximum monthly precipitation
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
For both food security and biodiversity management in NEI, a biodiversity hot spot, is required dependable, consistent estimates of trend and modes of variability of rainfall, so that policy makers have an idea of the rainfall that can be expected during the coming decades. Hence, daily rainfall data over the North East India (NEI) for more than 100 years is required for any climate change impact assessment. However, the region is poorly sampled and none of the weather stations have operated continuously for such a period. This technical note describes combining conventional weather station records with rain-gauge records from a number of sources like privately owned tea estates to create a continuous daily rainfall record from 1 January 1920-31st December 2009 for the north-eastern region of India. We have been successful in creating a daily rainfall data set on a set of 24 well distributed fixed stations. The data extent back into the 1920 and stem from a variety of station observations. Remaining data gaps are less than 3% of the total data in each station. Every effort has been made to reconstruct the data gaps with the aim to improve assessments of the long-term changes in climate variability in NEI. The final reconstructed data set for NEI is well suited to estimate both long-term trend and multi-decadal variability of rainfall over the region.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The UK hourly rainfall data contain the rainfall amount (and duration from tilting syphon gauges) during the hour (or hours) ending at the specified time. The data also contains precipitation amounts, however precipitation measured over 24 hours are not stored. Over time a range of rain gauges have been used - see the linked MIDAS User Guide for further details.
This version supersedes the previous version of this dataset and a change log is available in the archive, and in the linked documentation for this record, detailing the differences between this version and the previous version. The change logs detail new, replaced and removed data.
The data were collected by observation stations operated by the Met Office across the UK and transmitted within the following message types: NCM, AWSHRLY, DLY3208, SREW and SSER. The data spans from 1915 to 2020.
This dataset is part of the Midas-open dataset collection made available by the Met Office under the UK Open Government Licence, containing only UK mainland land surface observations owned or operated by the Met Office. It is a subset of the fuller, restricted Met Office Integrated Data Archive System (MIDAS) Land and Marine Surface Stations dataset, also available through the Centre for Environmental Data Analysis - see the related dataset section on this record. A large proportion of the UK raingauge observing network (associated with WAHRAIN, WADRAIN and WAMRAIN for hourly, daily and monthly rainfall measurements respectively) is operated by other agencies beyond the Met Office, and are consequently currently excluded from the Midas-open dataset.
Data on daily total rainfall (Please visit the reference link for other climate information). The multiple file formats are available for datasets download in API.