Facebook
Twitternielsr/random-data dataset hosted on Hugging Face and contributed by the HF Datasets community
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is a test
Facebook
Twitterhttp://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
This dataset was created by Mazwi Jeremiah Dlamini
Released under Database: Open Database, Contents: Database Contents
Facebook
TwitterEach record includes: the random ID number of the phone (not related to the phone or SIM card number); the exact time and date of the call activity; a geographical location which is determined by the precision of a mobile network antenna (Cell ID) that provides the network signal for a call activity.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This repository includes MATLAB files and datasets related to the IEEE IIRW 2023 conference proceeding:T. Zanotti et al., "Reliability Analysis of Random Telegraph Noisebased True Random Number Generators," 2023 IEEE International Integrated Reliability Workshop (IIRW), South Lake Tahoe, CA, USA, 2023, pp. 1-6, doi: 10.1109/IIRW59383.2023.10477697
The repository includes:
The data of the bitmaps reported in Fig. 4, i.e., the results of the simulation of the ideal RTN-based TRNG circuit for different reseeding strategies. To load and plot the data use the "plot_bitmaps.mat" file.
The result of the circuit simulations considering the EvolvingRTN from the HfO2 device shown in Fig. 7, for two Rgain values. Specifically, the data is contained in the following csv files:
"Sim_TRNG_Circuit_HfO2_3_20s_Vth_210m_no_Noise_Ibias_11n.csv" (lower Rgain)
"Sim_TRNG_Circuit_HfO2_3_20s_Vth_210m_no_Noise_Ibias_4_8n.csv" (higher Rgain)
The result of the circuit simulations considering the temporary RTN from the SiO2 device shown in Fig. 8. Specifically, the data is contained in the following csv files:
"Sim_TRNG_Circuit_SiO2_1c_300s_Vth_180m_Noise_Ibias_1.5n.csv" (ref. Rgain)
"Sim_TRNG_Circuit_SiO2_1c_100s_200s_Vth_180m_Noise_Ibias_1.575n.csv" (lower Rgain)
"Sim_TRNG_Circuit_SiO2_1c_100s_200s_Vth_180m_Noise_Ibias_1.425n.csv" (higher Rgain)
Facebook
TwitterThis dataset was created by Johar M. Ashfaque
Facebook
TwitterThis dataset was created by TinaSoni
Released under Data files © Original Authors
Facebook
TwitterThere's a story behind every dataset and here's your opportunity to share yours.
What's inside is more than just rows and columns. Make it easy for others to get started by describing how you acquired the data and what time period it represents, too.
We wouldn't be here without the help of others. If you owe any attributions or thanks, include them here along with any citations of past research.
Your data will be in front of the world's largest data science community. What questions do you want to see answered?
Facebook
TwitterA random sample of households were invited to participate in this survey. In the dataset, you will find the respondent level data in each row with the questions in each column. The numbers represent a scale option from the survey, such as 1=Excellent, 2=Good, 3=Fair, 4=Poor. The question stem, response option, and scale information for each field can be found in the var "variable labels" and "value labels" sheets. VERY IMPORTANT NOTE: The scientific survey data were weighted, meaning that the demographic profile of respondents was compared to the demographic profile of adults in Bloomington from US Census data. Statistical adjustments were made to bring the respondent profile into balance with the population profile. This means that some records were given more "weight" and some records were given less weight. The weights that were applied are found in the field "wt". If you do not apply these weights, you will not obtain the same results as can be found in the report delivered to the Bloomington. The easiest way to replicate these results is likely to create pivot tables, and use the sum of the "wt" field rather than a count of responses.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Random data as a test. It will be deleted.
Facebook
TwitterConsider a scenario in which the data owner has some private/sensitive data and wants a data miner to access it for studying important patterns without revealing the sensitive information. Privacy preserving data mining aims to solve this problem by randomly transforming the data prior to its release to data miners. Previous work only considered the case of linear data perturbations — additive, multiplicative or a combination of both for studying the usefulness of the perturbed output. In this paper, we discuss nonlinear data distortion using potentially nonlinear random data transformation and show how it can be useful for privacy preserving anomaly detection from sensitive datasets. We develop bounds on the expected accuracy of the nonlinear distortion and also quantify privacy by using standard definitions. The highlight of this approach is to allow a user to control the amount of privacy by varying the degree of nonlinearity. We show how our general transformation can be used for anomaly detection in practice for two specific problem instances: a linear model and a popular nonlinear model using the sigmoid function. We also analyze the proposed nonlinear transformation in full generality and then show that for specific cases it is distance preserving. A main contribution of this paper is the discussion between the invertibility of a transformation and privacy preservation and the application of these techniques to outlier detection. Experiments conducted on real-life datasets demonstrate the effectiveness of the approach.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Disclaimer – The datasets are generated through random logic in VBA. These are not real human resource data and should not be used for any other purpose other than testing.
Note – I have been approached for the permission to use data set by individuals / organizations. I just want to clarify one thing. Anything published on this is completely copyright free. You can use anything from this site without any obligation. You can even call the content from this site as your own. Hope, it clarifies. There is absolutely no need to ask for permission for use.
Foto von Annie Spratt auf Unsplash
Facebook
TwitterThe dataset used in this paper is a random input and output generated according to the block CA rule.
Facebook
TwitterThis dataset is part of a series of datasets, where batteries are continuously cycled with randomly generated current profiles. Reference charging and discharging cycles are also performed after a fixed interval of randomized usage to provide reference benchmarks for battery state of health. In this dataset, four 18650 Li-ion batteries (Identified as RW9, RW10, RW11 and RW12) were continuously operated using a sequence of charging and discharging currents between -4.5A and 4.5A. This type of charging and discharging operation is referred to here as random walk (RW) operation. Each of the loading periods lasted 5 minutes, and after 1500 periods (about 5 days) a series of reference charging and discharging cycles were performed in order to provide reference benchmarks for battery state health.
Facebook
TwitterConsider a scenario in which the data owner has some private/sensitive data and wants a data miner to access it for studying important patterns without revealing the sensitive information. Privacy preserving data mining aims to solve this problem by randomly transforming the data prior to its release to data miners. Previous work only considered the case of linear data perturbations — additive, multiplicative or a combination of both for studying the usefulness of the perturbed output. In this paper, we discuss nonlinear data distortion using potentially nonlinear random data transformation and show how it can be useful for privacy preserving anomaly detection from sensitive datasets. We develop bounds on the expected accuracy of the nonlinear distortion and also quantify privacy by using standard definitions. The highlight of this approach is to allow a user to control the amount of privacy by varying the degree of nonlinearity. We show how our general transformation can be used for anomaly detection in practice for two specific problem instances: a linear model and a popular nonlinear model using the sigmoid function. We also analyze the proposed nonlinear transformation in full generality and then show that for specific cases it is distance preserving. A main contribution of this paper is the discussion between the invertibility of a transformation and privacy preservation and the application of these techniques to outlier detection. Experiments conducted on real-life datasets demonstrate the effectiveness of the approach.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Simulation files for all-atom simulation of benzene.
neural network architecture
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Real World Fake Data
Employee Information: IDs, names, departments, positions, and contact details.
Employment Details: Hire dates, years of experience, performance ratings.
Compensation and Benefits: Salaries, bonuses, allowances, leave balances.
Training and Development: Training hours, certifications, skills.
Others: Emergency contacts, employment types, promotion dates.
Facebook
TwitterThis dataset provides information about the number of properties, residents, and average property values for Grand Avenue cross streets in Random Lake, WI.
Facebook
Twitternielsr/random-data dataset hosted on Hugging Face and contributed by the HF Datasets community