83 datasets found
  1. d

    Data from: Mean tidal range in salt marsh units of Edwin B. Forsythe...

    • catalog.data.gov
    • search.dataone.org
    • +2more
    Updated Nov 12, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Mean tidal range in salt marsh units of Edwin B. Forsythe National Wildlife Refuge, New Jersey (polygon shapefile) [Dataset]. https://catalog.data.gov/dataset/mean-tidal-range-in-salt-marsh-units-of-edwin-b-forsythe-national-wildlife-refuge-new-jers
    Explore at:
    Dataset updated
    Nov 12, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    New Jersey
    Description

    Biomass production is positively correlated with mean tidal range in salt marshes along the Atlantic coast of the United States of America. Recent studies support the idea that enhanced stability of the marshes can be attributed to increased vegetative growth due to increased tidal range. This dataset displays the spatial variation mean tidal range (i.e. Mean Range of Tides, MN) in the Edwin B. Forsythe National Wildlife Refuge (EBFNWR), which spans over Great Bay, Little Egg Harbor, and Barnegat Bay in New Jersey, USA. MN was based on the calculated difference in height between mean high water (MHW) and mean low water (MLW) using the VDatum (v3.5) software (http://vdatum.noaa.gov/). The input elevation was set to zero in VDatum to calculate the relative difference between the two datums. As part of the Hurricane Sandy Science Plan, the U.S. Geological Survey has started a Wetland Synthesis Project to expand National Assessment of Coastal Change Hazards and forecast products to coastal wetlands. The intent is to provide federal, state, and local managers with tools to estimate their vulnerability and ecosystem service potential. For this purpose, the response and resilience of coastal wetlands to physical factors need to be assessed in terms of the ensuing change to their vulnerability and ecosystem services. EBFNWR was selected as a pilot study area.

  2. N

    South Range, MI Population Breakdown by Gender and Age Dataset: Male and...

    • neilsberg.com
    csv, json
    Updated Feb 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). South Range, MI Population Breakdown by Gender and Age Dataset: Male and Female Population Distribution Across 18 Age Groups // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/e200fba9-f25d-11ef-8c1b-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 24, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Michigan, South Range
    Variables measured
    Male and Female Population Under 5 Years, Male and Female Population over 85 years, Male and Female Population Between 5 and 9 years, Male and Female Population Between 10 and 14 years, Male and Female Population Between 15 and 19 years, Male and Female Population Between 20 and 24 years, Male and Female Population Between 25 and 29 years, Male and Female Population Between 30 and 34 years, Male and Female Population Between 35 and 39 years, Male and Female Population Between 40 and 44 years, and 8 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the three variables, namely (a) Population (Male), (b) Population (Female), and (c) Gender Ratio (Males per 100 Females), we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau across 18 age groups, ranging from under 5 years to 85 years and above. These age groups are described above in the variables section. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of South Range by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for South Range. The dataset can be utilized to understand the population distribution of South Range by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in South Range. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for South Range.

    Key observations

    Largest age group (population): Male # 20-24 years (49) | Female # 20-24 years (50). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.

    Variables / Data Columns

    • Age Group: This column displays the age group for the South Range population analysis. Total expected values are 18 and are define above in the age groups section.
    • Population (Male): The male population in the South Range is shown in the following column.
    • Population (Female): The female population in the South Range is shown in the following column.
    • Gender Ratio: Also known as the sex ratio, this column displays the number of males per 100 females in South Range for each age group.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for South Range Population by Gender. You can refer the same here

  3. d

    Data from: Mean tidal range in marsh units of Fire Island National Seashore...

    • catalog.data.gov
    • data.usgs.gov
    Updated Nov 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Mean tidal range in marsh units of Fire Island National Seashore and central Great South Bay salt marsh complex, New York [Dataset]. https://catalog.data.gov/dataset/mean-tidal-range-in-marsh-units-of-fire-island-national-seashore-and-central-great-south-b
    Explore at:
    Dataset updated
    Nov 21, 2025
    Dataset provided by
    U.S. Geological Survey
    Area covered
    Fire Island, Great South Bay
    Description

    Biomass production is positively correlated with mean tidal range in salt marshes along the Atlantic coast of the United States of America. Recent studies support the idea that enhanced stability of the marshes can be attributed to increased vegetative growth due to increased tidal range. This dataset displays the spatial variation of mean tidal range (i.e. Mean Range of Tides, MN) in the Fire Island National Seashore and central Great South Bay salt marsh complex, based on conceptual marsh units defined by Defne and Ganju (2018). MN was based on the calculated difference in height between mean high water (MHW) and mean low water (MLW) using the VDatum (v3.5) database ( http://vdatum.noaa.gov/ ). Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands, including the Fire Island National Seashore and central Great South Bay salt marshes, with the intent of providing Federal, State, and local managers with tools to estimate the vulnerability and ecosystem service potential of these wetlands. For this purpose, the response and resilience of coastal wetlands to physical factors need to be assessed in terms of the ensuing change to their vulnerability and ecosystem services. References: Defne, Z., and Ganju, N.K., 2018, Conceptual marsh units for Fire Island National Seashore and central Great South Bay salt marsh complex, New York: U.S. Geological Survey data release, https://doi.org/10.5066/P95U2MQ7.

  4. f

    Descriptive statistics of dependent variables mean(SE) across range of...

    • datasetcatalog.nlm.nih.gov
    • plos.figshare.com
    Updated Jan 25, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rumble, Deanna D.; Brown, David A.; Hurt, Christopher P. (2018). Descriptive statistics of dependent variables mean(SE) across range of speeds. [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0000671474
    Explore at:
    Dataset updated
    Jan 25, 2018
    Authors
    Rumble, Deanna D.; Brown, David A.; Hurt, Christopher P.
    Description

    Descriptive statistics of dependent variables mean(SE) across range of speeds.

  5. d

    Data from: Mean tidal range in marsh units of Assateague Island National...

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Nov 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Mean tidal range in marsh units of Assateague Island National Seashore and Chincoteague Bay, Maryland and Virginia [Dataset]. https://catalog.data.gov/dataset/mean-tidal-range-in-marsh-units-of-assateague-island-national-seashore-and-chincoteague-ba
    Explore at:
    Dataset updated
    Nov 12, 2025
    Dataset provided by
    U.S. Geological Survey
    Area covered
    Assateague Island, Virginia, Chincoteague Bay, Maryland
    Description

    Biomass production is positively correlated with mean tidal range in salt marshes along the Atlantic coast of the United States of America. Recent studies support the idea that enhanced stability of the marshes can be attributed to increased vegetative growth due to increased tidal range. This dataset displays the spatial variation of mean tidal range (i.e. Mean Range of Tides, MN) in the Assateague Island National Seashore and Chincoteague Bay based on conceptual marsh units defined by Defne and Ganju (2018). MN was based on the calculated difference in height between mean high water (MHW) and mean low water (MLW) using the VDatum (v3.5) database ( http://vdatum.noaa.gov/ ). Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands, including the Assateague Island National Seashore and Chincoteague Bay salt marshes, with the intent of providing Federal, State, and local managers with tools to estimate the vulnerability and ecosystem service potential of these wetlands. For this purpose, the response and resilience of coastal wetlands to physical factors need to be assessed in terms of the ensuing change to their vulnerability and ecosystem services. Mean elevation of marsh units is planned to be an underlying parameter in the synthesis of these factors. References: Defne, Z., and Ganju, N.K., 2018, Conceptual marsh units for Assateague Island National Seashore and Chincoteague Bay, Maryland and Virginia: U.S. Geological Survey data release, https://doi.org/10.5066/P92ZW4D9.

  6. u

    NCEP Medium Range Forecast Model Zonal Means

    • data.ucar.edu
    • ckanprod.data-commons.k8s.ucar.edu
    Updated Oct 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). NCEP Medium Range Forecast Model Zonal Means [Dataset]. http://doi.org/10.26023/3A4F-AHJ7-MQ0W
    Explore at:
    Dataset updated
    Oct 7, 2025
    Time period covered
    Oct 30, 1995 - Jan 6, 1996
    Area covered
    Description

    The U.S. National Centers for Environmental Prediction (NCEP) routinely ran the Medium Range Forecast (MRF) model twice daily (00 and 12 UTC) during the ACE-1 period. This dataset is the derived zonal means of model output fields. The forecasts from 12 to 48 hours (in 12 hour steps) are available in native CRAY format.

  7. d

    Mean tidal range of marsh units in Massachusetts salt marshes

    • catalog.data.gov
    • s.cnmilf.com
    • +1more
    Updated Oct 8, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Mean tidal range of marsh units in Massachusetts salt marshes [Dataset]. https://catalog.data.gov/dataset/mean-tidal-range-of-marsh-units-in-massachusetts-salt-marshes
    Explore at:
    Dataset updated
    Oct 8, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Massachusetts
    Description

    This data release contains coastal wetland synthesis products for Massachusetts, developed in collaboration with the Massachusetts Office of Coastal Zone Management. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and tidal range are calculated for smaller units delineated from a digital elevation model, providing the spatial variability of physical factors that influence wetland health. The U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands with the intent of providing Federal, State, and local managers with tools to estimate the vulnerability and ecosystem service potential of these wetlands. For this purpose, the response and resilience of coastal wetlands to physical factors need to be assessed in terms of the ensuing change to their vulnerability and ecosystem services.

  8. Path loss at 5G high frequency range in South Asia

    • kaggle.com
    Updated Apr 25, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    S M MEHEDI ZAMAN (2023). Path loss at 5G high frequency range in South Asia [Dataset]. https://www.kaggle.com/datasets/smmehedizaman/path-loss-at-5g-high-frequency-range-in-south-asia
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 25, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    S M MEHEDI ZAMAN
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Area covered
    South Asia, Asia
    Description

    This dataset has been generated using NYUSIM 3.0 mm-Wave channel simulator software, which takes into account atmospheric data such as rain rate, humidity, barometric pressure, and temperature. The input data was collected over the course of a year in South Asia. As a result, the dataset provides an accurate representation of the seasonal variations in mm-wave channel characteristics in these areas. The dataset includes a total of 2835 records, each of which contains T-R Separation Distance (m), Time Delay (ns), Received Power (dBm), Phase (rad), Azimuth AoD (degree), Elevation AoD (degree), Azimuth AoA (degree), Elevation, AoA (degree), RMS Delay Spread (ns), Season, Frequency and Path Loss (dB). Four main seasons have been considered in this dataset: Spring, Summer, Fall, and Winter. Each season is subdivided into three parts (i.e., low, medium, and high), to accurately include the atmospheric variations in a season. To simulate the path loss, realistic Tx and Rx height, NLoS environment, and mean human blockage attenuation effects have been taken into consideration. The data has been preprocessed and normalized to ensure consistency and ease of use. Researchers in the field of mm-wave communications and networking can use this dataset to study the impact of atmospheric conditions on mm-wave channel characteristics and develop more accurate models for predicting channel behavior. The dataset can also be used to evaluate the performance of different communication protocols and signal processing techniques under varying weather conditions. Note that while the data was collected specifically in South Asia region, the high correlation between the weather patterns in this region and other areas means that the dataset may also be applicable to other regions with similar atmospheric conditions.

    Acknowledgements The paper in which the dataset was proposed is available on: https://ieeexplore.ieee.org/abstract/document/10307972

    Citation

    If you use this dataset, please cite the following paper:

    Rashed Hasan Ratul, S. M. Mehedi Zaman, Hasib Arman Chowdhury, Md. Zayed Hassan Sagor, Mohammad Tawhid Kawser, and Mirza Muntasir Nishat, “Atmospheric Influence on the Path Loss at High Frequencies for Deployment of 5G Cellular Communication Networks,” 2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT), 2023, pp. 1–6. https://doi.org/10.1109/ICCCNT56998.2023.10307972

    BibTeX ```bibtex @inproceedings{Ratul2023Atmospheric, author = {Ratul, Rashed Hasan and Zaman, S. M. Mehedi and Chowdhury, Hasib Arman and Sagor, Md. Zayed Hassan and Kawser, Mohammad Tawhid and Nishat, Mirza Muntasir}, title = {Atmospheric Influence on the Path Loss at High Frequencies for Deployment of {5G} Cellular Communication Networks}, booktitle = {2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT)}, year = {2023}, pages = {1--6}, doi = {10.1109/ICCCNT56998.2023.10307972}, keywords = {Wireless communication; Fluctuations; Rain; 5G mobile communication; Atmospheric modeling; Simulation; Predictive models; 5G-NR; mm-wave propagation; path loss; atmospheric influence; NYUSIM; ML} }

  9. N

    Grass Range, MT Population Breakdown by Gender and Age Dataset: Male and...

    • neilsberg.com
    csv, json
    Updated Feb 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Grass Range, MT Population Breakdown by Gender and Age Dataset: Male and Female Population Distribution Across 18 Age Groups // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/e1e392ff-f25d-11ef-8c1b-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 24, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Montana, Grass Range
    Variables measured
    Male and Female Population Under 5 Years, Male and Female Population over 85 years, Male and Female Population Between 5 and 9 years, Male and Female Population Between 10 and 14 years, Male and Female Population Between 15 and 19 years, Male and Female Population Between 20 and 24 years, Male and Female Population Between 25 and 29 years, Male and Female Population Between 30 and 34 years, Male and Female Population Between 35 and 39 years, Male and Female Population Between 40 and 44 years, and 8 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the three variables, namely (a) Population (Male), (b) Population (Female), and (c) Gender Ratio (Males per 100 Females), we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau across 18 age groups, ranging from under 5 years to 85 years and above. These age groups are described above in the variables section. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of Grass Range by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Grass Range. The dataset can be utilized to understand the population distribution of Grass Range by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Grass Range. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Grass Range.

    Key observations

    Largest age group (population): Male # 35-39 years (7) | Female # 70-74 years (36). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.

    Variables / Data Columns

    • Age Group: This column displays the age group for the Grass Range population analysis. Total expected values are 18 and are define above in the age groups section.
    • Population (Male): The male population in the Grass Range is shown in the following column.
    • Population (Female): The female population in the Grass Range is shown in the following column.
    • Gender Ratio: Also known as the sex ratio, this column displays the number of males per 100 females in Grass Range for each age group.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Grass Range Population by Gender. You can refer the same here

  10. ECMWF ERA5: ensemble means of surface level analysis parameter data

    • catalogue.ceda.ac.uk
    • data-search.nerc.ac.uk
    Updated Jul 7, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    European Centre for Medium-Range Weather Forecasts (ECMWF) (2025). ECMWF ERA5: ensemble means of surface level analysis parameter data [Dataset]. https://catalogue.ceda.ac.uk/uuid/d8021685264e43c7a0868396a5f582d0
    Explore at:
    Dataset updated
    Jul 7, 2025
    Dataset provided by
    Centre for Environmental Data Analysishttp://www.ceda.ac.uk/
    Authors
    European Centre for Medium-Range Weather Forecasts (ECMWF)
    License

    https://artefacts.ceda.ac.uk/licences/specific_licences/ecmwf-era-products.pdfhttps://artefacts.ceda.ac.uk/licences/specific_licences/ecmwf-era-products.pdf

    Area covered
    Earth
    Variables measured
    cloud_area_fraction, sea_ice_area_fraction, air_pressure_at_mean_sea_level, lwe_thickness_of_atmosphere_mass_content_of_water_vapor
    Description

    This dataset contains ERA5 surface level analysis parameter data ensemble means (see linked dataset for spreads). ERA5 is the 5th generation reanalysis project from the European Centre for Medium-Range Weather Forecasts (ECWMF) - see linked documentation for further details. The ensemble means and spreads are calculated from the ERA5 10 member ensemble, run at a reduced resolution compared with the single high resolution (hourly output at 31 km grid spacing) 'HRES' realisation, for which these data have been produced to provide an uncertainty estimate. This dataset contains a limited selection of all available variables and have been converted to netCDF from the original GRIB files held on the ECMWF system. They have also been translated onto a regular latitude-longitude grid during the extraction process from the ECMWF holdings. For a fuller set of variables please see the linked Copernicus Data Store (CDS) data tool, linked to from this record.

    Note, ensemble standard deviation is often referred to as ensemble spread and is calculated as the standard deviation of the 10-members in the ensemble (i.e., including the control). It is not the sample standard deviation, and thus were calculated by dividing by 10 rather than 9 (N-1). See linked datasets for ensemble member and ensemble mean data.

    The ERA5 global atmospheric reanalysis of the covers 1979 to 2 months behind the present month. This follows on from the ERA-15, ERA-40 rand ERA-interim re-analysis projects.

    An initial release of ERA5 data (ERA5t) is made roughly 5 days behind the present date. These will be subsequently reviewed ahead of being released by ECMWF as quality assured data within 3 months. CEDA holds a 6 month rolling copy of the latest ERA5t data. See related datasets linked to from this record. However, for the period 2000-2006 the initial ERA5 release was found to suffer from stratospheric temperature biases and so new runs to address this issue were performed resulting in the ERA5.1 release (see linked datasets). Note, though, that Simmons et al. 2020 (technical memo 859) report that "ERA5.1 is very close to ERA5 in the lower and middle troposphere." but users of data from this period should read the technical memo 859 for further details.

  11. Global Country Information Dataset 2023

    • kaggle.com
    zip
    Updated Jul 8, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nidula Elgiriyewithana ⚡ (2023). Global Country Information Dataset 2023 [Dataset]. https://www.kaggle.com/datasets/nelgiriyewithana/countries-of-the-world-2023
    Explore at:
    zip(24063 bytes)Available download formats
    Dataset updated
    Jul 8, 2023
    Authors
    Nidula Elgiriyewithana ⚡
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Description

    This comprehensive dataset provides a wealth of information about all countries worldwide, covering a wide range of indicators and attributes. It encompasses demographic statistics, economic indicators, environmental factors, healthcare metrics, education statistics, and much more. With every country represented, this dataset offers a complete global perspective on various aspects of nations, enabling in-depth analyses and cross-country comparisons.

    DOI

    Key Features

    • Country: Name of the country.
    • Density (P/Km2): Population density measured in persons per square kilometer.
    • Abbreviation: Abbreviation or code representing the country.
    • Agricultural Land (%): Percentage of land area used for agricultural purposes.
    • Land Area (Km2): Total land area of the country in square kilometers.
    • Armed Forces Size: Size of the armed forces in the country.
    • Birth Rate: Number of births per 1,000 population per year.
    • Calling Code: International calling code for the country.
    • Capital/Major City: Name of the capital or major city.
    • CO2 Emissions: Carbon dioxide emissions in tons.
    • CPI: Consumer Price Index, a measure of inflation and purchasing power.
    • CPI Change (%): Percentage change in the Consumer Price Index compared to the previous year.
    • Currency_Code: Currency code used in the country.
    • Fertility Rate: Average number of children born to a woman during her lifetime.
    • Forested Area (%): Percentage of land area covered by forests.
    • Gasoline_Price: Price of gasoline per liter in local currency.
    • GDP: Gross Domestic Product, the total value of goods and services produced in the country.
    • Gross Primary Education Enrollment (%): Gross enrollment ratio for primary education.
    • Gross Tertiary Education Enrollment (%): Gross enrollment ratio for tertiary education.
    • Infant Mortality: Number of deaths per 1,000 live births before reaching one year of age.
    • Largest City: Name of the country's largest city.
    • Life Expectancy: Average number of years a newborn is expected to live.
    • Maternal Mortality Ratio: Number of maternal deaths per 100,000 live births.
    • Minimum Wage: Minimum wage level in local currency.
    • Official Language: Official language(s) spoken in the country.
    • Out of Pocket Health Expenditure (%): Percentage of total health expenditure paid out-of-pocket by individuals.
    • Physicians per Thousand: Number of physicians per thousand people.
    • Population: Total population of the country.
    • Population: Labor Force Participation (%): Percentage of the population that is part of the labor force.
    • Tax Revenue (%): Tax revenue as a percentage of GDP.
    • Total Tax Rate: Overall tax burden as a percentage of commercial profits.
    • Unemployment Rate: Percentage of the labor force that is unemployed.
    • Urban Population: Percentage of the population living in urban areas.
    • Latitude: Latitude coordinate of the country's location.
    • Longitude: Longitude coordinate of the country's location.

    Potential Use Cases

    • Analyze population density and land area to study spatial distribution patterns.
    • Investigate the relationship between agricultural land and food security.
    • Examine carbon dioxide emissions and their impact on climate change.
    • Explore correlations between economic indicators such as GDP and various socio-economic factors.
    • Investigate educational enrollment rates and their implications for human capital development.
    • Analyze healthcare metrics such as infant mortality and life expectancy to assess overall well-being.
    • Study labor market dynamics through indicators such as labor force participation and unemployment rates.
    • Investigate the role of taxation and its impact on economic development.
    • Explore urbanization trends and their social and environmental consequences.

    Data Source: This dataset was compiled from multiple data sources

    If this was helpful, a vote is appreciated ❤️ Thank you 🙂

  12. Customer Satisfaction Scores and Behavior Data

    • kaggle.com
    zip
    Updated Apr 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Salahuddin Ahmed (2025). Customer Satisfaction Scores and Behavior Data [Dataset]. https://www.kaggle.com/datasets/salahuddinahmedshuvo/customer-satisfaction-scores-and-behavior-data/discussion
    Explore at:
    zip(2456 bytes)Available download formats
    Dataset updated
    Apr 6, 2025
    Authors
    Salahuddin Ahmed
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset contains customer satisfaction scores collected from a survey, alongside key demographic and behavioral data. It includes variables such as customer age, gender, location, purchase history, support contact status, loyalty level, and satisfaction factors. The dataset is designed to help analyze customer satisfaction, identify trends, and develop insights that can drive business decisions.

    File Information: File Name: customer_satisfaction_data.csv (or your specific file name)

    File Type: CSV (or the actual file format you are using)

    Number of Rows: 120

    Number of Columns: 10

    Column Names:

    Customer_ID – Unique identifier for each customer (e.g., 81-237-4704)

    Group – The group to which the customer belongs (A or B)

    Satisfaction_Score – Customer's satisfaction score on a scale of 1-10

    Age – Age of the customer

    Gender – Gender of the customer (Male, Female)

    Location – Customer's location (e.g., Phoenix.AZ, Los Angeles.CA)

    Purchase_History – Whether the customer has made a purchase (Yes or No)

    Support_Contacted – Whether the customer has contacted support (Yes or No)

    Loyalty_Level – Customer's loyalty level (Low, Medium, High)

    Satisfaction_Factor – Primary factor contributing to customer satisfaction (e.g., Price, Product Quality)

    Statistical Analyses:

    Descriptive Statistics:

    Calculate mean, median, mode, standard deviation, and range for key numerical variables (e.g., Satisfaction Score, Age).

    Summarize categorical variables (e.g., Gender, Loyalty Level, Purchase History) with frequency distributions and percentages.

    Two-Sample t-Test (Independent t-test):

    Compare the mean satisfaction scores between two independent groups (e.g., Group A vs. Group B) to determine if there is a significant difference in their average satisfaction scores.

    Paired t-Test:

    If there are two related measurements (e.g., satisfaction scores before and after a certain event), you can compare the means using a paired t-test.

    One-Way ANOVA (Analysis of Variance):

    Test if there are significant differences in mean satisfaction scores across more than two groups (e.g., comparing the mean satisfaction score across different Loyalty Levels).

    Chi-Square Test for Independence:

    Examine the relationship between two categorical variables (e.g., Gender vs. Purchase History or Loyalty Level vs. Support Contacted) to determine if there’s a significant association.

    Mann-Whitney U Test:

    For non-normally distributed data, use this test to compare satisfaction scores between two independent groups (e.g., Group A vs. Group B) to see if their distributions differ significantly.

    Kruskal-Wallis Test:

    Similar to ANOVA, but used for non-normally distributed data. This test can compare the median satisfaction scores across multiple groups (e.g., comparing satisfaction scores across Loyalty Levels or Satisfaction Factors).

    Spearman’s Rank Correlation:

    Test for a monotonic relationship between two ordinal or continuous variables (e.g., Age vs. Satisfaction Score or Satisfaction Score vs. Loyalty Level).

    Regression Analysis:

    Linear Regression: Model the relationship between a continuous dependent variable (e.g., Satisfaction Score) and independent variables (e.g., Age, Gender, Loyalty Level).

    Logistic Regression: If analyzing binary outcomes (e.g., Purchase History or Support Contacted), you could model the probability of an outcome based on predictors.

    Factor Analysis:

    To identify underlying patterns or groups in customer behavior or satisfaction factors, you can apply Factor Analysis to reduce the dimensionality of the dataset and group similar variables.

    Cluster Analysis:

    Use K-Means Clustering or Hierarchical Clustering to group customers based on similarity in their satisfaction scores and other features (e.g., Loyalty Level, Purchase History).

    Confidence Intervals:

    Calculate confidence intervals for the mean of satisfaction scores or any other metric to estimate the range in which the true population mean might lie.

  13. GIOTTO ION MASS SPECTROMETER HIGH ENERGY RANGE DATA V1.0

    • data.nasa.gov
    • datasets.ai
    • +1more
    Updated Mar 31, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    nasa.gov (2025). GIOTTO ION MASS SPECTROMETER HIGH ENERGY RANGE DATA V1.0 [Dataset]. https://data.nasa.gov/dataset/giotto-ion-mass-spectrometer-high-energy-range-data-v1-0
    Explore at:
    Dataset updated
    Mar 31, 2025
    Dataset provided by
    NASAhttp://nasa.gov/
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    A wide range of ion species and velocity distributions are expected to be found as the Giotto spacecraft traverses the coma of Halley's Comet. The outer coma is characterized by the interaction between solar wind and cometary plasmas, the inner coma by the outflow of cometary neutrals and their ionization products. The resultant demands on instrument dynamic range preclude use of a single sensor for measurements of ion composition. The Giotto Ion Mass Spectrometer (IMS) therefore consists of two sensors: one optimized for the outer and the other for the inner coma, with each obtaining complementary information in the region for which it is not optimized. Both sensors feature mass imaging characteristics, thereby permitting simultaneous measurements of several ion species by means of multi-detector arrays. The prime objective of the High-Energy Range Spectrometer (HERS) is to measure the ion abundances and three-dimensional velocity distributions outside the cometary contact surface.

  14. r

    Daily and monthly minimum, maximum and range of eReefs hydrodynamic model...

    • researchdata.edu.au
    Updated Oct 27, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lafond,Gael; Hammerton,Marc; Smith, Aaron; Lawrey, Eric (2020). Daily and monthly minimum, maximum and range of eReefs hydrodynamic model outputs - temperature, water elevation (AIMS, Source: CSIRO) [Dataset]. https://researchdata.edu.au/ereefs-aims-csiro-model-outputs/3766488
    Explore at:
    Dataset updated
    Oct 27, 2020
    Dataset provided by
    Australian Ocean Data Network
    Authors
    Lafond,Gael; Hammerton,Marc; Smith, Aaron; Lawrey, Eric
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2010 - Nov 30, 2022
    Area covered
    Description

    This derived dataset contains basic statistical products derived from the eReefs CSIRO hydrodynamic model v2.0 outputs at both 1 km and 4 km resolution and v4.0 at 4 km for both a daily and monthly aggregation period. The statistics generated are daily minimum, maximum, mean and range. For monthly aggregations there are monthly mean of the daily minimum, maximum and range, and the monthly minimum, maximum and range. The dataset only calculates statistics for the temperature and water elevation (eta).

    These are generated by the AIMS eReefs Platform (https://ereefs.aims.gov.au/). These statistical products are derived from the original hourly model outputs available via the National Computing Infrastructure (NCI) (https://thredds.nci.org.au/thredds/catalogs/fx3/catalog.html).

    The data is re-gridded from the original curvilinear grid used by the eReefs model into a regular grid so the data files can be easily loaded into standard GIS software. These products are made available via a THREDDS server (https://thredds.ereefs.aims.gov.au/thredds/) in NetCDF format and
    This data set contains two (2) products, based on the periods over which the statistics are determined: daily, and monthly.

    Method:
    Data files are processed in two stages. The daily files are calculated from the original hourly files, then the monthly files are calculated from the daily files. See Technical Guide to Derived Products from CSIRO eReefs Models for details on the regridding process.

    Data Dictionary:

    Daily statistics:
    The following variables can be found in the Daily statistics product:

    - temp_mean: mean temperature for each grid cell for the day.
    - temp_min: minimum temperature for each grid cell for the day.
    - temp_max: maximum temperature for each grid cell for the day.
    - temp_range: difference between maximum and minimum temperatures for each grid cell for the day.

    - eta_mean: mean surface elevation for each grid cell for the day.
    - eta_min: minimum surface elevation for each grid cell for the day.
    - eta_max: maximum surface elevation for each grid cell for the day.
    - eta_range: difference between maximum and minimum surface elevation for each grid cell for the day.

    Depths:

    Depths at 1km resolution: -2.35m, -5.35m, -18.0m, -49.0m
    Depths are 4km resolution: -1.5m, -5.55m, -17.75m, -49.0m

    * Monthly statistics:

    The following variables can be found in the Monthly statistics product:

    - temp_min_min: the minimum value of the "temp_min" variable from the Daily statistics product. This equates to the minimum temperature for each grid cell for the corresponding month.
    - temp_min_mean: the mean value of the "temp_min" variable from the Daily statistics product. This equates to the mean minimum temperature for each grid cell for the corresponding month.
    - temp_max_max: the maximum value of the "temp_max" variable from the Daily statistics product. This equates to the maximum temperature for each grid cell for the corresponding month.
    - temp_max_mean: the mean value of the "temp_max" variable from the Daily statistics product. This equates to the mean maximum temperature for each grid cell for the corresponding month.
    - temp_mean: the mean value of the "temp_mean" variable from the Daily statistics product. This equates to the mean temperature for each grid cell for the corresponding month.
    - temp_range_mean: the mean value of the "temp_range" variable from the Daily statistics product. This equates to the mean range of temperatures for each grid cell for the corresponding month.
    - eta_min_min: the minimum value of the "eta_min" variable from the Daily statistics product. This equates to the minimum surface elevation for each grid cell for the corresponding month.
    - eta_min_mean: the mean value of the "eta_min" variable from the Daily statistics product. This equates to the mean minimum surface elevation for each grid cell for the corresponding month.
    - eta_max_max: the maximum value of the "eta_max" variable from the Daily statistics product. This equates to the maximum surface elevation for each grid cell for the corresponding month.
    - eta_max_mean: the mean value of the "eta_max" variable from the Daily statistics product. This equates to the mean maximum surface elevation for each grid cell for the corresponding month.
    - eta_mean: the mean value of the "eta_mean" variable from the Daily statistics product. This equates to the mean surface elevation for each grid cell for the corresponding month.
    - eta_range_mean: the mean value of the "eta_range" variable from the Daily statistics product. This equates to the mean range of surface elevations for each grid cell for the corresponding month.

    Depths:
    Depths at 1km resolution: -2.35m, -5.35m, -18.0m, -49.0m
    Depths are 4km resolution: -1.5m, -5.55m, -17.75m, -49.0m

    What does this dataset show:

    The temperature statistics show that inshore areas along the coast get significantly warmer in summer and cooler in winter than offshore areas. The daily temperature range is lower in winter with most areas experiencing 0.2 - 0.3 degrees Celsius temperature change. In summer months the daily temperature range approximately doubles, with up welling areas in the Capricorn Bunker group, off the outer edge of the Prompey sector of reefs and on the east side of Torres Strait seeing daily temperature ranges between 0.7 - 1.2 degree Celsius.

    Limitations:

    This dataset is based on spatial and temporal models and so are an estimate of the environmental conditions. It is not based on in-water measurements, and thus will have a spatially varying level of error in the modelled values. It is important to consider if the model results are fit for the intended purpose.

    Change Log:
    2025-10-29: Updated the metadata title from 'eReefs AIMS-CSIRO Statistics of hydrodynamic model outputs' to 'Daily and monthly minimum, maximum and range of eReefs hydrodynamic model outputs - temperature, water elevation (AIMS, Source: CSIRO)'. Improve the introduction text. Corrected deprecated link to NCI THREDDS. Added a description of what the dataset shows.

  15. c

    Data from: Variable Terrestrial GPS Telemetry Detection Rates: Parts 1 -...

    • s.cnmilf.com
    • data.usgs.gov
    • +2more
    Updated Oct 2, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Variable Terrestrial GPS Telemetry Detection Rates: Parts 1 - 7—Data [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/variable-terrestrial-gps-telemetry-detection-rates-parts-1-7data
    Explore at:
    Dataset updated
    Oct 2, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    Studies utilizing Global Positioning System (GPS) telemetry rarely result in 100% fix success rates (FSR). Many assessments of wildlife resource use do not account for missing data, either assuming data loss is random or because a lack of practical treatment for systematic data loss. Several studies have explored how the environment, technological features, and animal behavior influence rates of missing data in GPS telemetry, but previous spatially explicit models developed to correct for sampling bias have been specified to small study areas, on a small range of data loss, or to be species-specific, limiting their general utility. Here we explore environmental effects on GPS fix acquisition rates across a wide range of environmental conditions and detection rates for bias correction of terrestrial GPS-derived, large mammal habitat use. We also evaluate patterns in missing data that relate to potential animal activities that change the orientation of the antennae and characterize home-range probability of GPS detection for 4 focal species; cougars (Puma concolor), desert bighorn sheep (Ovis canadensis nelsoni), Rocky Mountain elk (Cervus elaphus ssp. nelsoni) and mule deer (Odocoileus hemionus). Part 1, Positive Openness Raster (raster dataset): Openness is an angular measure of the relationship between surface relief and horizontal distance. For angles less than 90 degrees it is equivalent to the internal angle of a cone with its apex at a DEM _location, and is constrained by neighboring elevations within a specified radial distance. 480 meter search radius was used for this calculation of positive openness. Openness incorporates the terrain line-of-sight or viewshed concept and is calculated from multiple zenith and nadir angles-here along eight azimuths. Positive openness measures openness above the surface, with high values for convex forms and low values for concave forms (Yokoyama et al. 2002). We calculated positive openness using a custom python script, following the methods of Yokoyama et. al (2002) using a USGS National Elevation Dataset as input. Part 2, Northern Arizona GPS Test Collar (csv): Bias correction in GPS telemetry data-sets requires a strong understanding of the mechanisms that result in missing data. We tested wildlife GPS collars in a variety of environmental conditions to derive a predictive model of fix acquisition. We found terrain exposure and tall over-story vegetation are the primary environmental features that affect GPS performance. Model evaluation showed a strong correlation (0.924) between observed and predicted fix success rates (FSR) and showed little bias in predictions. The model's predictive ability was evaluated using two independent data-sets from stationary test collars of different make/model, fix interval programming, and placed at different study sites. No statistically significant differences (95% CI) between predicted and observed FSRs, suggest changes in technological factors have minor influence on the models ability to predict FSR in new study areas in the southwestern US. The model training data are provided here for fix attempts by hour. This table can be linked with the site _location shapefile using the site field. Part 3, Probability Raster (raster dataset): Bias correction in GPS telemetry datasets requires a strong understanding of the mechanisms that result in missing data. We tested wildlife GPS collars in a variety of environmental conditions to derive a predictive model of fix aquistion. We found terrain exposure and tall overstory vegetation are the primary environmental features that affect GPS performance. Model evaluation showed a strong correlation (0.924) between observed and predicted fix success rates (FSR) and showed little bias in predictions. The models predictive ability was evaluated using two independent datasets from stationary test collars of different make/model, fix interval programing, and placed at different study sites. No statistically significant differences (95% CI) between predicted and observed FSRs, suggest changes in technological factors have minor influence on the models ability to predict FSR in new study areas in the southwestern US. We evaluated GPS telemetry datasets by comparing the mean probability of a successful GPS fix across study animals home-ranges, to the actual observed FSR of GPS downloaded deployed collars on cougars (Puma concolor), desert bighorn sheep (Ovis canadensis nelsoni), Rocky Mountain elk (Cervus elaphus ssp. nelsoni) and mule deer (Odocoileus hemionus). Comparing the mean probability of acquisition within study animals home-ranges and observed FSRs of GPS downloaded collars resulted in a approximatly 1:1 linear relationship with an r-sq= 0.68. Part 4, GPS Test Collar Sites (shapefile): Bias correction in GPS telemetry data-sets requires a strong understanding of the mechanisms that result in missing data. We tested wildlife GPS collars in a variety of environmental conditions to derive a predictive model of fix acquisition. We found terrain exposure and tall over-story vegetation are the primary environmental features that affect GPS performance. Model evaluation showed a strong correlation (0.924) between observed and predicted fix success rates (FSR) and showed little bias in predictions. The model's predictive ability was evaluated using two independent data-sets from stationary test collars of different make/model, fix interval programming, and placed at different study sites. No statistically significant differences (95% CI) between predicted and observed FSRs, suggest changes in technological factors have minor influence on the models ability to predict FSR in new study areas in the southwestern US. Part 5, Cougar Home Ranges (shapefile): Cougar home-ranges were calculated to compare the mean probability of a GPS fix acquisition across the home-range to the actual fix success rate (FSR) of the collar as a means for evaluating if characteristics of an animal’s home-range have an effect on observed FSR. We estimated home-ranges using the Local Convex Hull (LoCoH) method using the 90th isopleth. Data obtained from GPS download of retrieved units were only used. Satellite delivered data was omitted from the analysis for animals where the collar was lost or damaged because satellite delivery tends to lose as additional 10% of data. Comparisons with home-range mean probability of fix were also used as a reference for assessing if the frequency animals use areas of low GPS acquisition rates may play a role in observed FSRs. Part 6, Cougar Fix Success Rate by Hour (csv): Cougar GPS collar fix success varied by hour-of-day suggesting circadian rhythms with bouts of rest during daylight hours may change the orientation of the GPS receiver affecting the ability to acquire fixes. Raw data of overall fix success rates (FSR) and FSR by hour were used to predict relative reductions in FSR. Data only includes direct GPS download datasets. Satellite delivered data was omitted from the analysis for animals where the collar was lost or damaged because satellite delivery tends to lose approximately an additional 10% of data. Part 7, Openness Python Script version 2.0: This python script was used to calculate positive openness using a 30 meter digital elevation model for a large geographic area in Arizona, California, Nevada and Utah. A scientific research project used the script to explore environmental effects on GPS fix acquisition rates across a wide range of environmental conditions and detection rates for bias correction of terrestrial GPS-derived, large mammal habitat use.

  16. California Condor Range - CWHR B109 [ds916]

    • data.ca.gov
    • data.cnra.ca.gov
    • +7more
    Updated Nov 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Fish and Wildlife (2025). California Condor Range - CWHR B109 [ds916] [Dataset]. https://data.ca.gov/dataset/california-condor-range-cwhr-b109-ds916
    Explore at:
    ashx, arcgis geoservices rest api, csv, zip, geojson, kml, htmlAvailable download formats
    Dataset updated
    Nov 7, 2025
    Dataset authored and provided by
    California Department of Fish and Wildlifehttps://wildlife.ca.gov/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    California
    Description

    The southern portion of this range was adopted from the United States Fish and Wildlife Service (USFWS): https://ecos.fws.gov/ecp/species/8193.

    Experimental population: The FWS may designate a population of a listed species as experimental if it will be released into suitable natural habitat outside the species’ current range. An experimental population is a special designation for a group of plants or animals that will be reintroduced in an area that is geographically isolated from other populations of the species. With the experimental population designation, the specified population is treated as threatened under the ESA, regardless of the species’ designation elsewhere in its range.

    CWHR species range datasets represent the maximum current geographic extent of each species within California. Ranges were originally delineated at a scale of 1:5,000,000 by species-level experts more than 30 years ago and have gradually been revised at a scale of 1:1,000,000. Species occurrence data are used in defining species ranges, but range polygons may extend beyond the limits of extant occurrence data for a particular species. When drawing range boundaries, CDFW seeks to err on the side of commission rather than omission. This means that CDFW may include areas within a range based on expert knowledge or other available information, despite an absence of confirmed occurrences, which may be due to a lack of survey effort. The degree to which a range polygon is extended beyond occurrence data will vary among species, depending upon each species’ vagility, dispersal patterns, and other ecological and life history factors. The boundary line of a range polygon is drawn with consideration of these factors and is aligned with standardized boundaries including watersheds (NHD), ecoregions (USDA), or other ecologically meaningful delineations such as elevation contour lines. While CWHR ranges are meant to represent the current range, once an area has been designated as part of a species’ range in CWHR, it will remain part of the range even if there have been no documented occurrences within recent decades. An area is not removed from the range polygon unless experts indicate that it has not been occupied for a number of years after repeated surveys or is deemed no longer suitable and unlikely to be recolonized. It is important to note that range polygons typically contain areas in which a species is not expected to be found due to the patchy configuration of suitable habitat within a species’ range. In this regard, range polygons are coarse generalizations of where a species may be found. This data is available for download from the CDFW website: https://www.wildlife.ca.gov/Data/CWHR.

    The following data sources were collated for the purposes of range mapping and species habitat modeling by RADMAP. Each focal taxon’s location data was extracted (when applicable) from the following list of sources. BIOS datasets are bracketed with their “ds” numbers and can be located on CDFW’s BIOS viewer: https://wildlife.ca.gov/Data/BIOS.

    • California Natural Diversity Database,

    • Terrestrial Species Monitoring [ds2826],

    • North American Bat Monitoring Data Portal,

    • VertNet,

    • Breeding Bird Survey,

    • Wildlife Insights,

    • eBird,

    • iNaturalist,

    • other available CDFW or partner data.

  17. Finance Dataset by Faker Library

    • kaggle.com
    Updated Feb 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hamza Obaydallah (2024). Finance Dataset by Faker Library [Dataset]. https://www.kaggle.com/datasets/hamzazaki/finance-dataset-by-faker-library
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 20, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Hamza Obaydallah
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F9365842%2F5d270d8701f4dc2687f0ae193ee018ae%2F20-Best-Finance-Economic-Datasets-for-Machine-Learning-Social.jpg?generation=1708443878634431&alt=media" alt=""> Finance dataset with fake information such as transaction ID, date, amount, currency, description, category, merchant, customer, city, and country. It can be used for educational purposes as well as for testing.

    This script generates a dataset with fake information such as name, email, phone number, address, date of birth, job, and company. Adjust the num_rows variable to specify the number of rows you want in your dataset. Finally, the dataset is saved to a CSV file named fake_dataset.csv. You can modify the fields or add additional fields according to your requirements.

    `

    Define the number of rows for your dataset

    num_rows = 15000

    Generate fake finance data

    data = { 'Transaction_ID': [fake.uuid4() for _ in range(num_rows)], 'Date': [fake.date_time_this_year() for _ in range(num_rows)],

    'Amount': [round(random.uniform(10, 10000), 2) for _ in range(num_rows)],
    'Currency': [fake.currency_code() for _ in range(num_rows)],
    'Description': [fake.bs() for _ in range(num_rows)],
    'Category': [random.choice(['Food', 'Transport', 'Shopping', 'Entertainment', 'Utilities']) for _ in range(num_rows)],
    'Merchant': [fake.company() for _ in range(num_rows)],
    'Customer': [fake.name() for _ in range(num_rows)],
    'City': [fake.city() for _ in range(num_rows)],
    'Country': [fake.country() for _ in range(num_rows)]
    

    }

    Create a DataFrame

    df = pd.DataFrame(data)

    Save the DataFrame to a CSV file

    df.to_csv('finance_dataset.csv', index=False)

    Display the DataFrame

    df.head()`

  18. d

    HUN AWRA-L ASRIS soil properties v01

    • data.gov.au
    • researchdata.edu.au
    Updated Nov 20, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bioregional Assessment Program (2019). HUN AWRA-L ASRIS soil properties v01 [Dataset]. https://data.gov.au/data/dataset/d8091c0a-5fdc-4f6a-8b61-b1e6cc7c3ace
    Explore at:
    Dataset updated
    Nov 20, 2019
    Dataset provided by
    Bioregional Assessment Program
    Description

    Abstract

    The dataset was derived by the Bioregional Assessment Programme from multiple source datasets. The source datasets are identified in the Lineage field in this metadata statement. The processes undertaken to produce this derived dataset are described in the History field in this metadata statement.

    The dataset is an extract for the Hunter subregion of the soil thickness data from the ASRIS Continental-scale soil property predictions 2001. The source data are the Surface of predicted Thickness of soil layer 1 (A Horizon - top-soil) surface for the intensive agricultural areas of Australia. Data modelled from area based observations made by soil agencies both State and CSIRO and presented as .0.01 degree grid cells.

    The dataset consists of statistics for soils depths (MIN, MAX, RANGE, MEAN, STD, MEDIAN) for each of the simulation catchments in the AWRA-L model. The soil thickness data were resampled to the model grid (BILO cells - 0.05 degree grid cells) and the catchments are defined by the BILO cells which fall within them. The gauging station ID in the spreadsheet defines the gauges which were used to define the upstream catchment area.

    Purpose

    Used to define soils thickness in the AWRA-L model.

    Dataset History

    The soil thickness data were resampled to the model grid (BILO cells - 0.05 degree grid cells). Statistics for soils depths (MIN, MAX, RANGE, MEAN, STD, MEDIAN) for each of the simulation catchments in the AWRA-L model were calculated using the Zonal Statistics as Table tool within ArcGIS with the simulation catchments used as the zone dataset. The output table was used to populate the excel spreadsheet with the Station ID and catchments areas added.

    Dataset Citation

    Bioregional Assessment Programme (XXXX) HUN AWRA-L ASRIS soil properties v01. Bioregional Assessment Derived Dataset. Viewed 13 March 2019, http://data.bioregionalassessments.gov.au/dataset/d8091c0a-5fdc-4f6a-8b61-b1e6cc7c3ace.

    Dataset Ancestors

  19. d

    Mean tidal range in marsh units of Jamaica Bay to western Great South Bay...

    • catalog.data.gov
    • data.usgs.gov
    • +2more
    Updated Nov 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Mean tidal range in marsh units of Jamaica Bay to western Great South Bay salt marsh complex, New York [Dataset]. https://catalog.data.gov/dataset/mean-tidal-range-in-marsh-units-of-jamaica-bay-to-western-great-south-bay-salt-marsh-compl
    Explore at:
    Dataset updated
    Nov 21, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Jamaica Bay, Great South Bay
    Description

    This data release contains coastal wetland synthesis products for the geographic region from Jamaica Bay to western Great South Bay, located in southeastern New York State. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and mean tidal range, are calculated for smaller units delineated from a Digital Elevation Model, providing the spatial variability of physical factors that influence wetland health. Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands with the intent of providing Federal, State, and local managers with tools to estimate the vulnerability and ecosystem service potential of these wetlands. For this purpose, the response and resilience of coastal wetlands to physical factors need to be assessed in terms of the ensuing change to their vulnerability and ecosystem services.

  20. u

    Data from: Range size, local abundance and effect inform species...

    • agdatacommons.nal.usda.gov
    • catalog.data.gov
    txt
    Updated Nov 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Erin K. Espeland; Zachary A. Sylvain (2025). Data from: Range size, local abundance and effect inform species descriptions at scales relevant for local conservation practice [Dataset]. http://doi.org/10.15482/USDA.ADC/1503833
    Explore at:
    txtAvailable download formats
    Dataset updated
    Nov 21, 2025
    Dataset provided by
    Ag Data Commons
    Authors
    Erin K. Espeland; Zachary A. Sylvain
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    Understanding species abundances and distributions, especially at local to landscape scales, is critical for land managers and conservationists to prioritize management decisions and informs the effort and expense that may be required. The metrics of range size and local abundance reflect aspects of the biology and ecology of a given species, and together with its per capita (or per unit area) effects on other members of the community comprise a well-accepted theoretical paradigm describing invasive species. Although these metrics are readily calculated from vegetation monitoring data, they have not generally (and effect in particular) been applied to native species. We describe how metrics defining invasions may be more broadly applied to both native and invasive species in vegetation management, supporting their relevance to local scales of species conservation and management. We then use a sample monitoring dataset to compare range size, local abundance and effect as well as summary calculations of landscape penetration (range size × local abundance) and impact (landscape penetration × effect) for native and invasive species in the mixed-grass plant community of western North Dakota, USA. This paper uses these summary statistics to quantify the impact for 13 of 56 commonly encountered species, with statistical support for effects of 6 of the 13 species. Our results agree with knowledge of invasion severity and natural history of native species in the region. We contend that when managers are using invasion metrics in monitoring, extending them to common native species is biologically and ecologically informative, with little additional investment. Resources in this dataset:Resource Title: Supporting Data (xlsx). File Name: Espeland-Sylvain-BiodivConserv-2019-raw-data.xlsxResource Description: Occurrence data per quadrangle, site, and transect. Species Codes and habitat identifiers are defined in a separate sheet.Resource Title: Data Dictionary. File Name: Espeland-Sylvain-BiodivConserv-2019-data-dictionary.csvResource Description: Details Species and Habitat codes for abundance data collected.Resource Title: Supporting Data (csv). File Name: Espeland-Sylvain-BiodivConserv-2019-raw-data.csvResource Description: Occurrence data per quadrangle, site, and transect.Resource Title: Supplementary Table S1.1. File Name: 10531_2019_1701_MOESM1_ESM.docxResource Description: Scientific name, common name, life history group, family, status (N= native, I= introduced), percent of plots present, and average cover when present of 56 vascular plant species recorded in 1196 undisturbed plots in federally-managed grasslands of western North Dakota. Life history groups: C3 = cool season perennial grass, C4 = warm season perennial grass, SE = sedge, SH = shrub, PF= perennial forb, BF = biennial forb, APF = annual, biennial, or perennial forb.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
U.S. Geological Survey (2025). Mean tidal range in salt marsh units of Edwin B. Forsythe National Wildlife Refuge, New Jersey (polygon shapefile) [Dataset]. https://catalog.data.gov/dataset/mean-tidal-range-in-salt-marsh-units-of-edwin-b-forsythe-national-wildlife-refuge-new-jers

Data from: Mean tidal range in salt marsh units of Edwin B. Forsythe National Wildlife Refuge, New Jersey (polygon shapefile)

Related Article
Explore at:
Dataset updated
Nov 12, 2025
Dataset provided by
United States Geological Surveyhttp://www.usgs.gov/
Area covered
New Jersey
Description

Biomass production is positively correlated with mean tidal range in salt marshes along the Atlantic coast of the United States of America. Recent studies support the idea that enhanced stability of the marshes can be attributed to increased vegetative growth due to increased tidal range. This dataset displays the spatial variation mean tidal range (i.e. Mean Range of Tides, MN) in the Edwin B. Forsythe National Wildlife Refuge (EBFNWR), which spans over Great Bay, Little Egg Harbor, and Barnegat Bay in New Jersey, USA. MN was based on the calculated difference in height between mean high water (MHW) and mean low water (MLW) using the VDatum (v3.5) software (http://vdatum.noaa.gov/). The input elevation was set to zero in VDatum to calculate the relative difference between the two datums. As part of the Hurricane Sandy Science Plan, the U.S. Geological Survey has started a Wetland Synthesis Project to expand National Assessment of Coastal Change Hazards and forecast products to coastal wetlands. The intent is to provide federal, state, and local managers with tools to estimate their vulnerability and ecosystem service potential. For this purpose, the response and resilience of coastal wetlands to physical factors need to be assessed in terms of the ensuing change to their vulnerability and ecosystem services. EBFNWR was selected as a pilot study area.

Search
Clear search
Close search
Google apps
Main menu