Facebook
TwitterBiomass production is positively correlated with mean tidal range in salt marshes along the Atlantic coast of the United States of America. Recent studies support the idea that enhanced stability of the marshes can be attributed to increased vegetative growth due to increased tidal range. This dataset displays the spatial variation mean tidal range (i.e. Mean Range of Tides, MN) in the Edwin B. Forsythe National Wildlife Refuge (EBFNWR), which spans over Great Bay, Little Egg Harbor, and Barnegat Bay in New Jersey, USA. MN was based on the calculated difference in height between mean high water (MHW) and mean low water (MLW) using the VDatum (v3.5) software (http://vdatum.noaa.gov/). The input elevation was set to zero in VDatum to calculate the relative difference between the two datums. As part of the Hurricane Sandy Science Plan, the U.S. Geological Survey has started a Wetland Synthesis Project to expand National Assessment of Coastal Change Hazards and forecast products to coastal wetlands. The intent is to provide federal, state, and local managers with tools to estimate their vulnerability and ecosystem service potential. For this purpose, the response and resilience of coastal wetlands to physical factors need to be assessed in terms of the ensuing change to their vulnerability and ecosystem services. EBFNWR was selected as a pilot study area.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of South Range by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for South Range. The dataset can be utilized to understand the population distribution of South Range by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in South Range. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for South Range.
Key observations
Largest age group (population): Male # 20-24 years (49) | Female # 20-24 years (50). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for South Range Population by Gender. You can refer the same here
Facebook
TwitterBiomass production is positively correlated with mean tidal range in salt marshes along the Atlantic coast of the United States of America. Recent studies support the idea that enhanced stability of the marshes can be attributed to increased vegetative growth due to increased tidal range. This dataset displays the spatial variation of mean tidal range (i.e. Mean Range of Tides, MN) in the Fire Island National Seashore and central Great South Bay salt marsh complex, based on conceptual marsh units defined by Defne and Ganju (2018). MN was based on the calculated difference in height between mean high water (MHW) and mean low water (MLW) using the VDatum (v3.5) database ( http://vdatum.noaa.gov/ ). Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands, including the Fire Island National Seashore and central Great South Bay salt marshes, with the intent of providing Federal, State, and local managers with tools to estimate the vulnerability and ecosystem service potential of these wetlands. For this purpose, the response and resilience of coastal wetlands to physical factors need to be assessed in terms of the ensuing change to their vulnerability and ecosystem services. References: Defne, Z., and Ganju, N.K., 2018, Conceptual marsh units for Fire Island National Seashore and central Great South Bay salt marsh complex, New York: U.S. Geological Survey data release, https://doi.org/10.5066/P95U2MQ7.
Facebook
TwitterDescriptive statistics of dependent variables mean(SE) across range of speeds.
Facebook
TwitterBiomass production is positively correlated with mean tidal range in salt marshes along the Atlantic coast of the United States of America. Recent studies support the idea that enhanced stability of the marshes can be attributed to increased vegetative growth due to increased tidal range. This dataset displays the spatial variation of mean tidal range (i.e. Mean Range of Tides, MN) in the Assateague Island National Seashore and Chincoteague Bay based on conceptual marsh units defined by Defne and Ganju (2018). MN was based on the calculated difference in height between mean high water (MHW) and mean low water (MLW) using the VDatum (v3.5) database ( http://vdatum.noaa.gov/ ). Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands, including the Assateague Island National Seashore and Chincoteague Bay salt marshes, with the intent of providing Federal, State, and local managers with tools to estimate the vulnerability and ecosystem service potential of these wetlands. For this purpose, the response and resilience of coastal wetlands to physical factors need to be assessed in terms of the ensuing change to their vulnerability and ecosystem services. Mean elevation of marsh units is planned to be an underlying parameter in the synthesis of these factors. References: Defne, Z., and Ganju, N.K., 2018, Conceptual marsh units for Assateague Island National Seashore and Chincoteague Bay, Maryland and Virginia: U.S. Geological Survey data release, https://doi.org/10.5066/P92ZW4D9.
Facebook
TwitterThe U.S. National Centers for Environmental Prediction (NCEP) routinely ran the Medium Range Forecast (MRF) model twice daily (00 and 12 UTC) during the ACE-1 period. This dataset is the derived zonal means of model output fields. The forecasts from 12 to 48 hours (in 12 hour steps) are available in native CRAY format.
Facebook
TwitterThis data release contains coastal wetland synthesis products for Massachusetts, developed in collaboration with the Massachusetts Office of Coastal Zone Management. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and tidal range are calculated for smaller units delineated from a digital elevation model, providing the spatial variability of physical factors that influence wetland health. The U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands with the intent of providing Federal, State, and local managers with tools to estimate the vulnerability and ecosystem service potential of these wetlands. For this purpose, the response and resilience of coastal wetlands to physical factors need to be assessed in terms of the ensuing change to their vulnerability and ecosystem services.
Facebook
TwitterAttribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
This dataset has been generated using NYUSIM 3.0 mm-Wave channel simulator software, which takes into account atmospheric data such as rain rate, humidity, barometric pressure, and temperature. The input data was collected over the course of a year in South Asia. As a result, the dataset provides an accurate representation of the seasonal variations in mm-wave channel characteristics in these areas. The dataset includes a total of 2835 records, each of which contains T-R Separation Distance (m), Time Delay (ns), Received Power (dBm), Phase (rad), Azimuth AoD (degree), Elevation AoD (degree), Azimuth AoA (degree), Elevation, AoA (degree), RMS Delay Spread (ns), Season, Frequency and Path Loss (dB). Four main seasons have been considered in this dataset: Spring, Summer, Fall, and Winter. Each season is subdivided into three parts (i.e., low, medium, and high), to accurately include the atmospheric variations in a season. To simulate the path loss, realistic Tx and Rx height, NLoS environment, and mean human blockage attenuation effects have been taken into consideration. The data has been preprocessed and normalized to ensure consistency and ease of use. Researchers in the field of mm-wave communications and networking can use this dataset to study the impact of atmospheric conditions on mm-wave channel characteristics and develop more accurate models for predicting channel behavior. The dataset can also be used to evaluate the performance of different communication protocols and signal processing techniques under varying weather conditions. Note that while the data was collected specifically in South Asia region, the high correlation between the weather patterns in this region and other areas means that the dataset may also be applicable to other regions with similar atmospheric conditions.
Acknowledgements The paper in which the dataset was proposed is available on: https://ieeexplore.ieee.org/abstract/document/10307972
If you use this dataset, please cite the following paper:
Rashed Hasan Ratul, S. M. Mehedi Zaman, Hasib Arman Chowdhury, Md. Zayed Hassan Sagor, Mohammad Tawhid Kawser, and Mirza Muntasir Nishat, “Atmospheric Influence on the Path Loss at High Frequencies for Deployment of 5G Cellular Communication Networks,” 2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT), 2023, pp. 1–6. https://doi.org/10.1109/ICCCNT56998.2023.10307972
BibTeX ```bibtex @inproceedings{Ratul2023Atmospheric, author = {Ratul, Rashed Hasan and Zaman, S. M. Mehedi and Chowdhury, Hasib Arman and Sagor, Md. Zayed Hassan and Kawser, Mohammad Tawhid and Nishat, Mirza Muntasir}, title = {Atmospheric Influence on the Path Loss at High Frequencies for Deployment of {5G} Cellular Communication Networks}, booktitle = {2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT)}, year = {2023}, pages = {1--6}, doi = {10.1109/ICCCNT56998.2023.10307972}, keywords = {Wireless communication; Fluctuations; Rain; 5G mobile communication; Atmospheric modeling; Simulation; Predictive models; 5G-NR; mm-wave propagation; path loss; atmospheric influence; NYUSIM; ML} }
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Grass Range by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Grass Range. The dataset can be utilized to understand the population distribution of Grass Range by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Grass Range. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Grass Range.
Key observations
Largest age group (population): Male # 35-39 years (7) | Female # 70-74 years (36). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Grass Range Population by Gender. You can refer the same here
Facebook
Twitterhttps://artefacts.ceda.ac.uk/licences/specific_licences/ecmwf-era-products.pdfhttps://artefacts.ceda.ac.uk/licences/specific_licences/ecmwf-era-products.pdf
This dataset contains ERA5 surface level analysis parameter data ensemble means (see linked dataset for spreads). ERA5 is the 5th generation reanalysis project from the European Centre for Medium-Range Weather Forecasts (ECWMF) - see linked documentation for further details. The ensemble means and spreads are calculated from the ERA5 10 member ensemble, run at a reduced resolution compared with the single high resolution (hourly output at 31 km grid spacing) 'HRES' realisation, for which these data have been produced to provide an uncertainty estimate. This dataset contains a limited selection of all available variables and have been converted to netCDF from the original GRIB files held on the ECMWF system. They have also been translated onto a regular latitude-longitude grid during the extraction process from the ECMWF holdings. For a fuller set of variables please see the linked Copernicus Data Store (CDS) data tool, linked to from this record.
Note, ensemble standard deviation is often referred to as ensemble spread and is calculated as the standard deviation of the 10-members in the ensemble (i.e., including the control). It is not the sample standard deviation, and thus were calculated by dividing by 10 rather than 9 (N-1). See linked datasets for ensemble member and ensemble mean data.
The ERA5 global atmospheric reanalysis of the covers 1979 to 2 months behind the present month. This follows on from the ERA-15, ERA-40 rand ERA-interim re-analysis projects.
An initial release of ERA5 data (ERA5t) is made roughly 5 days behind the present date. These will be subsequently reviewed ahead of being released by ECMWF as quality assured data within 3 months. CEDA holds a 6 month rolling copy of the latest ERA5t data. See related datasets linked to from this record. However, for the period 2000-2006 the initial ERA5 release was found to suffer from stratospheric temperature biases and so new runs to address this issue were performed resulting in the ERA5.1 release (see linked datasets). Note, though, that Simmons et al. 2020 (technical memo 859) report that "ERA5.1 is very close to ERA5 in the lower and middle troposphere." but users of data from this period should read the technical memo 859 for further details.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This comprehensive dataset provides a wealth of information about all countries worldwide, covering a wide range of indicators and attributes. It encompasses demographic statistics, economic indicators, environmental factors, healthcare metrics, education statistics, and much more. With every country represented, this dataset offers a complete global perspective on various aspects of nations, enabling in-depth analyses and cross-country comparisons.
- Country: Name of the country.
- Density (P/Km2): Population density measured in persons per square kilometer.
- Abbreviation: Abbreviation or code representing the country.
- Agricultural Land (%): Percentage of land area used for agricultural purposes.
- Land Area (Km2): Total land area of the country in square kilometers.
- Armed Forces Size: Size of the armed forces in the country.
- Birth Rate: Number of births per 1,000 population per year.
- Calling Code: International calling code for the country.
- Capital/Major City: Name of the capital or major city.
- CO2 Emissions: Carbon dioxide emissions in tons.
- CPI: Consumer Price Index, a measure of inflation and purchasing power.
- CPI Change (%): Percentage change in the Consumer Price Index compared to the previous year.
- Currency_Code: Currency code used in the country.
- Fertility Rate: Average number of children born to a woman during her lifetime.
- Forested Area (%): Percentage of land area covered by forests.
- Gasoline_Price: Price of gasoline per liter in local currency.
- GDP: Gross Domestic Product, the total value of goods and services produced in the country.
- Gross Primary Education Enrollment (%): Gross enrollment ratio for primary education.
- Gross Tertiary Education Enrollment (%): Gross enrollment ratio for tertiary education.
- Infant Mortality: Number of deaths per 1,000 live births before reaching one year of age.
- Largest City: Name of the country's largest city.
- Life Expectancy: Average number of years a newborn is expected to live.
- Maternal Mortality Ratio: Number of maternal deaths per 100,000 live births.
- Minimum Wage: Minimum wage level in local currency.
- Official Language: Official language(s) spoken in the country.
- Out of Pocket Health Expenditure (%): Percentage of total health expenditure paid out-of-pocket by individuals.
- Physicians per Thousand: Number of physicians per thousand people.
- Population: Total population of the country.
- Population: Labor Force Participation (%): Percentage of the population that is part of the labor force.
- Tax Revenue (%): Tax revenue as a percentage of GDP.
- Total Tax Rate: Overall tax burden as a percentage of commercial profits.
- Unemployment Rate: Percentage of the labor force that is unemployed.
- Urban Population: Percentage of the population living in urban areas.
- Latitude: Latitude coordinate of the country's location.
- Longitude: Longitude coordinate of the country's location.
- Analyze population density and land area to study spatial distribution patterns.
- Investigate the relationship between agricultural land and food security.
- Examine carbon dioxide emissions and their impact on climate change.
- Explore correlations between economic indicators such as GDP and various socio-economic factors.
- Investigate educational enrollment rates and their implications for human capital development.
- Analyze healthcare metrics such as infant mortality and life expectancy to assess overall well-being.
- Study labor market dynamics through indicators such as labor force participation and unemployment rates.
- Investigate the role of taxation and its impact on economic development.
- Explore urbanization trends and their social and environmental consequences.
Data Source: This dataset was compiled from multiple data sources
If this was helpful, a vote is appreciated ❤️ Thank you 🙂
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains customer satisfaction scores collected from a survey, alongside key demographic and behavioral data. It includes variables such as customer age, gender, location, purchase history, support contact status, loyalty level, and satisfaction factors. The dataset is designed to help analyze customer satisfaction, identify trends, and develop insights that can drive business decisions.
File Information: File Name: customer_satisfaction_data.csv (or your specific file name)
File Type: CSV (or the actual file format you are using)
Number of Rows: 120
Number of Columns: 10
Column Names:
Customer_ID – Unique identifier for each customer (e.g., 81-237-4704)
Group – The group to which the customer belongs (A or B)
Satisfaction_Score – Customer's satisfaction score on a scale of 1-10
Age – Age of the customer
Gender – Gender of the customer (Male, Female)
Location – Customer's location (e.g., Phoenix.AZ, Los Angeles.CA)
Purchase_History – Whether the customer has made a purchase (Yes or No)
Support_Contacted – Whether the customer has contacted support (Yes or No)
Loyalty_Level – Customer's loyalty level (Low, Medium, High)
Satisfaction_Factor – Primary factor contributing to customer satisfaction (e.g., Price, Product Quality)
Statistical Analyses:
Descriptive Statistics:
Calculate mean, median, mode, standard deviation, and range for key numerical variables (e.g., Satisfaction Score, Age).
Summarize categorical variables (e.g., Gender, Loyalty Level, Purchase History) with frequency distributions and percentages.
Two-Sample t-Test (Independent t-test):
Compare the mean satisfaction scores between two independent groups (e.g., Group A vs. Group B) to determine if there is a significant difference in their average satisfaction scores.
Paired t-Test:
If there are two related measurements (e.g., satisfaction scores before and after a certain event), you can compare the means using a paired t-test.
One-Way ANOVA (Analysis of Variance):
Test if there are significant differences in mean satisfaction scores across more than two groups (e.g., comparing the mean satisfaction score across different Loyalty Levels).
Chi-Square Test for Independence:
Examine the relationship between two categorical variables (e.g., Gender vs. Purchase History or Loyalty Level vs. Support Contacted) to determine if there’s a significant association.
Mann-Whitney U Test:
For non-normally distributed data, use this test to compare satisfaction scores between two independent groups (e.g., Group A vs. Group B) to see if their distributions differ significantly.
Kruskal-Wallis Test:
Similar to ANOVA, but used for non-normally distributed data. This test can compare the median satisfaction scores across multiple groups (e.g., comparing satisfaction scores across Loyalty Levels or Satisfaction Factors).
Spearman’s Rank Correlation:
Test for a monotonic relationship between two ordinal or continuous variables (e.g., Age vs. Satisfaction Score or Satisfaction Score vs. Loyalty Level).
Regression Analysis:
Linear Regression: Model the relationship between a continuous dependent variable (e.g., Satisfaction Score) and independent variables (e.g., Age, Gender, Loyalty Level).
Logistic Regression: If analyzing binary outcomes (e.g., Purchase History or Support Contacted), you could model the probability of an outcome based on predictors.
Factor Analysis:
To identify underlying patterns or groups in customer behavior or satisfaction factors, you can apply Factor Analysis to reduce the dimensionality of the dataset and group similar variables.
Cluster Analysis:
Use K-Means Clustering or Hierarchical Clustering to group customers based on similarity in their satisfaction scores and other features (e.g., Loyalty Level, Purchase History).
Confidence Intervals:
Calculate confidence intervals for the mean of satisfaction scores or any other metric to estimate the range in which the true population mean might lie.
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
A wide range of ion species and velocity distributions are expected to be found as the Giotto spacecraft traverses the coma of Halley's Comet. The outer coma is characterized by the interaction between solar wind and cometary plasmas, the inner coma by the outflow of cometary neutrals and their ionization products. The resultant demands on instrument dynamic range preclude use of a single sensor for measurements of ion composition. The Giotto Ion Mass Spectrometer (IMS) therefore consists of two sensors: one optimized for the outer and the other for the inner coma, with each obtaining complementary information in the region for which it is not optimized. Both sensors feature mass imaging characteristics, thereby permitting simultaneous measurements of several ion species by means of multi-detector arrays. The prime objective of the High-Energy Range Spectrometer (HERS) is to measure the ion abundances and three-dimensional velocity distributions outside the cometary contact surface.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This derived dataset contains basic statistical products derived from the eReefs CSIRO hydrodynamic model v2.0 outputs at both 1 km and 4 km resolution and v4.0 at 4 km for both a daily and monthly aggregation period. The statistics generated are daily minimum, maximum, mean and range. For monthly aggregations there are monthly mean of the daily minimum, maximum and range, and the monthly minimum, maximum and range. The dataset only calculates statistics for the temperature and water elevation (eta).
These are generated by the AIMS eReefs Platform (https://ereefs.aims.gov.au/). These statistical products are derived from the original hourly model outputs available via the National Computing Infrastructure (NCI) (https://thredds.nci.org.au/thredds/catalogs/fx3/catalog.html).
The data is re-gridded from the original curvilinear grid used by the eReefs model into a regular grid so the data files can be easily loaded into standard GIS software. These products are made available via a THREDDS server (https://thredds.ereefs.aims.gov.au/thredds/) in NetCDF format and
This data set contains two (2) products, based on the periods over which the statistics are determined: daily, and monthly.
Method:
Data files are processed in two stages. The daily files are calculated from the original hourly files, then the monthly files are calculated from the daily files. See Technical Guide to Derived Products from CSIRO eReefs Models for details on the regridding process.
Data Dictionary:
Daily statistics:
The following variables can be found in the Daily statistics product:
- temp_mean: mean temperature for each grid cell for the day.
- temp_min: minimum temperature for each grid cell for the day.
- temp_max: maximum temperature for each grid cell for the day.
- temp_range: difference between maximum and minimum temperatures for each grid cell for the day.
- eta_mean: mean surface elevation for each grid cell for the day.
- eta_min: minimum surface elevation for each grid cell for the day.
- eta_max: maximum surface elevation for each grid cell for the day.
- eta_range: difference between maximum and minimum surface elevation for each grid cell for the day.
Depths:
Depths at 1km resolution: -2.35m, -5.35m, -18.0m, -49.0m
Depths are 4km resolution: -1.5m, -5.55m, -17.75m, -49.0m
* Monthly statistics:
The following variables can be found in the Monthly statistics product:
- temp_min_min: the minimum value of the "temp_min" variable from the Daily statistics product. This equates to the minimum temperature for each grid cell for the corresponding month.
- temp_min_mean: the mean value of the "temp_min" variable from the Daily statistics product. This equates to the mean minimum temperature for each grid cell for the corresponding month.
- temp_max_max: the maximum value of the "temp_max" variable from the Daily statistics product. This equates to the maximum temperature for each grid cell for the corresponding month.
- temp_max_mean: the mean value of the "temp_max" variable from the Daily statistics product. This equates to the mean maximum temperature for each grid cell for the corresponding month.
- temp_mean: the mean value of the "temp_mean" variable from the Daily statistics product. This equates to the mean temperature for each grid cell for the corresponding month.
- temp_range_mean: the mean value of the "temp_range" variable from the Daily statistics product. This equates to the mean range of temperatures for each grid cell for the corresponding month.
- eta_min_min: the minimum value of the "eta_min" variable from the Daily statistics product. This equates to the minimum surface elevation for each grid cell for the corresponding month.
- eta_min_mean: the mean value of the "eta_min" variable from the Daily statistics product. This equates to the mean minimum surface elevation for each grid cell for the corresponding month.
- eta_max_max: the maximum value of the "eta_max" variable from the Daily statistics product. This equates to the maximum surface elevation for each grid cell for the corresponding month.
- eta_max_mean: the mean value of the "eta_max" variable from the Daily statistics product. This equates to the mean maximum surface elevation for each grid cell for the corresponding month.
- eta_mean: the mean value of the "eta_mean" variable from the Daily statistics product. This equates to the mean surface elevation for each grid cell for the corresponding month.
- eta_range_mean: the mean value of the "eta_range" variable from the Daily statistics product. This equates to the mean range of surface elevations for each grid cell for the corresponding month.
Depths:
Depths at 1km resolution: -2.35m, -5.35m, -18.0m, -49.0m
Depths are 4km resolution: -1.5m, -5.55m, -17.75m, -49.0m
What does this dataset show:
The temperature statistics show that inshore areas along the coast get significantly warmer in summer and cooler in winter than offshore areas. The daily temperature range is lower in winter with most areas experiencing 0.2 - 0.3 degrees Celsius temperature change. In summer months the daily temperature range approximately doubles, with up welling areas in the Capricorn Bunker group, off the outer edge of the Prompey sector of reefs and on the east side of Torres Strait seeing daily temperature ranges between 0.7 - 1.2 degree Celsius.
Limitations:
This dataset is based on spatial and temporal models and so are an estimate of the environmental conditions. It is not based on in-water measurements, and thus will have a spatially varying level of error in the modelled values. It is important to consider if the model results are fit for the intended purpose.
Change Log:
2025-10-29: Updated the metadata title from 'eReefs AIMS-CSIRO Statistics of hydrodynamic model outputs' to 'Daily and monthly minimum, maximum and range of eReefs hydrodynamic model outputs - temperature, water elevation (AIMS, Source: CSIRO)'. Improve the introduction text. Corrected deprecated link to NCI THREDDS. Added a description of what the dataset shows.
Facebook
TwitterStudies utilizing Global Positioning System (GPS) telemetry rarely result in 100% fix success rates (FSR). Many assessments of wildlife resource use do not account for missing data, either assuming data loss is random or because a lack of practical treatment for systematic data loss. Several studies have explored how the environment, technological features, and animal behavior influence rates of missing data in GPS telemetry, but previous spatially explicit models developed to correct for sampling bias have been specified to small study areas, on a small range of data loss, or to be species-specific, limiting their general utility. Here we explore environmental effects on GPS fix acquisition rates across a wide range of environmental conditions and detection rates for bias correction of terrestrial GPS-derived, large mammal habitat use. We also evaluate patterns in missing data that relate to potential animal activities that change the orientation of the antennae and characterize home-range probability of GPS detection for 4 focal species; cougars (Puma concolor), desert bighorn sheep (Ovis canadensis nelsoni), Rocky Mountain elk (Cervus elaphus ssp. nelsoni) and mule deer (Odocoileus hemionus). Part 1, Positive Openness Raster (raster dataset): Openness is an angular measure of the relationship between surface relief and horizontal distance. For angles less than 90 degrees it is equivalent to the internal angle of a cone with its apex at a DEM _location, and is constrained by neighboring elevations within a specified radial distance. 480 meter search radius was used for this calculation of positive openness. Openness incorporates the terrain line-of-sight or viewshed concept and is calculated from multiple zenith and nadir angles-here along eight azimuths. Positive openness measures openness above the surface, with high values for convex forms and low values for concave forms (Yokoyama et al. 2002). We calculated positive openness using a custom python script, following the methods of Yokoyama et. al (2002) using a USGS National Elevation Dataset as input. Part 2, Northern Arizona GPS Test Collar (csv): Bias correction in GPS telemetry data-sets requires a strong understanding of the mechanisms that result in missing data. We tested wildlife GPS collars in a variety of environmental conditions to derive a predictive model of fix acquisition. We found terrain exposure and tall over-story vegetation are the primary environmental features that affect GPS performance. Model evaluation showed a strong correlation (0.924) between observed and predicted fix success rates (FSR) and showed little bias in predictions. The model's predictive ability was evaluated using two independent data-sets from stationary test collars of different make/model, fix interval programming, and placed at different study sites. No statistically significant differences (95% CI) between predicted and observed FSRs, suggest changes in technological factors have minor influence on the models ability to predict FSR in new study areas in the southwestern US. The model training data are provided here for fix attempts by hour. This table can be linked with the site _location shapefile using the site field. Part 3, Probability Raster (raster dataset): Bias correction in GPS telemetry datasets requires a strong understanding of the mechanisms that result in missing data. We tested wildlife GPS collars in a variety of environmental conditions to derive a predictive model of fix aquistion. We found terrain exposure and tall overstory vegetation are the primary environmental features that affect GPS performance. Model evaluation showed a strong correlation (0.924) between observed and predicted fix success rates (FSR) and showed little bias in predictions. The models predictive ability was evaluated using two independent datasets from stationary test collars of different make/model, fix interval programing, and placed at different study sites. No statistically significant differences (95% CI) between predicted and observed FSRs, suggest changes in technological factors have minor influence on the models ability to predict FSR in new study areas in the southwestern US. We evaluated GPS telemetry datasets by comparing the mean probability of a successful GPS fix across study animals home-ranges, to the actual observed FSR of GPS downloaded deployed collars on cougars (Puma concolor), desert bighorn sheep (Ovis canadensis nelsoni), Rocky Mountain elk (Cervus elaphus ssp. nelsoni) and mule deer (Odocoileus hemionus). Comparing the mean probability of acquisition within study animals home-ranges and observed FSRs of GPS downloaded collars resulted in a approximatly 1:1 linear relationship with an r-sq= 0.68. Part 4, GPS Test Collar Sites (shapefile): Bias correction in GPS telemetry data-sets requires a strong understanding of the mechanisms that result in missing data. We tested wildlife GPS collars in a variety of environmental conditions to derive a predictive model of fix acquisition. We found terrain exposure and tall over-story vegetation are the primary environmental features that affect GPS performance. Model evaluation showed a strong correlation (0.924) between observed and predicted fix success rates (FSR) and showed little bias in predictions. The model's predictive ability was evaluated using two independent data-sets from stationary test collars of different make/model, fix interval programming, and placed at different study sites. No statistically significant differences (95% CI) between predicted and observed FSRs, suggest changes in technological factors have minor influence on the models ability to predict FSR in new study areas in the southwestern US. Part 5, Cougar Home Ranges (shapefile): Cougar home-ranges were calculated to compare the mean probability of a GPS fix acquisition across the home-range to the actual fix success rate (FSR) of the collar as a means for evaluating if characteristics of an animal’s home-range have an effect on observed FSR. We estimated home-ranges using the Local Convex Hull (LoCoH) method using the 90th isopleth. Data obtained from GPS download of retrieved units were only used. Satellite delivered data was omitted from the analysis for animals where the collar was lost or damaged because satellite delivery tends to lose as additional 10% of data. Comparisons with home-range mean probability of fix were also used as a reference for assessing if the frequency animals use areas of low GPS acquisition rates may play a role in observed FSRs. Part 6, Cougar Fix Success Rate by Hour (csv): Cougar GPS collar fix success varied by hour-of-day suggesting circadian rhythms with bouts of rest during daylight hours may change the orientation of the GPS receiver affecting the ability to acquire fixes. Raw data of overall fix success rates (FSR) and FSR by hour were used to predict relative reductions in FSR. Data only includes direct GPS download datasets. Satellite delivered data was omitted from the analysis for animals where the collar was lost or damaged because satellite delivery tends to lose approximately an additional 10% of data. Part 7, Openness Python Script version 2.0: This python script was used to calculate positive openness using a 30 meter digital elevation model for a large geographic area in Arizona, California, Nevada and Utah. A scientific research project used the script to explore environmental effects on GPS fix acquisition rates across a wide range of environmental conditions and detection rates for bias correction of terrestrial GPS-derived, large mammal habitat use.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The southern portion of this range was adopted from the United States Fish and Wildlife Service (USFWS): https://ecos.fws.gov/ecp/species/8193.
Experimental population: The FWS may designate a population of a listed species as experimental if it will be released into suitable natural habitat outside the species’ current range. An experimental population is a special designation for a group of plants or animals that will be reintroduced in an area that is geographically isolated from other populations of the species. With the experimental population designation, the specified population is treated as threatened under the ESA, regardless of the species’ designation elsewhere in its range.
CWHR species range datasets represent the maximum current geographic extent of each species within California. Ranges were originally delineated at a scale of 1:5,000,000 by species-level experts more than 30 years ago and have gradually been revised at a scale of 1:1,000,000. Species occurrence data are used in defining species ranges, but range polygons may extend beyond the limits of extant occurrence data for a particular species. When drawing range boundaries, CDFW seeks to err on the side of commission rather than omission. This means that CDFW may include areas within a range based on expert knowledge or other available information, despite an absence of confirmed occurrences, which may be due to a lack of survey effort. The degree to which a range polygon is extended beyond occurrence data will vary among species, depending upon each species’ vagility, dispersal patterns, and other ecological and life history factors. The boundary line of a range polygon is drawn with consideration of these factors and is aligned with standardized boundaries including watersheds (NHD), ecoregions (USDA), or other ecologically meaningful delineations such as elevation contour lines. While CWHR ranges are meant to represent the current range, once an area has been designated as part of a species’ range in CWHR, it will remain part of the range even if there have been no documented occurrences within recent decades. An area is not removed from the range polygon unless experts indicate that it has not been occupied for a number of years after repeated surveys or is deemed no longer suitable and unlikely to be recolonized. It is important to note that range polygons typically contain areas in which a species is not expected to be found due to the patchy configuration of suitable habitat within a species’ range. In this regard, range polygons are coarse generalizations of where a species may be found. This data is available for download from the CDFW website: https://www.wildlife.ca.gov/Data/CWHR.
The following data sources were collated for the purposes of range mapping and species habitat modeling by RADMAP. Each focal taxon’s location data was extracted (when applicable) from the following list of sources. BIOS datasets are bracketed with their “ds” numbers and can be located on CDFW’s BIOS viewer: https://wildlife.ca.gov/Data/BIOS.
California Natural Diversity Database,
Terrestrial Species Monitoring [ds2826],
North American Bat Monitoring Data Portal,
VertNet,
Breeding Bird Survey,
Wildlife Insights,
eBird,
iNaturalist,
other available CDFW or partner data.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F9365842%2F5d270d8701f4dc2687f0ae193ee018ae%2F20-Best-Finance-Economic-Datasets-for-Machine-Learning-Social.jpg?generation=1708443878634431&alt=media" alt="">
Finance dataset with fake information such as transaction ID, date, amount, currency, description, category, merchant, customer, city, and country. It can be used for educational purposes as well as for testing.
This script generates a dataset with fake information such as name, email, phone number, address, date of birth, job, and company. Adjust the num_rows variable to specify the number of rows you want in your dataset. Finally, the dataset is saved to a CSV file named fake_dataset.csv. You can modify the fields or add additional fields according to your requirements.
`
num_rows = 15000
data = { 'Transaction_ID': [fake.uuid4() for _ in range(num_rows)], 'Date': [fake.date_time_this_year() for _ in range(num_rows)],
'Amount': [round(random.uniform(10, 10000), 2) for _ in range(num_rows)],
'Currency': [fake.currency_code() for _ in range(num_rows)],
'Description': [fake.bs() for _ in range(num_rows)],
'Category': [random.choice(['Food', 'Transport', 'Shopping', 'Entertainment', 'Utilities']) for _ in range(num_rows)],
'Merchant': [fake.company() for _ in range(num_rows)],
'Customer': [fake.name() for _ in range(num_rows)],
'City': [fake.city() for _ in range(num_rows)],
'Country': [fake.country() for _ in range(num_rows)]
}
df = pd.DataFrame(data)
df.to_csv('finance_dataset.csv', index=False)
df.head()`
Facebook
TwitterThe dataset was derived by the Bioregional Assessment Programme from multiple source datasets. The source datasets are identified in the Lineage field in this metadata statement. The processes undertaken to produce this derived dataset are described in the History field in this metadata statement.
The dataset is an extract for the Hunter subregion of the soil thickness data from the ASRIS Continental-scale soil property predictions 2001. The source data are the Surface of predicted Thickness of soil layer 1 (A Horizon - top-soil) surface for the intensive agricultural areas of Australia. Data modelled from area based observations made by soil agencies both State and CSIRO and presented as .0.01 degree grid cells.
The dataset consists of statistics for soils depths (MIN, MAX, RANGE, MEAN, STD, MEDIAN) for each of the simulation catchments in the AWRA-L model. The soil thickness data were resampled to the model grid (BILO cells - 0.05 degree grid cells) and the catchments are defined by the BILO cells which fall within them. The gauging station ID in the spreadsheet defines the gauges which were used to define the upstream catchment area.
Used to define soils thickness in the AWRA-L model.
The soil thickness data were resampled to the model grid (BILO cells - 0.05 degree grid cells). Statistics for soils depths (MIN, MAX, RANGE, MEAN, STD, MEDIAN) for each of the simulation catchments in the AWRA-L model were calculated using the Zonal Statistics as Table tool within ArcGIS with the simulation catchments used as the zone dataset. The output table was used to populate the excel spreadsheet with the Station ID and catchments areas added.
Bioregional Assessment Programme (XXXX) HUN AWRA-L ASRIS soil properties v01. Bioregional Assessment Derived Dataset. Viewed 13 March 2019, http://data.bioregionalassessments.gov.au/dataset/d8091c0a-5fdc-4f6a-8b61-b1e6cc7c3ace.
Derived From HUN AWRA-R simulation nodes v01
Derived From Bioregional Assessment areas v06
Derived From GEODATA 9 second DEM and D8: Digital Elevation Model Version 3 and Flow Direction Grid 2008
Derived From Bioregional Assessment areas v04
Derived From Gippsland Project boundary
Derived From Natural Resource Management (NRM) Regions 2010
Derived From BA All Regions BILO cells in subregions shapefile
Derived From GEODATA TOPO 250K Series 3, File Geodatabase format (.gdb)
Derived From GEODATA TOPO 250K Series 3
Derived From NSW Catchment Management Authority Boundaries 20130917
Derived From Geological Provinces - Full Extent
Derived From Bioregional Assessment areas v03
Derived From Bioregional Assessment areas v05
Derived From BILO Gridded Climate Data: Daily Climate Data for each year from 1900 to 2012
Derived From National Surface Water sites Hydstra
Derived From ASRIS Continental-scale soil property predictions 2001
Derived From Mean Annual Climate Data of Australia 1981 to 2012
Derived From Bioregional Assessment areas v01
Derived From Bioregional Assessment areas v02
Derived From Victoria - Seamless Geology 2014
Derived From HUN AWRA-R simulation catchments v01
Derived From Climate model 0.05x0.05 cells and cell centroids
Facebook
TwitterThis data release contains coastal wetland synthesis products for the geographic region from Jamaica Bay to western Great South Bay, located in southeastern New York State. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and mean tidal range, are calculated for smaller units delineated from a Digital Elevation Model, providing the spatial variability of physical factors that influence wetland health. Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands with the intent of providing Federal, State, and local managers with tools to estimate the vulnerability and ecosystem service potential of these wetlands. For this purpose, the response and resilience of coastal wetlands to physical factors need to be assessed in terms of the ensuing change to their vulnerability and ecosystem services.
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Understanding species abundances and distributions, especially at local to landscape scales, is critical for land managers and conservationists to prioritize management decisions and informs the effort and expense that may be required. The metrics of range size and local abundance reflect aspects of the biology and ecology of a given species, and together with its per capita (or per unit area) effects on other members of the community comprise a well-accepted theoretical paradigm describing invasive species. Although these metrics are readily calculated from vegetation monitoring data, they have not generally (and effect in particular) been applied to native species. We describe how metrics defining invasions may be more broadly applied to both native and invasive species in vegetation management, supporting their relevance to local scales of species conservation and management. We then use a sample monitoring dataset to compare range size, local abundance and effect as well as summary calculations of landscape penetration (range size × local abundance) and impact (landscape penetration × effect) for native and invasive species in the mixed-grass plant community of western North Dakota, USA. This paper uses these summary statistics to quantify the impact for 13 of 56 commonly encountered species, with statistical support for effects of 6 of the 13 species. Our results agree with knowledge of invasion severity and natural history of native species in the region. We contend that when managers are using invasion metrics in monitoring, extending them to common native species is biologically and ecologically informative, with little additional investment. Resources in this dataset:Resource Title: Supporting Data (xlsx). File Name: Espeland-Sylvain-BiodivConserv-2019-raw-data.xlsxResource Description: Occurrence data per quadrangle, site, and transect. Species Codes and habitat identifiers are defined in a separate sheet.Resource Title: Data Dictionary. File Name: Espeland-Sylvain-BiodivConserv-2019-data-dictionary.csvResource Description: Details Species and Habitat codes for abundance data collected.Resource Title: Supporting Data (csv). File Name: Espeland-Sylvain-BiodivConserv-2019-raw-data.csvResource Description: Occurrence data per quadrangle, site, and transect.Resource Title: Supplementary Table S1.1. File Name: 10531_2019_1701_MOESM1_ESM.docxResource Description: Scientific name, common name, life history group, family, status (N= native, I= introduced), percent of plots present, and average cover when present of 56 vascular plant species recorded in 1196 undisturbed plots in federally-managed grasslands of western North Dakota. Life history groups: C3 = cool season perennial grass, C4 = warm season perennial grass, SE = sedge, SH = shrub, PF= perennial forb, BF = biennial forb, APF = annual, biennial, or perennial forb.
Facebook
TwitterBiomass production is positively correlated with mean tidal range in salt marshes along the Atlantic coast of the United States of America. Recent studies support the idea that enhanced stability of the marshes can be attributed to increased vegetative growth due to increased tidal range. This dataset displays the spatial variation mean tidal range (i.e. Mean Range of Tides, MN) in the Edwin B. Forsythe National Wildlife Refuge (EBFNWR), which spans over Great Bay, Little Egg Harbor, and Barnegat Bay in New Jersey, USA. MN was based on the calculated difference in height between mean high water (MHW) and mean low water (MLW) using the VDatum (v3.5) software (http://vdatum.noaa.gov/). The input elevation was set to zero in VDatum to calculate the relative difference between the two datums. As part of the Hurricane Sandy Science Plan, the U.S. Geological Survey has started a Wetland Synthesis Project to expand National Assessment of Coastal Change Hazards and forecast products to coastal wetlands. The intent is to provide federal, state, and local managers with tools to estimate their vulnerability and ecosystem service potential. For this purpose, the response and resilience of coastal wetlands to physical factors need to be assessed in terms of the ensuing change to their vulnerability and ecosystem services. EBFNWR was selected as a pilot study area.